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Cancer is one of the leading causes of mortality worldwide. PPAR modulators may

hold great potential for the management of cancer patients. Indeed, PPARs are critical

sensors and regulators of lipid, and they are able to promote eNOS activation, regulate

immunity and inflammation response, and affect proliferation and differentiation of cancer

cells. Cancer, a name given to a group of diseases, is characterized by multiple

distinctive biological behaviors, including angiogenesis, abnormal cell proliferation,

aerobic glycolysis, inflammation, etc. In the last decade, emerging evidence has shown

that PPAR-α, a nuclear hormone receptor, can modulate carcinogenesis via exerting

effects on one or several characteristic pathological behaviors of cancer. Therefore, the

multi-functional PPAR modulators have substantial promise in various types of cancer

therapies. This review aims to consolidate the functions of PPAR-α, as well as discuss the

current and potential applications of PPAR-α agonists and antagonists in tackling cancer.
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INTRODUCTION

Cancer is one of the worldwide health problems, and the well-established risk factors involving
genetic susceptibility, ionizing radiation, infections, smoking, insobriety, unhealthy diet, sedentary
lifestyle, obesity, and other carcinogenic environmental exposures, promote the prevalence of
cancer (1–5). It is believed that more than 20 million new cancer cases annually are projected to
occur by 2025. Lung cancer remains to be the leading cause of morbidity and mortality globally
(6). Besides, the American Cancer Society has demonstrated that cancer is the second leading
cause of death in the United States, with expected 1,762,450 new cancer cases and 606,880 cancer
deaths in 2019 (7). In fact, the morbidity and mortality of multiple kinds of cancer declined over
the past decade due to decreases in known risk factors, effective screening, early detection, and
better treatments in high-income countries. In contrast, cancer rates increased in low- andmeddle-
income countries, resulting from increases in smoking, unhealthy diet, lack of physical activity and
infections (8). For example, death rates in the poorest countries were 2-fold higher in terms of
cervical cancer, and 40% higher for men with lung and liver cancers from 2012 to 2016, compared
with the most developed countries (7). Moreover, since cancers are characterized by mutations,
and cells in our body inevitably mutate as we age, some of the mutations trigger formation of
malignancy (9, 10). Considering the characteristics of cancer, two major therapeutic schemes have
been applied clinically. One is genotype-directed precision oncology, targeting specific genomic
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abnormalities of various types of cancer to provide individual
treatment. Another is antitumor immunity, that is, therapies
targeting at the components of tumor microenvironment,
especially the immune system (11–16).

Peroxisome proliferator-activated receptors (PPARs) are
members of three ligand-inducible transcription factors, which
belong to the nuclear receptor super-family. PPARs play an
important role in regulating the expression of a variety of
genes regarding the metabolic homeostasis of glucose and lipid,
adipogenesis, and inflammation (17, 18). In mammals, there
are three subtypes of PPARs: PPAR-α, PPAR-γ, and PPAR-β/δ,
possessing varying expression levels in different tissues, biological
effects, and ligand affinities (19). PPAR-α is mainly expressed in
brown adipose, skeletal muscle, heart, liver, and intestinal mucosa
tissues, adjusting glucose and lipid metabolism and homeostasis,
inflammation, immune response, and angiogenesis (20, 21).
Therefore, due to the vital metabolic modulating roles and
excellent druggability of PPARs, PPAR agonists and antagonists
have been employed for the therapy of a number of diseases,
such as dyslipidemia, type 2 diabetes, cardiovascular diseases,
obesity, cancer, and other metabolic diseases (22). PPAR agonists
promote the transcription of target genes, leading to structural
adjustment in the heterodimerized PPAR (with retinoid X
receptor). However, PPAR antagonists do not change receptor
conformation, compete or not compete with other ligands (23).

Mounting evidence has been accumulating in effects of
PPAR-α and PPAR-γ in carcinogenesis, which show overlapping
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functions in metabolism and inflammation modulation. Yet,
respective distinctions in specificity and potency of PPAR-β/δ
has been conflicting. Apart from the regulation of cancer cell
proliferation and differentiation regulated by PPAR modulators
(both agonists and antagonists), which have been widely
investigated, their pleiotropic roles in cancer encompasses realms
of metabolism and inflammation are highly associated with
cancer types and specific microenvironment as well (24). To
provide a more focused insight, this review aims to only discuss
recent findings on the biological functions, as well as current and
potential applications of the agonists and antagonists of PPAR-α
in cancer treatments.

FUNCTIONS OF PPAR-α

PPAR-α is universally expressed in an organism, whose RNA
expression level lacks tissue specificity and that of protein is
particularly significant in tissues that require fatty acid oxidation
as a source of energy, primarily metabolic tissues like brown
adipose tissue, liver, heart, and kidney (25). The anti- and pro-
tumorigenesis properties of PPAR-α are intricately intertwined
in the field of the metabolism of lipid, glucose, and amino acid,
as well as inflammation, cell proliferation, and apoptosis (Table 1
and Figure 1).

Regulation of Lipid Metabolism
PPAR-α maintains lipid metabolism and homeostasis via the
modulation of genes of lipoprotein lipase, apolipoprotein (e.g.
APOA1, APOA2, APOA5, and APOC3), as well as those
involved in fatty acid transport and oxidation (e.g. FABP1,
FABP3, ACS, ACO, CPT1, and CPT2), high-density lipoprotein
(HDL) metabolism (e.g., PLTP), and ketone synthesis (e.g.,
HMGCS2), which take place in mitochondria, peroxisomes,
and microsomes (22, 26, 27). Upon the activation of PPAR-
α, the effect of substantial serum triglyceride clearance and
HDL cholesterol increase is jointly yielded, as well as energy
production. Moreover, PPAR-α also plays a key role in starvation
response, which is underpinned by growing evidence on its
regulation of carbohydrate and amino acid metabolism.

The catabolic action of PPAR-α on fatty acids causes an
increased flux of fatty acids from peripheral tissues (e.g., skeletal
muscle and adipose tissue), of which high content of triglyceride
is significantly related to insulin resistance, to the liver.
This effect might also consequently alleviate the FA-mediated
inhibition of insulin-stimulated oxidative and non-oxidative
glucose disposal in skeletal muscle, thus ameliorating insulin
resistance. Additionally, the induction of hepatic lipogenesis
of PPAR-α cooperates with insulin via regulating the sterol
regulatory element-binding protein-1c (SREBP1c)-dependent
pathway, a transcription factor modulating lipogenic enzyme
expression and insulin action on both carbohydrates and
lipids (28).

Inhibition of Glycolysis
Cancer cells are characterized by their uniquemetabolic pathway,
namely the Warburg effect, which in essence is glycolysis
in oxygen-sufficient microenvironment. Under high energy
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TABLE 1 | Summary of functions and mechanisms of PPAR-α.

Functions Mechanisms

Lipid regulation (22, 26–30) 1. Promotion of β-oxidation

2. Serum triglyceride clearance and HDL

increase

3. Induction of hepatic lipogenesis

Glucose regulation (31, 32) 1. Alleviation of glucose disposal (in skeletal

muscle)

2. Amelioration of insulin resistance

3. Inhibition of aerobic glycolysis (in

cancer cells)

Amino acid regulation (30) 1. Decrease of amino acid metabolism rate as

a part of starvation response

Inflammation regulation

(22, 31, 33)

1. Downregulation of gene expression of

inflammatory cytokines, e.g., IκB, IL-6, TNFα

2. Downregulation of the AP-1 and NF-κB

pathways

3. Interaction with glucocorticoid receptor α or

estrogen receptor

Cardiovascular benefit (34) 1. Activation of endothelial nitric oxide

synthase (eNOS)

Anti-tumorigenesis effect

(22, 29, 32, 35–48)

1. Inhibition of angiogenesis

2. Prioritization of FAO to glycolysis and

disruption of the balance of glucose and lipid

metabolism to inhibit ATP production

3. Accumulation of ROS and mitochondrial

damage

4. Induction of apoptosis and ferroptosis

5. Control of DNA methylation

6. Preservation of endocannabinoids

7. Inhibition of melanogenesis

8. Support on the generation and vitality of T

cells, the conversion to T-eff cells, and the

prevention of the apoptosis of cytotoxic T

lymphocytes (CTLs)

Pro-tumorigenesis effect

(49–60)

1. Decreased antioxidant capacity and CPT1A

pattern expression*

2. Promotion of CYP1B1, which is involved in

the bioactivation of procarcinogens

3. Induction of liver cancer in rodents**

4. Promotion of self-renewal ability and sphere-

formation rate of cancer stem cells (CSCs)

5. Suppression on the proliferation and vitality,

and the induction of apoptosis of T cells*

*Contradictory evidence. **Evidence absent in humans; ROS, reactive oxygen species;

FAO, fatty acid oxidation; AP-1, activator protein-1.

demand and excessive oxidative stress, some cancer cells even
adopt a hybrid metabolic method, employing both glycolysis and
oxidative phosphorylation (OXPHOS). Upon activation, PPAR-
α restricts mitochondrial OXPHOS, which non-tumor cells are
not affected by; and increases the production of reactive oxygen
species (ROS), causing the accumulation and exacerbation of
the oxidative stress in cancer cell mitochondria. There is also a
promotion of AMP-activated protein kinase (AMPK) signaling
pathway witnessed alongside the activation of PPAR-α (29, 37),
which increases the oxidation of fatty acids while potently
inhibiting glycolysis, further cutting down ATP production.
Synergistically, the mitochondria are impaired both structurally
and functionally. Thus, the crippled energy production fails to

meet the intensive energy demand of highly proliferative cancer
cells, consequently impairing the viability, and even inducing
cell cycle arrest, antagonizing the growth and metastasis of
cancer (61).

Promotion of Ketosis
Moreover, the prioritization of β-oxidation from PPAR-α as
a starvation response has been illustrated. Upon agonist-
binding, a decrease in urea concentration, an indicator of
amino acid metabolism rate, is accompanied by an increase
in ketone body concentration (30). Ketone bodies are of
no energy-providing use for most cancer cells; however, for
melanoma, the ketogenic gene expression is pro-tumorigenic,
which is characterized by intracellular acetoacetate accumulation.
Interestingly, acetoacetate is quite rapidly converted to beta-
hydroxybutyrate in circulations and tissues within human body,
and the latter suppresses inflammation, by the low-grade of
which cancer microenvironment is always characterized, rather
than immunosuppression. As the main regulator of physiological
response to fasting and ketone body biosynthesis, PPAR-
α has promising potential in the application in melanoma
therapies (29).

Regulation of Inflammation and eNOS
Tissues highly involved in global metabolism (e.g., adipose
tissue, liver, skeletal muscle, and vascular walls) are prone
to inflammation when there is a metabolic disturbance (62).
Chronic low-grade inflammation and metabolic disorders in
lipid and glucose homeostasis often co-exist, which makes PPAR,
the pleiotropic metabolism regulator, a strong candidate in the
modulation of innate immunity in various metabolic diseases.
PPAR-α directly or indirectly exerts an anti-inflammatory
effect: the activation by leukotriene B4 limits its own activity
and attenuates inflammatory response via negative feedback;
stimulated by PPAR-α, the increased gene expression of IκB, an
NF-κB inhibitor, together with the protein-protein interaction
of PPAR-α with p65 and c-Jun, downregulates the activator
protein-1 (AP-1) and NF-κB pathway and thus interferes
with proinflammatory activity (22, 33); and the interaction of
PPAR-α with glucocorticoid receptor α or estrogen receptor
also trans-represses other proinflammatory transcription
factors (22).

In addition, upon activation, PPAR-α plays a significant
role in the regulation of endothelial nitric oxide
synthase (eNOS) in a non-metabolic way (34). The
sustainability of eNOS translates to stable production
of nitric oxide, a vasodilator, and anti-thrombotic agent
protecting epithelium, of which the activity is severely
compromised in patients with cardiovascular diseases and
arthrosclerosis (31).

Suppression of Angiogenesis
Since ample blood supply is critical to tumor growth,
angiogenesis is determinant in the progression of tumor,
involving degradation of the surrounding matrix, cell
proliferation, migration, differentiation, and tube formation.
In the NADPH oxidase (NOX) family, as NOX2, NOX4, and

Frontiers in Oncology | www.frontiersin.org 3 March 2021 | Volume 11 | Article 599995

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tan et al. PPAR-α Modulators as Cancer Treatments

FIGURE 1 | This figure illustrates the main mechanism of PPAR-α that lipid and immunity regulation lead to apoptosis of cancer cells. OXPHOS, oxidative

phosphorylation; FAO, fatty acid oxidation; ROS, reactive oxygen species; PD-1, programmed death-1; AMPK, AMP-activated protein kinase; mTOR, mammalian

target of rapamycin; STAT-3, signal transducer and activator of transcription-3; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin

domain-containing-3.

NOX1 all expresses in endothelial cells, NOX2, and NOX4
are involved in cell proliferation, while NOX1 mediates
endothelial cell migration and sprouting but not proliferation
(35). PPAR-α upregulates the gene-expression of endostatin
and thrombospondin 1, which are angiogenic inhibitors; and
downregulates vascular endothelial growth factor (VEGF); and
cytochrome P450-2C (CYP-2C), the neovascularization induced
by the former in vivo and in vitro is reported to be dependent
on NOX2 (22, 35). Interestingly, PPAR-α has also been found
as a downstream modulator in NOX1-mediated angiogenesis,
whose activity is repressed by the presence of NOX1; and in
NOX1-deficient cells, the upregulated-expression of PPAR-α
blocks angiogenic signaling needed in endothelial cell migration,
sprouting, and angiogenesis (35).

Modulation of Immune System
Immunotherapy has been gaining significant momentum in
cancer treatment, employing vaccines, antibodies, T cells, and
cytokines to target the immune system to curb the growth
of tumor cells. The valuable asset of metabolism-regulating
of PPAR-α has established tight linkage to the generation,
persistence, conversion, and apoptosis of T cell, of which
the metabolic pathways play pivotal role in whose function
and survival, greatly effecting the efficacy and outcome of
the application. It is well-established that T-eff cells employ

the classic metabolic mode—aerobic glycolysis—to sustain and
recover effector function, which is the conversion from long-
surviving memory cells to effectors (36); while T-memory cells
majorly depend on fatty acid oxidation (FAO) and OXPHOS of
mitochondria for energy.

According to studies, however, it is shown that in
tumor microenvironment, with the metabolic constrains of
hypoglycemia and hypoxia, due to the glucose depletion
caused by tumor cells, which adopts glycolysis for energy
production (63), T-effector cells perform better tumoricidal
effect with increased mitochondrial metabolism, including
OXPHOS, and FAO (64). It has been suggested that upon
ligand-binding, PPAR-α, either working downstream in the
activation of PPAR-δ by a PPAR-δ-specific ligand, GW501516
(65), or directly activated by co-activators (66), improves the
efficacy of adoptive cell therapy by enhancing expression of
carnitine palmitoyl transferase 1a, the rate-limiting enzyme of
FAO, thereby enriching the uptake and oxidation of fatty acids.
During which the expression of B-cell lymphoma-2 (Bcl2) is
also upregulated, and the duo of the above two proteins can
form a complex with the cytotoxic T lymphocytes (CTL) to exert
an apoptosis-preventing effect (66). The activation of PPAR-α
also improves anti-tumor immunity in PD-1 blockade cancer
immunotherapy by reprogramming CD8+ T-cell metabolism
from glycolysis to increased mitochondrial OXPHOS and FAO,
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supporting the extra energy demands of effector CTLs, thus
lengthening the survival and potentiating activity (65, 66).
Meanwhile, it also elevates cytokine expression (e.g., IFNγ) (64).

Promotion of Tumorigenesis
However, the pro-tumorigenesis effect of PPAR-α has also
been contended with some solid evidence. With regard to its
powerful oxidative property, contrary to the aforementioned
anti-tumorigenesis effect with excessive oxidative stress on
cancer cell mitochondria, other scientists argued that the
inhibition of PPAR-α has yielded anti-proliferative effect on
human paraganglioma, pancreatic and colorectal cancer cells
in vitro with decreased antioxidant capacity and carnitine
palmitoyl transferase-1A pattern expression (49–52). As
suggested before, there exist interactions between PPAR-α and
hormone metabolism. Upon activation, PPAR-α increases the
expression and activity of CYP1B1, a subtype of Cytochromes
P450. Through the biotransformation of endogenous estrogens
and environmental carcinogens, it is critical in the initiation
and progression of various hormone-dependent tumors,
including breast cancer (53). Under long-term administration,
the activation of PPAR-α is found to be hepatocarcinogenic
in rodents, a mechanism related to the downregulation
of let-7c micro RNA expression, which stabilizes MYC
mRNA, contributing to increased mitogenic signaling and
the consequent hepatocyte proliferation. This is an effect via both
PPAR-α-dependent and -independent pathway, which has been
testified to be absent in humans (54, 55). Cancer stem cell (CSC)
is a subset of cancer cell population possessing self-renewal
ability, and its sphere-formation rate is positively correlated
with the advancement of malignancy. The higher number of
CSCs population, the greater potential tumor possesses to
advance. It has been found that maintenance of CSC properties
of human hepatocellular carcinoma cells is upregulated by
PPAR-α pathway activation, through activation of the PPAR-α-
stearoyl-CoA desaturase-1 axis (56).

PPAR-α MODULATORS AND CANCER

PPAR modulators including agonists and antagonists could
represent a novel strategy for preventing and treating multiple
types of cancer, regarding that dyslipidemias, obesity, glucose
intolerance, and low-grade inflammation are strongly related
to an increased risk of cancer, which PPAR modulators are
able to directly or indirectly regulate. Thus, they are associated
with cancer cell proliferation, differentiation, and apoptosis,
supporting the potential of PPAR modulators as antitumor
molecules. As far as PPAR-α agonists, they play an important
role in the prevention of different cancers, including breast
cancer, lung cancer, pancreatic cancer, and etc., by inhibiting
the proliferation of cancer cells and affecting the Warburg
effect. However, PPARs function as tumor suppressors or
inducers is context-dependent, excessive expression of PPAR-
α has been related to the progression of cell growth and
survival in several cancer, suggesting that PPAR-α antagonists
could be an effective therapeutic option for treating cancer
(Table 2).

Head and Neck Paragangliomas
Head and neck paragangliomas (HNPGLs) are rare types of
cancer that lead to significant morbidity regarding their ability
to infiltrate the skull base (98). At present, surgery is the
only option for patients, whereas, it is difficult to thoroughly
remove the tumors (99). Therefore, other effective therapies
are highly needed. Considering that PPAR-α is a candidate
treatment for several types of cancer, a study has analyzed
the expression of PPAR-α nuclear receptor in HNPGLs and
assessed the functions of two PPAR-α modulators: PPAR-α
agonist (WY14643) and PPAR-α antagonist (GW6471) in a
unique model of HNPGLs cells, where the protein expression
level of PPAR-α is remarkably high. The study has demonstrated
that PPAR-α agonist (WY14643) fails to affect HNPGLs cells
viability, while PPAR-α antagonist (GW6471) is associated
with the decrease of HNPGLs cell viability and proliferation.
Moreover, the underlying mechanisms involve the inhibition
of the PI3K/GSK3β/β-catenin pathway, resulting in interfered
cell cycles and induced apoptosis, resulting in the inhibition of
clonogenicity and migration of HNPGL cells (67). Thus, PPAR-α
antagonist (GW6471) could be considered as a potential therapy
for HNPGLs.

Oral Cancer
Oral cancer is the one of the fatal malignancies with frequent
lymph node metastasis and local invasion, thus, the prognosis
of patients is poor even after targeted and chemotherapeutic
drugs (100). Fenofibrate, a PPAR-α agonist, has been widely
used to treat hyperlipidemia with its effects of anti-inflammatory
and anti-atherosclerotic in humans. Meanwhile, the anticancer
potential of fenofibrate has been report in several studies,
involving induction of cancer cell apoptosis, decrease of cell
proliferation, suppression of tumor angiogenesis, and inhibition
of oxidative stress (101, 102). A study has investigated the
anticancer activities of fenofibrate on the invasion and migration
of human oral cancer Cal27 cells, which is associated with
the attenuation of MMPs expression, enhancement of AMPK
phosphorylation, and suppression of NF-κB p65 and its DNA
binding activity, while such effect was observed to present in a
AMPK-dependent manner, rather than PPARα signaling (68).
The same research team has also found that in oral cancer
mouse model, the expression level of PPAR-α protein was
negatively correlated to cancer advancement; and the activation
of PPAR-α by fenofibrate induced decreased migration ability
in oral cancer cells in vitro, assumably via reprogramming
ATP pathway, interfering with the characteristic Warburg
effect of cancer cells (69). Moreover, in both animal and cell
culture models, fenofibrate shows anti-oral cancer effects in
restraining the process of preneoplastic lesion to oral squamous
cell carcinoma, downregulating mTOR activity via TSC1/2-
dependent signaling by triggering AMPK and suppressing
Akt, and adjusting Warburg effect to mitochondrial oxidative
phosphorylation to control energy production approach so as
to repress proliferation of oral cancer cells and induction of
metabolic reprogramming (37).
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TABLE 2 | Summary of the PPAR-α modulators in different types of cancer.

Disease Modulator Agent Main findings References

Head and neck

paragangliomas

Antagonist GW6471 Decreasing HNPGLs cells viability and proliferation by inhibiting

PI3K/GSK3β/β-catenin pathway.

(67)

Attenuating MMPs expression, enhancing AMPK phosphorylation, and

suppressing NF-κB p65 and its DNA binding activity

(68)

Oral cancer Agonist Fenofibrate Regulating the gene expression of mitochondrial energy metabolism (69)

Restraining the process of preneoplastic lesion to oral squamous cell

carcinoma, downregulating mTOR activity, and adjusting Warburg effect to

mitochondrial oxidative phosphorylation

(37)

Esophageal cancer Agonist Fenofibrate Decreasing the expression of VEGF protein and sensitizing the cell to

radiotherapy

(70)

Breast cancer Agonist Clofibrate Regulating inflammatory, lipogenic pathways, and expression of genes

involving FAO

(71)

Fenofibrate Reducing the phosphorylation levels of Akt/NF-κB and augmenting

chemosensitivity when it combined with paclitaxel, TRAIL, ABT-737, and

doxorubicin

(72)

Fenofibrate Arresting G1 cell cycle, restraining NF-κB activity and ERK signaling pathway (73)

Lung cancer Agonist Preventing the progression of cancer anorexia cachexia syndrome (74)

Ave8134 Reducing the production of AA-derived EETs and promoting the levels of

11-HETE

(75)

Gastric cancer Agonist Fenofibrate Reprogramming abnormal mitochondria via CPT-1 and FAO pathway and

exhibiting trivial systematic toxicity

(32)

Pancreatic cancer Agonist Clofibrate Promoting radiosensitivity of pancreatic cancer cells (76)

Antagonist Sulfonimide

derivative 4

Impairing viability in pancreatic cancer cells (52)

Fenofibrate Inducing human HepG2 cell death by promoting the activity of ROS and

intracellular glutathione depletion

(77)

Liver cancer Agonist Independently inhibiting human Huh7 cell proliferation without affecting by

the PPAR-α antagonist (GW6471) or by PPAR-α-specific siRNA

(78)

Clofibrate Causing apoptosis or blocking proliferation in a time- and concentration-

dependent way in human HepG2 cells

(79)

Prostate cancer Agonist Fenofibrate Promoting cell autophagy in the beginning but inhibiting complete

autophagy eventually

(80)

Interfering energy metabolism and impairing microevolution and expansion

induced by drug-resistant cells

(81)

LY171883 Diminishing AP-1-mediated transcriptional activation of genes involving

inflammatory response like Cox-2 and VEGF

(82)

WY14643 Diminishing AP-1-mediated transcriptional activation of genes involving

inflammatory response like Cox-2 and VEGF

(82)

Colorectal cancer Agonist Increasing chemosensitivity and inhibiting mTOR pathway (38)

Clofibrate Inducing antiapoptotic Bcl2 protein degradation and promoting autophagy (83)

Fenofibrate Decreasing expression of DNMT1 and PRMT6 (39)

Agonist Fenofibrate Alleviating glycolysis and lactate production, and impairing mitochondrial

respiration in glioblastoma cells

(84, 85)

Distinct reactions of glioblastoma cells could be obtained under different

doses of fenofibrate

(86)

Glioblastomas AA452 Decreasing cholesteryl esters and lipid droplets, reprograms lipid

metabolism, regulation of MVA pathway

(87)

Antagonist MK886 Inhibiting 5-LO expression, and blocking ERKs phosphorylation and

activation of Bcl-2/Bax signaling

(88)

Overcoming TRAIL resistance to enhances apoptosis in glioma cells (89, 90)

Chronic lymphocytic

leukemia

Antagonist MK886 Causing proliferating CLL cells to access immunogenic death pathway and

directly inducing apoptosis of circulating CLL cells

(91)

NXT629 Inducing CLL cells death even in the presence of a protective

microenvironment

(92)

Acute myeloid

leukemia

Agonist Bezafibrate The hematological scores of 4 participants improved, and no disease

progression in remaining 7 subjects

(93)

(Continued)
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TABLE 2 | Continued

Disease Modulator Agent Main findings References

Endemic Burkitt

lymphoma

Agonist Bezafibrate Disease progression was 29%, 0%, and 0% in low-, intermediate-, and

high-dose groups respectively

(94)

Melanoma Agonist Fenofibrate Inhibiting melanogenic apparatus to reduce total melanin content in

melanoma cells

(95)

Inhibiting the expression of TLR-4, MyD-88 and NF-κB gene (96)

Angiosarcomas Agonist Fenofibrate Arresting cells in G2/M cell cycle phase, hyperpolarizing mitochondria, and

downregulating the expression of VEGF-dependent ‘oncoproteins’ including

Akt, survivin, ERK and Bcl-2

(97)

HNPGL, head and neck paragangliomas; PI3k, phosphatidylinositol 3-kinase; GSK3, glycogen synthase kinase3; MMPs, matrix metalloproteinases; AMPK, adenosine monophosphate

-activated protein kinase; NF-κB, nuclear factor κB; mTOR, rapamycin; VEGF, vascular endothelial growth factor; FAO, fatty acid oxidation; Akt, protein kinase B; TRAIL, tumor

necrosis factor-related apoptosis-inducing ligand; ERK, extracellular regulated protein kinases; EETs, epoxyeicosatetrienoic acids; HETE, hydroxyeicosatetraenoic acid; CPT, carnitine

palmitoyltransferase; ROS, reactive oxygen species; AP-1, activator protein-1; Cox-2, cyclooxygenase-2; Bcl-2, B-cell lymphoma-2; DNMT1, DNA (cytosine-5-)-methyltransferase-1;

PRMT6, protein arginine N-methyltransferase; 5-LO, 5-lipoxygenase; CLL, chronic lymphocytic leukemia; TLR-4, Toll-like receptor-4; MyD-88, myeloid differentiation factor 88.

Esophageal Cancer
Esophageal cancer ranks as the sixth leading cause of cancer-
related death worldwide. According to studies, there is a
negative correlation between VEGF expression and cancer
cell radiosensitivity, and the inhibition of VEGF expression
promotes radiosensitivity of esophageal cancer cells, while the
administration of fenofibrate can effectively diminish hypoxia-
induced VEGF secretion in MCF-7 cells, a mechanism whose
association with PPAR-α expression level remains unidentified.
Either the combination of fenofibrate and radiation or fenofibrate
alone is able to significantly decrease the expression of VEGF
protein (70). Furthermore, a synergistic effect was observed in
the combined administration of fenofibrate and radiation, which
induced higher ratio of cells in G2/M phase and suppressed the
growth of esophageal cancer cells (70).

Breast Cancer
Breast cancer is the second cause of cancer-related death
in women (103), chemotherapy functions in preventing the
progression of the primary breast cancer in neoadjuvant setting,
but it may lead to several side effects and apoptosis resistance
in breast cancer patients (104). Among fat and triglyceride
lowering drugs, clofibrate, fenofibrate and WY14643 (a 2-aryl-
thioacetic acid analog of clofibrate), PPAR-α agonists, present
high chemosensitivity toward breast cancer cells. Clofibrate
is the first lipid-lowering fibric acid derivative. According
to Chandran et al. (71) the administration of clofibrate
to breast cancer cells, the expression level of PPAR-α in
which was abnormally high, showed significant cytotoxicity.
The anti-carcinogenic effect was achieved possibly via the
induction of PPAR-α DNA binding activity, causing cell
cycle arrest, and the reduction of signaling, lipogenic, and
inflammatory pathways, causing the suppressed proliferation of
breast cancer cells (105). More specifically, researchers have the
supposition that clofibrate suppresses the growth of breast cancer
cells by repressing NF-κB and extracellular regulated protein
kinases1/2 (ERK1/2) activation, inhibiting cyclinD1, cyclinA,
cyclinE, and inducing pro-apoptotic P21 levels. Also, clofibrate
significantly reduces Cox-2/PGE2(phenyl glycidyl ether-2) and
5-lipoxygenase/LTB4 (leukotriene B4) inflammatory pathways.
Besides, clofibrate effectively mediates the expression of lipogenic

and FAO pathways genes including SREBP-1c, SREBP-2, HMG-
CoA synthase 2, Acyl-CoA oxidase, and CPT-1a (carnitine
palmitoyltransferase 1a) (71). These findings provide new
insight into our understating of clofibrate as a therapeutic
anticancer agent.

In the process of cell apoptosis, the activation of Akt/NF-
κB pathway plays a pivotal role in inhibiting the major
apoptotic regulators, which hinders the activity of pro-
apoptosis, are Bax, Bok, and Bim, leading to resistance of
drug-induced cell death (106, 107). Fenofibrate is capable
to potentiating chemosensitivity in breast cancer treatment
by regulating Akt/NF-κB pathway, which is responsible for
apoptosis resistance in some breast cancer patients. It is reported
that fenofibrate promotes chemosensitivity by remarkably
reducing the phosphorylation levels of Akt/NF-κB, as well as
the downregulation of Mcl-1 and Bcl-xl and the upregulation
of Bok and Bax at transcription level. Meanwhile, the study
has indicated that the activation of caspase-9 and caspase-3 and
the permeabilization of mitochondrial outer membrane affect
fenofibrate-elevated chemosensitivity. Moreover, the synergistic
effects of fenofibrate with paclitaxel, tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL), ABT-737, and
doxorubicin significantly augment chemosensitivity to enhance
the apoptosis of breast cancer cells (72). Basing on the
emerging evidence, fenofibrate is a promising candidate in breast
cancer treatments.

Lung Cancer
Lung cancer remains the most common cancer in the world,
with a high mortality and a poor 5-year survival rate, even
after radiation and immunotherapy (108). However, there is
promising evidence that the PPAR-α agonist, fenofibrate, and
the glucocorticoid, budesonide have been found to be beneficial
to lung cancer (109, 110). A study used two types of lung
adenocarcinoma cells: A549 (wild type TP53) and SK-MES-
1 (TP53 deficient) to evaluate the effects of budesonide and
fenofibrate, alone and in combination, which showed differential
effects on the growth of lung cancer cells, in a PPAR-α-
independent fashion. Budesonide inhibits cell proliferation in
wild type TP53 A549 cells, whereas, this anti-proliferation effect
is abrogated in TP53 deficient SK-MES-1 lung cancer cells.
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However, fenofibrate shows anti-proliferation effect in both
A549 cells and SK-MES-1 cells. Furthermore, in A549 lung
cancer cells, there is an additive effect against cell growth
when using the combination of budesonide and fenofibrate,
indicating a better therapeutic effect could be obtained with the
combination of two compounds. The inhibition of cell growth
induced by budesonide and fenofibrate is associated with G1
cell cycle arrest and the restraint of NF-κB activity and ERK
signaling pathway (73). Besides, fenofibrate is able to prevent
the progression of cancer anorexia cachexia syndrome (CACS)
which is characterized by body weight loss, reduced food intake,
and the catabolism of stored nutrients in muscle and adipose
tissue. In lungs of CACS mice, the expression level of PPAR-
α was reduced both in the nucleus and cytoplasm, compared
to non-CACS counterparts. After the treatment of fenofibrate,
the upregulation of the expression levels of several PPAR-
α target genes, including Hmgcs2, Acadm, Cyp4a14, Acox1,
and Ehhadh, has been observed. This effect may be related to
improved FAO by facilitating peroxisome proliferator activity in
the lungs (74).

In addition, a novel PPAR-α agonist, Ave8134, is well-tolerated
in humans and shows advantages in cancer treatment. Ave813
suppresses the expression of CYP2c44, a functional homolog
of human CYP2c9 that composes the major CYP epoxygenases
for epoxyeicosatrienoic acids (EETs) biosynthesis in endothelial
cells. Previous studies have confirmed that inhibiting the
expression of CYP2c44 gene decreases endothelial proliferation
and tumor growth. With the reduction of CYP2c44 expression,
EET synthesis weakens, leading to reduced angiogenesis, and
declined development of tumor (111, 112). However, there
is conflicting evidence that Ave813 prominently promotes the
levels of 11-hydroxyeicosatetraenoic acid (11-HETE), a bioactive
lipid mediator converted by arachidonic acid (AA), which
stimulates angiogenesis and tumor progression. Nevertheless, a
Cox inhibitor indomethacin can effectively block the production
of 11-HETE (75), thus the combination of indomethacin and
AVE8134 may have promise in treatments for lung cancer.

Gastric Cancer
Gastric cancer has a low rate of early diagnosis, and advanced
gastric carcinoma is mainly treated by systematic chemotherapy,
leading to serious adverse effects (113). PPAR-α is overexpressed
and inversely related to prognosis of gastric cancer. Fenofibrate
was shown to be capable of reprogramming abnormal
mitochondria via CPT-1 and FAO pathway, as well as stimulating
the AMPK signaling and suppressing the hexokinase-2 (HK-2)
signaling. As a result, it is able to regulate the metabolism of
glucose and lipid, prevent the growth of gastric cancer cells, and
trigger the apoptosis of gastric cancer cells. Besides, fenofibrate
also exhibits trivial toxicity in gastric tumor mouse model (32).
It is expected that more investigations should be carried out on
the effect of fenofibrate or other PPAR-α modulators in gastric
cancer given the scarce existing evidence.

Pancreatic Cancer
Pancreatic cancer remains as one of the most intractable and
devastating types of cancer in the world, and few clinical

development has been achieved for pancreatic cancer in the past
decade, with surgery and chemotherapy being major curative
treatments (114). A study used pancreatic cancer tissue samples
from human to assess the level of PPAR-α in different pancreatic
cancer tissues. The expression of PPAR-α is considerably lower in
normal adjacent tissues than in pancreatic cancer tissues, which
is strongly related to the prognosis of pancreatic cancer patients.
Also, the activation of PPAR-α by its agonist, clofibrate, promotes
radiosensitivity of pancreatic cancer cells via downregulating
PTPRZ1 and Wnt8a transcription (two crucial components of
Wnt/β-catenin pathway). This effect is abrogated by PPAR-
α antagonist GW6471 and PPAR-α silencing, indicating a
PPAR-dependent manner (76). Additionally, another study has
examined the effects of a novel sulfonimide derivative 4 with
PPAR-α antagonistic feature and a weaker PPAR-γ antagonism,
and the novel compound potently impairs the viability of
pancreatic cancer cell lines, indicating an inhibition of PPAR-
α and PPAR-γ could be a therapeutic option for pancreatic
cancer (52).

Liver Cancer
Hepatocellular carcinoma is one of the leading causes of cancer
death in Asian countries. Unlike advanced breast cancer, PPAR-α
expression is reduced in hepatocellular carcinoma, and PPAR-
α agonists show anticancer property in liver tumor (115). In
hepatocarcinoma HepG2 cells, fenofibrate and clofibrate induce
cell apoptosis in a dose-related manner. Due to the different
level of PPAR-α in human and rodent liver that human is
significantly less than rodent, chronic application of fenofibrate
causes liver cancer in rodent, however, high concentration of
fenofibrate induces human HepG2 cells death by promoting
the activity of ROS and intracellular glutathione depletion (77).
Furthermore, clofibrate causes apoptosis or blocks proliferation
in a time- and concentration- dependent way in human HepG2
cells by increasing protein phosphatase-2A expression and the
pro-apoptotic BAD (79).

In hepatocarcinoma Huh7 cells, fenofibrate is able to
independently inhibit human Huh7 cells proliferation without
affecting by the PPAR-α antagonist (GW6471) or by PPAR-α-
specific siRNA. Fenofibrate triggers the expression of C-terminal
modulator protein, leading to decreased Akt phosphorylation
which stimulates the nuclear accumulation of cyclin-dependent
kinase inhibitor p27. More accumulation of p27 and reduction
of cyclin A and E2F transcription factor 1 cause G1 arrest,
eventually contributing to human Huh7 cells death (78). Thus,
the antiproliferative property of fenofibrate and clofibrate makes
them potential for anti-hepatoma therapy.

Prostate Cancer
The most common cancer of genital system among males is
prostate cancer (116), and based on the existing evidence,
fenofibrate may plays a crucial role in the management of
prostate cancer. A study has investigated the effects of fenofibrate
prostate cancer cells, where higher rate of apoptosis was observed
after the administration of fenofibrate compared to the control
group. Also, the study has found that fenofibrate promotes
autophagy in the beginning but inhibits complete autophagy
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eventually by adjusting AMPK-mTOR pathway, which leads
to increased ER stress via PERK and IRE1 pathways, and the
cumulation of ER stress accelerates cell death. Meanwhile, it has
been observed that fenofibrate significantly inhibits the growth of
prostate tumor in vivomice model (80).

In order to examine the effect of fenofibrate on the drug-
resistance of prostate cancer cells, another study applied the
combined treatment of docetaxel/mitoxantrone and fenofibrate
to naïve and drug-resistant cells. As expected, fenofibrate
increases the chemosensitivity of prostate cancer cells by
interfering energy metabolism and impairing microevolution
and expansion induced by drug-resistant cells (81). Noteworthily,
these effects can be obtained in the presence of <25µM
fenofibrate, i.e., within the range of its tolerable serum
concentrations (up to 100µM) (117).

Colorectal Cancer
The morbidity of colorectal cancer is showing the tendency of
increasing, with one of the important risk factors being dietary
fat. Therefore, the regulation of systemic lipid homeostasis plays
a key role in controlling the development of colorectal cancer,
which may be achieved by the application of PPAR-α modulators
(118). In colorectal carcinoma SW620 cells which express low
levels of PPAR-α mRNA, two PPAR-α agonists, LY171883, and
WY14643 attenuate early stages of colon tumorigenesis by
diminishing AP-1-mediated transcriptional activation of genes
involving inflammatory response like Cox-2 and VEGF via
PPRE-driven transcription in a PPAR-α-dependent fashion (82).
Moreover, WY14643 is able to increase chemosensitivity via
affecting the transcriptional activity of glucose transporter-1,
and inhibit mTOR pathway, leading to apoptosis of cancer cells
(38). With regards to colorectal carcinoma SW480 cells, another
PPAR-α agonist, clofibrate, significantly suppresses tumor
proliferation and sensitizes SW480 cells to chemotherapy drugs
in a PPAR-α-dependent manner that induces antiapoptotic Bcl2
protein degradation and promotes autophagy (83). Furthermore,
PPAR-α transgenic mice with increased expression of DNMT1
and PRMT6 have higher susceptibility to the development of
colorectal cancer, which can be reduced by the activation of
PPAR-α with the application of fenofibrate (39). Based on the
evidence available, PPAR-α agonists are posed as potential drugs
in the treatment for colorectal cancer.

Glioblastomas
Glioblastomas are the most malignant and incurable brain
tumors characterized by rapid proliferation, resistance to radio-
and chemotherapy, and persistent invasion of the central
nervous system. The rapid growing cancer cells require both
large amounts of ATP generated by mitochondrial respiration
and glucose carbons produced by glycolysis (119, 120). Thus,
disturbing those pathways could be a therapeutic strategy
for glioblastomas, and several studies have demonstrated
fenofibrate’s capability of selectively promoting metabolic
catastrophe in glioblastoma cells through interfering with
mitochondrial function and glucose uptake. A study has
detected the effects of fenofibrate in two settings: in a PPAR-
α-independent manner, the unprocessed fenofibrate represses

mitochondrial respiration; and in a PPAR-α-dependent
manner, fenofibric acid converted by blood and tissue esterases
stimulate glioblastoma cells to switch from glycolysis to
FAO. These effects attenuate intracellular ATP and promote
the AMP-activated protein kinase, which leads to extensive
glioblastoma cells death. Interestingly, the study has also found
that autophagy activators decrease the cytotoxicity of fenofibrate,
while autophagy inhibitors increase the fenofibrate-induced
glioblastoma cytotoxicity including phosphorylation of AMPK
and suppression of mTOR- dependent phosphorylation of
p70S6K (84). Similar findings were acknowledged in another
study where fenofibrate not only alleviates glycolysis and lactate
production but also impairs mitochondrial respiration in
glioblastoma cells by inhibiting the transcriptional activity of
NF-κB/ RelA and disrupting its association with HIF1α (85).
The role of NF-κB/ RelA has been intensively studied, which is
related to cancer cell growth, angiogenesis, and metastasis (121),
as well as triggers aerobic glycolysis through transcriptional
activation of pyruvate kinase isozyme type M2 (PKM2) (122).
Moreover, the high ratio of PKM1/PKM2 enhances glycolysis
and inhibits oxidative phosphorylation, whereas, fenofibrate is
able to reduce the PKM2/PKM1 ratio and result in mitochondrial
dysfunction (85).

In addition, distinctively differential reactions from
glioblastoma cells could be observed with different doses of
fenofibrate applied. Compared to a dose of 25µM fenofibrate,
50µM fenofibrate induces massive apoptosis of glioblastoma
cells, while 25µM fenofibrate inhibits monolayer and clonogenic
growth of the tumor, and merely leads to trivial cell death, which
is associated with the accumulation and phosphorylation of
forkhead box O-3A (FoxO-3A), as well as the increase of FoxO-
dependent apoptotic protein, Bim (86). Although the anticancer
property of fenofibrate has been widely acknowledged, a dilemma
that fenofibrate hardly crosses blood brain barrier makes it less
effective in promoting glioblastoma cells death. According to one
study, a novel synthesized compound PP1 with similar chemical
structure of fenofibrate, but more stable, water soluble, and tissue
penetrable, causes extensive glioblastoma cells death without
showing major signs of distress (123).

AA452 is another PPAR-α antagonist tested for the treatment
of glioblastoma, which showed encouraging affects in regulating
lipid metabolism and radiosensitivity of glioblastoma cells. It
decreases cholesteryl esters and lipid droplets and reprograms
lipid metabolism, in parallel with the regulation of mevalonate
(MVA) pathway, consequently limiting cancer cells proliferation
and migration, as well as decreasing the invasiveness of
glioblastoma cells. This inhibition of cholesteryl esters, from
AA452, is truly promising since cholesteryl esters play an
important role in malignancy. Moreover, AA452 also sensitizes
glioblastoma cells to radiotherapy, leading to more cell death,
whose mechanism is associated with the downregulation of
cyclinD1 protein and c-myc gene (87).

5-LO is the key enzyme that catalyzes the first two steps
in the synthesis of all leukotrienes by AA dioxygenation, and
leukotrienes have significantly higher expression levels in brain
tumor tissues than in normal brain tissues. Also, 5-LO plays
an essential role in the signaling via Ras-ERKs pathway which
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is associated with the growth and progression of brain tumor.
Therefore, the inhibition of 5-LO is beneficial in brain tumor
treatment (124). A study used human glioma cells U-87MG
and A172 with strong expression of 5-LO, and 5-LO non-
expressing cells U373 to detect the anticancer effects of a PPAR-
α antagonist—MK886. The study has found that MK886 is
a specific 5-LO inhibitor with a high dependence of 5-LO
expression level, and that MK886 induced cytotoxicity in cells U-
87MG and A172 but not in cells U373, with its antiproliferative
property possibly linked to the blocking of ERKs phosphorylation
and activation of Bcl-2/Bax signaling (88).

The TRAIL (TNF-related apoptosis-inducing ligand)
selectively induces apoptosis in transformed cells without killing
most normal cells, rendering it a promising candidate in brain
tumor treatment. However, the resistance of TRAIL impedes its
application in cancer therapy. Thrillingly, a study showed that
MK886 may possess the ability to overcome TRAIL resistance,
enhancing its apoptotic effect on glioma cells and suggesting a
combination strategy, which may exert more potent effect than
each agent alone (89). Moreover, the research team has also
revealed the mechanisms of sensitization of TRAIL-induced
apoptosis by MK886: it was found that MK886 reduced the
expression of an antiapoptotic protein, namely survivin, which is
related to tumor cell resistance to TRAIL, and MK886 activates
p38 mitogen-activated protein kinase (MAPK) pathway, leading
to the overexpression of the death receptor 5 (DR5), eventually
causing intensive apoptosis in glioma cells (90).

Blood Cancer (Leukemia, Lymphoma, and
Myeloma)
Chronic lymphocytic leukemia (CLL) is the most common
adult leukemia in the western countries awaiting advanced
treatment (125). Unlike acute leukemias, CLL cells mainly
generate energy through FAO, rather than Warburg effect and
glycolysis. According to Spaner et al. (91), measured by real-
time PCR, the mRNA expression levels of PPAR-α in circulating
CLL cells from two patients were present and almost 3-fold
higher than that of peripheral blood mononuclear cells from
a normal donor. As a major transcriptional regulator of FAO,
the PPAR-α antagonists may be promising for CLL treatment.
It can be observed in the study that, MK886 not only causes
proliferating CLL cells to access immunogenic death pathway,
but also directly induces apoptosis of circulating CLL cells, which
is related to the reduction of interleukin-10 (IL-10) and phospho-
STAT3 (91). Compared with MK886, NXT629 is more selective
in killing CLL cells, and it is able to induce CLL cells death even
in the presence of a protective microenvironment (92). Although
NXT629 shows curative effects of CLL in vitro and in vivo, its
pharmacokinetic properties for further clinical development have
not been identified to date (126).

Current cytotoxic chemotherapy deteriorates the situation of
reduced hemopoiesis in patients with acute myeloid leukemia
(AML). Nevertheless, a small scale of clinical study has examined
the safety and efficacy of the combinational therapy of bezafibrate
(a PPAR-α agonist) and medroxyprogesterone acetate in 20 AML
patients, and it was found that the low-dose combinational

therapy showed no hematological toxicity and could be applied
persistently in treating AML (93). However, the latter study has
demonstrated that no extra benefit has been found with the same
regime at a higher dosage in improving hemopoiesis or treating
AML (127).

Children living in malaria-prone place are susceptible to
endemic Burkitt lymphoma, and limited treatments restrict the
cure rates (128). A clinical trial recruited 95 children with
endemic Burkitt lymphoma to investigate the anti-endemic
Burkitt lymphoma activity of three differential doses (low,
intermediate, and high) of the combination of bezafibrate and
medroxyprogesterone acetate. It was observed that the CCR
(complete clinical response) of the high BaP (Bezafibrate and
Medroxyprogesterone acetate) dose cohort was significantly
higher at 68%, while that of the intermediate and low BaP cohorts
showed relatively unremarkable difference, at 18 and 24%,
respectively (129). Additionally, another study has verified that
clofibrate reduces cell proliferation in multiple lymphoma and
myeloma cells, which may be associated with Wnt pathway (94).

Melanoma
Developing from melanocytes present in the epidermis, dermis,
hair follicle of the skin, and other parts of the body,melanoma has
an increasing morbidity worldwide in the past decades (130). In
a study investigating the association of PPAR-α expression level
and pigmentation of melanoma cells, which showed a inverse
correlation, fenofibrate was observed to act as a depigmentation
agent and suppresses the melanogenic apparatus in a PPAR-α-
independent manner, which reduces total melanin content in
B16 F10-derived cell lines (95). Additionally, fenofibrate can also
exert anti-melanoma effects as a result of its significant anti-
inflammatory effect, through inhibiting the expression of TLR-
4, myeloid differentiation factor 88 (MyD-88), and NF-κB gene
and the generation of TNF-α. However, the effect showed no
dose-dependent pattern (96).

Angiosarcomas
Angiosarcomas are lethal and aggressive soft tissue malignancies
originating from endothelia. According to Majeed et al.
(97) fenofibrate was observed to exhibit prominent anti-
proliferative property independent of PPAR-α in VEGF-
dependent angiosarcomas cells. It induced cell arrest in G2/M
phase, hyperpolarizes mitochondria, and downregulates the
expression of VEGF-dependent “oncoproteins” including Akt,
survivin, ERK, and Bcl-2, without reducing viability or inducing
apoptosis of angiosarcomas cells. Noteworthily, the effects are
observed to be not abrogated by PPAR-α and NF-κB inhibitors,
and their combination with fenofibrate was cytotoxic. Whereas,
other PPAR-α agonists including bezafibrate, WY14643, and
fenofibric acid fail to replicate the effects of fenofibrate (97).

DISCUSSION AND CONCLUSION

Cancer remains one of the leading causes of morbidity and
mortality globally, but PPAR-αmodulators shows great capability
to manage the process of cancer. Indeed, by analyzing research
evidence from a number of studies, we have discussed the
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functions of PPAR-α to clarify the underlying mechanisms of
PPAR-α modulators in treating different malignancies. PPAR-
α regulates energy metabolism of lipid, glucose and protein,
affects inflammation and eNOS, modulates immune response,
and adjusts proliferation, differentiation and apoptosis of cancer
cell. Simultaneously, possible PPAR agonists and antagonists
that may hold potential treatment for cancer patients have been
comprehended and provided in this review for comparison
across the clinical strategies. However, PPAR-α presents pro-
tumorigenesis property as well, indicating that PPAR-α may
promote the progression of tumor, which has been demonstrated
in several studies that PPAR-α agonists induced hepatocarcinoma
or peroxisome proliferation in rodents (131). Also, studies have
reported that exposures of weeks to several years of PPAR-
α agonists treatment may induce hepatocellular chronic active
and cholestatic hepatitis, as well as increase the level of serum
transaminase, which may be dose related (132). Besides, fibrates
have a risk of muscle astrophy, and the combination of fibrates
and stains may also increase the risk of rhabdomyolysis (133).
Other adverse effects include renal damage that fibrates may
impair the generation of vasodilatory prostaglandins, leading
to a reversible decrease in glomerular filtration rate and a
elevation of serum creatinine (134, 135), and gallbladder disease
such as gall stone, but the incidence varies remarkably between

compounds (132). Therefore, routine monitoring of liver and
renal function should be administrated in patients with PPAR-
α modulators therapy. By establishing this thorough review on
PPAR-α modulators, we hope to provide valuable insight to how
we can better tackle cancer in the future.
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