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A B S T R A C T   

Background: Several studies have suggested that COVID-19 is a systemic disease that can affect several organs, 
including the brain. In the brain, specifically, viral infection can cause dyshomeostasis of some trace elements 
that promote complex biochemical reactions in specialized neurological functions. 
Objective: Understand the neurovirulence of SARS-CoV-2 and the relationship between trace elements and 
neurological disorders after infection, and provide new insights on the drug development for the treatment of 
SARS-CoV-2 infections. 
Methods: The main databases were used to search studies published up September 2021, focusing on the role of 
trace elements during viral infection and on the correct functioning of the brain. 
Results: The imbalance of important trace elements can accelerate SARS-CoV-2 neurovirulence and increase the 
neurotoxicity since many neurological processes can be associated with the homeostasis of metal and metal
loproteins. Some studies involving animals and humans have suggested the synapse as a vulnerable region of the 
brain to neurological disorders after viral infection. Considering the combined evidence, some mechanisms have 
been suggested to understand the relationship between neurological disorders and imbalance of trace elements in 
the brain after viral infection. 
Conclusion: Trace elements play important roles in viral infections, such as helping to activate immune cells, 
produce antibodies, and inhibit virus replication. However, the relationship between trace elements and virus 
infections is complex since the specific functions of several elements remain largely undefined. Therefore, there is 
still a lot to be explored to understand the biochemical mechanisms involved between trace elements and viral 
infections, especially in the brain.   

1. Introduction 

Coronavirus disease (COVID-19) is currently one of the main causes 
of death worldwide, resulting millions of deaths since the end of 2019 
[1–3]. COVID-19 is caused by the SARS-CoV-2 (severe acute respiratory 
syndrome-coronavirus-2) virus that originated in Wuhan, China, and 

spread rapidly around the world [4]. Studies in animal and human have 
reported that the viral responses of innate and adaptive immune ma
chinery depend on the host’s metabolism, which includes age, sex, 
smoking habits, co-existing medical conditions, and especially nutri
tional status. In this sense, the balance between immune activation and 
micronutrients is crucial to combat viral infection. Therefore, several 
trace elements have been identified as essential to immunomodulatory 
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effects, since many components of innate immunity can be influenced by 
elements such as zinc (Zn), selenium (Se), iron (Fe), copper (Cu), man
ganese (Mn), among others [2,5]. Trace elements can act as cofactors for 
many enzymes, such as, superoxide dismutase (SOD), RNA polymerase, 
and glutathione peroxidase (GPx), and can mediate vital biochemical 
functions, modifying oxidant tissue injury mediated by oxidants and 
eliminating reactive oxygen species (ROS) in response to infection [2,6, 
7]. Furthermore, the deregulation of element homeostasis during 
infection can play an essential role in virus survival since metals are 
cofactors of important metalloproteins responsible for virus attachment 
to the host. For example, Zn, Fe, and Cu are some of the most common 
metals that bind to proteins associated with viral infections, partici
pating in genome maturation (RNA or DNA), activation, and catalytic 
mechanisms, as well as, initial integration processes, and the protection 
of newly synthesized DNA [2]. 

Initially, it was believed that COVID-19 infection only affected the 
respiratory tract, however the appearance of neurological, hematologi
cal, and gastrointestinal, symptoms attested its more systemic character 
[4,8–11]. For example, it was reported that nearly 40% of critically ill 
COVID-19 patients presented strokes, cognitive dysfunction, depression, 
psychosis, and delirium, suggesting that this virus may predispose to 
several neurological disorders [4,12]. In the case of neurological 
dysfunction, some syndromes can vary depending on which part of the 
brain is infected. For example, exacerbation of pre-existing cognitive, 
motor and non-motor symptoms has been frequently observed, indi
cating viral neurotropism [12]. In addition, migration defects in the 
ventral cerebellum, olfactory bulbs hypoplasia and delayed-onset 
neuronal dropout in the hippocampus were reported as neurological 
dysfunction after viral infection [13]. In the brain, specifically, viral 

infection can cause dyshomeostasis of some trace elements that promote 
complex biochemical reactions in specialized neurological functions, 
such as: (i) neurotransmitter synthesis; (ii) neural information process
ing; (iii) redox processes; (iv) oxygen storage; (v) myelination; and (vi) 
electron transport [2,5,7,14–20]. Insufficient immunity, high viral load, 
increased age, history of neurotrophic viral infection, glucocorticoste
roids administration, and increased hospitalization have been reported 
as factors in the spread of SARS-CoV-2 to the central nervous system. 
Neural proliferation can occur in the cells of amygdala, basal ganglia, 
thalamus, hypothalamus, cortex and in the brain stem. Clinically, the 
neuropsychiatric manifestations of COVID-19 can be either acute or 
chronic. In addition to anxiety, depression and delirium, other neuro
psychiatric manifestations with current evidence have been reported, 
such as acute psychosis and manic disorders, confusional states, acute 
cerebrovascular events, encephalitis, and encephalopathies [4,12]. 

In order to understand the neurovirulence of SARS-CoV-2 and the 
relationship between trace elements and neurological disorders after 
infection, this review summarizes studies on the impact of excessive and 
deficient conditions of the trace elements Fe, Cu, Mn, Zn, and Se, and the 
respective consequences on neuronal genomic stability and its mainte
nance, aiding in the development of drugs for the treatment of SARS- 
CoV-2 infections. 

2. Complex interaction between trace elements and viral 
infection 

It is well known that several changes occur in the biological system 
during an infection caused by a virus, such as increased vascular 
permeability and vasodilation [2]. This alteration allows the arrival of 

Nomenclature 

ACE2 angiotensin-converting enzyme 2 
APP amyloid precursor protein 
ARDS acute respiratory distress syndrome 
As arsenic 
ASD autism spectrum disorder 
AβP beta-amyloid peptide 
BBB blood-brain barrier 
BBE brainstem encephalitis 
CAR carnosine 
Cd cadmium 
CNS central nervous system 
COVID-19 coronavirus disease 
COX-2 prostaglandin endoperoxide synthase 2 
Cu copper 
FDA Food and Drug Administration 
Fe iron 
GABA g-aminobutyric acid 
GBS Guillain Barré syndrome 
GPx glutathione peroxidase 
GSH glutathione 
GSSH glutathione dissulfite 
Hg human T cell leukemia virus type 1 
HTLV-1 human T cell leukemia virus type 1 
Ig immunoglobulin 
IL-1β interleukin 1 beta 
LA-ICP-MS laser ablation-inductively coupled plasma-mass 

spectrometry 
Li Lithium 
MAGT1 magnesium transporter 1 
MD Menkes disease 
MERS-CoV middle east respiratory syndrome-associated 

coronavirus 
Mg magnesium 
MHRA Medicines and Healthcare products Regulatory Agency 
Mn manganese 
Mpro main protease of SARS-CoV-2 
MT metallothioneins 
ND neurodegenerative diseases 
NF-kB nuclear factor kappa-B 
NF-kB nuclear factor kappa-B 
NF-α tumor necrosis factor – alpha 
Ni nickel 
NKCs natural killer cells 
NMDA N-methyl-D-aspartate 
Pb lead 
PrP prion protein 
PrPC cellular prion protein 
RdRp RNA-dependent RNA polymerase 
RNS reactive nitrogen species 
ROS reactive oxygen species 
SARS-CoV-2 severe acute respiratory syndrome-associated 

coronavirus-2 
SCC sodium copper chlorophyllin 
Se selenium 
SOD superoxide dismutase 
SP-ICP-MS single particle-ICP-MS 
SV-ICP-MS single virus ICP-MS 
TIBC total iron-binding capacity 
TrxRs thioredoxin reductase 
WD Wilson’s disease 
ZFP zinc-finger proteins 
Zn zinc 
ZnT Zn transporter  
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immune system cells to the infected tissues [21,22]. The immune system 
is primarily responsible for maintaining the physiological integrity of 
the body, eliminating foreign material, such as virus [21]. Several de
fense cells modulate the immune system (Fig. 1). Due to their phago
cytic, cytotoxic, and secretory activities, neutrophils and macrophages 
represent the first-line defenses (innate response) against the virus, 
being they the main physical and biochemical barriers of the body [11, 
23,24]. When any virus enters in the body cell via ACE2 (angio
tensin-converting enzyme 2), it is phagocyted and digested by macro
phages [3,22]. The effector cells of the immune system, as for example 
B-lymphocytes, produce specific antibodies in response to the antigen 
[3,25]. Immunoglobulin (IgA, IgM and IgG) are the main antibodies 
produced and comprise the second line of defense (adaptative response) 
of the immune system [26,27]. In addition, other molecules, such as 
cytokines, play a key role in cell communication during the infection 
process, indicating infected cells [28,29]. Although the effects of 
micronutrients on neutrophil functions are not clear, micronutrients 
such as Fe, Zn, Cu, Se, among others can influence various components 
of innate immunity [2,5,30–32]. For example, the contributions of trace 
elements to the immune system are observed both to regulate the 
number and function of innate immune cells (natural killer cells (NKCs), 
macrophages, monocytes, and neutrophils) and to assist the production 
of pro-inflammatory and anti-inflammatory cytokines in responses to 
inflammation (adaptive immunity) [10,33–37]. In this sense, many 
studies have reported changes in metals levels in the host’s biological 
system during viral infections [2,5,6,17,30,32,38–41]. The following 
sections explore the consequences of some micronutrient deficiencies 
and the potential effects of their supplementations against COVID-19 

infection. 

3. Trace elements homeostasis and viral infection 

3.1. Zinc role in the immune system and viral infection 

As previously mentioned, some trace elements are involved in im
mune responses acting as immunoregulators for distinct viral infections 
[42,43]. Zn is an essential element that is associated to structural or 
regulatory functions of proteins, being Zn a cofactor of hundreds of 
enzymes, thus, modulating their functions which are related to several 
biological and physiological processes [44–47]. Zn is the second most 
abundant transition metal in the whole human body, and this micro
nutrient is found as free Zn2+ and bound form in cytosolic organelles, 
cytoplasm, nucleus and biomembrane proteins [5,48–51]. Zn has direct 
and indirect antiviral properties and its functions during distinct viral 
infections have been extensively studied [52–55]. As Zn is a cofactor in 
several metalloenzymes, the integrity of immune barriers is preserved 
by Zn, subsequently improving the cytotoxic activity of NKCs, thus, 
maintaining cellular functions, as for example, the differentiation of 
innate immune cells [48,56–58]. In terms of SARS-CoV-2, both free Zn2+

and Zn-coordinating compounds can effectively act to inhibit virus ac
tivity [50,59–61]. In fact, through a SARS-CoV-2 infection, the elonga
tion phase of RNA synthesis, which changes the activity of RdRp 
(RNA-dependent RNA polymerase), is inhibited by Zn due to its effect on 
mold binding, thus, affecting SARS-CoV-2 replication [5,48,49,62,63]. 
In this sense, Zn2+ can inhibit both RdRp activity and adequate pro
teolytic processing of polyproteins replicase during coronaviruses 

Fig. 1. Immune system scheme during a viral infection involving cytokines, macrophages, natural killer (NK) cells, and B and T cells that constitute the first line of 
defense of the immune system (innate response). Antibodies are produced to fight the infection, therefore constituting the second line of defense of the immune 
system (adaptive response). 
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infection [2,5,46]. In addition, zinc-finger proteins (ZFP) and other 
Zn-ligating complexes can bind to the catalytic dyad from 3 C-like 
protease, thus, limiting proteinase activity by Zn-binding to the catalytic 
residues of the SARS-CoV-2 proteins [59,64]. In case of Zn deficiency, it 
can lead to a form of immunodeficiency that, together with the pro
duction of inflammatory cytokines and oxidative stress, can be observed 
during symptoms of severe COVID-19 [49,61,65]. Zn dysregulation has 
been widely associated to disturbances in immune system functions, 
thus increasing the risk and morbidity of distinct pathologies, including 
viral infections [5,48,49]. Zn deficiency affects the development of ac
quired immunity by preventing both the outgrowth and certain func
tions of T lymphocytes such as activation, Th1 cytokine production, and 
B lymphocyte help. Furthermore, B lymphocyte development and anti
body production, particularly immunoglobulin G, are compromised. The 
distinction between immature T-cells in the thymus and the function of 
mature peripheral T-cells, also, can be affected by the Zn deficit, since 
this element indirectly reduces the levels of active serum thymulin, a 
Zn-dependent nonapeptide hormone. Furthermore, Zn deficiency has 
been related with reduced NKC activity and decreased cytokine pro
duction [43,49]. 

In addition to some adverse effects on the body already mentioned, 
viral infection and imbalance of essential element can predispose to 
neurodegenerative disorders [4,66]. For example, Zn deficiency as 
consequence of a viral process may contribute to susceptibility to Autism 
Spectrum Disorder (ASD), since both environmental factors and Zn 
deficit, are crucial for neurodevelopment and degenerative process of 
the brain [66]. In this context, Zn has distinct functions involved in the 
antioxidant process, modulating the inflammatory response, and 
increasing the antiviral mechanism. Although more confirmatory evi
dence is needed, it is believed that Zn can be considered for adjuvant 
protective therapy against viral infections [5,48,50,59–61]. Therefore, 
Zn supplementation may be of great importance in the treatment of 
COVID-19, regulating basic cell functions, such as cell division and cell 
activation, thus, playing an important role in both innate and adaptative 
immunity against viral infections, including SARS-CoV-2 [5,61]. 

3.2. Iron role in the immune system and viral infection 

Iron is the most abundant transition metal found in the human body 
and is involved in several vital functions in humans and pathogens, thus, 
playing a fundamental role in the innate immunity and host immune 
defense system against distinct viral infections [15,49]. In fact, Fe 
modulates key cellular processes including DNA synthesis/replication to 
generation of ATP (adenosine triphosphate) and cell proliferation, as 
well as this essential element participates of oxygen binding reactions 
and electron transport [67,68]. In the same way as other trace elements, 
Fe is present in the body as ionic forms, for example, Fe2+ and Fe3+, as 
well as bound to several molecules, such as enzymes and other proteins, 
which participate in fundamental processes at cellular level in many 
living organisms [61,67–69]. Regarding the ionic forms of Fe, they can 
lead to ROS (reactive oxygen species) production via Fenton reaction, as 
a result of the interchange through redox reaction Fe2+ → Fe3+ + e− [67, 
68]. As previously commented, after a viral invasion, an imbalance in 
the content of the essential elements, including Fe, is expected. In this 
scenario, Fe content might influence viral replication and damage to 
host cells since a viral infection results in Fe competition between the 
virus and host cells [60,61,67]. In fact, Zn and Cu status influences the 
function of macrophages, which play a crucial role in Fe homeostasis 
and their level in macrophages is vital in the production of 
pro-inflammatory cytokines, since the entry of SARS-CoV-2 and infec
tion in host cells of almost all tissue and organs that are modulated by 
ACE2 [60,67,70]. In this context of inflammation, Fe homeostasis and its 
level in the organism plays a crucial role in the immune response during 
viral infections including SARS-CoV-2, as already pointed out in the 
recent years by some studies in the literature [67,69,71–77]. In addition 
to ionic forms, Fe-containing species, such as ferritin, transferrin, 

hemoglobin, lactoferrin, among others, have been associated with 
adverse outcomes in patients with COVID-19 and other serious effects in 
the body, including acute organ injuries due to a hyperinflammation 
process due to SARS-CoV-2 infection [67,69,76,78]. In fact, under 
normal condition, ferritin acts by storing Fe in a biologically available 
form that is fundamental for cellular processes already mentioned, 
including cell survival/ferroptosis, however high levels of ferritin can be 
related to worse prognosis and COVID-19 acute phase response [77,79]. 
In this context, the ferritin content can be increased by SARS-CoV-2, 
thus, resulting in the formation of ROS and additional tissue injury 
[67,74]. Dahan et al. reported elevated ferritin levels in patients with 
severity of COVID-19 as a result of the autoimmune and inflammation 
status. According to the authors, ferritin status is strictly affected by 
cytokine production as a consequence of the unexpected functioning of 
the host’s immune system [77]. In this scenario, in addition to an Fe 
overload state, an elevated serum ferritin status can be considered a 
marker of adverse conditions, including inflammation and autoimmune 
conditions, which have been termed as hyperferritinemic syndrome [77, 
79]. In addition to the high concentration of ferritin, Lv et al. also 
highlighted other Fe species which can also be associated to adverse 
effects due to a hyperinflammation condition of SARS-CoV-2 infection 
[67]. According to the results, distinct Fe parameters, e.g., serum iron, 
ferritin, and total iron-binding capacity (TIBC), could be related to 
COVID-19 severity. Moreover, the elevated serum Fe (ferritin) levels 
combined with high concentrations of cytokine are also associated to 
disease severity, as well as to the possibility of developing acute respi
ratory distress syndrome (ARDS), coagulopathy, and acute injuries in 
different organs, such as kidney, liver, and hearth in patients with 
COVID-19. Then, the authors suggested that Fe metabolism status may 
be indicative of risk factors for COVID-19 prognosis [67]. 

Furthermore, since a viral infection such as SARS-CoV-2 can result in 
excessive host immune-mediated release of pro-inflammatory cytokines, 
it can be expected that COVID-19 can lead to neurological manifesta
tions [80–84]. In fact, it is hypothesized that neurological complications 
can be associated with COVID-19 through Fe status, since viral proteins 
can dissociate hemoglobin, thus, releasing Fe and heme to generate 
subsequent “ROS escape” or “ROS attack” that can impair multiple or
gans, including neural ones [81]. 

3.3. Copper role in the immune system and viral infection 

Another essential element for adequate immunoregulatory activity is 
Cu, which is considered the third most abundant transition metal in the 
body [15,85]. In human cells, Cu is stored mainly in mitochondria and 
its intracellular transport is mediated by Cu-transporter [86]. In circu
latory blood, Cu is transported linked to proteins such as ceruloplasmin, 
albumin and alpha-2 macroglobulins, thus, ensuring its distribution and 
homeostasis on the several tissues from human body [86]. Copper is a 
cofactor for more than 30 enzymes involved in redox reactions including 
SOD which acts in defense against oxidative stress promoting the 
degradation of ROS, such as superoxide [86]. In addition to maintaining 
an intracellular antioxidant balance, Cu is related to the human immune 
system, acting on the function of neutrophils, monocytes, macrophages 
as well as stimulating T cells hematopoiesis and improving the activity 
of NKCs [87,88]. For example, macrophages accumulate a high level of 
Cu in phagolysomes and exploit its redox activity to produce ROS which 
combined with antimicrobial proteins and acidity, generate a hostile 
and lethal environment for phatogens into the immune cells [87]. In this 
sense, Cu has a promising role to prevent and treat the viral activity of 
SARS-CoV-2 which is an enveloped virus, non-segmented, spherical, 
with a single RNA strand and a spike glycoprotein covered by a phos
pholipid bilayer [89]. This morphological structure of the novel 
COVID-19 has mediated its trapping and inactivation through 
copper-based materials such as laponite-Cu2+ nanocoating on filter 
membranes, CuS impregnated or copper film coating on fiber masks, 
nanohybrid formulation and surfaces of Cu-Ag [90–93]. These materials 
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trap the novel coronavirus through bound to the spike protein and 
inactivate it, promoting irreversible damage to the virus genome and 
morphology including disruption of envelope and dispersal of spike 
surface [16]. In a study in vitro, Rodriguez et al. demonstrated that Cu 
gluconate mitigated SARS-CoV-2 infection in Vero E6 cells, however, 
this benefit effect was quenched by albumin, indicating its low efficacy 
by parenteral administration [9]. Clark & Taylor-Robinson suggested 
sodium copper chlorophyllin (SCC) as an agent antiviral and potential 
immunomodulator in COVID-19 infection [94]. SCC may contribute to 
the innate immune response by two mechanisms: first, inhibiting ribo
nucleic acid synthesis of SARS-CoV-2 in human lung epithelial tissues; 
second, ensuring leukocyte homeostasis, restoring and maintaining 
adequate levels of CD4+ and CD8+ T lymphocytes in peripheral blood 
and blocking the expression of the pro-inflammatory cytokine IL-6. In 
this regard, SCC could reverse the lymphopenia observed during 
COVID-19 infection [94]. In addition, the copper-mediated immunity 
allied to the innate immune response, is decisive to mitigate the effects 
of novel coronavirus infection which has shown potential for triggering 
other diseases such circulatory, hepatic (e.g. Wilson’s and Menkes dis
eases) and neurological (e.g. Multiple Sclerosis, Alzheimer’s and Par
kinson’s Disease). However, so far, data or knowledge is limited on the 
effects of therapeutic Cu supplementation about the susceptibility, 
severity, survival, and fatal outcome of COVID-19 [95,96], although, Cu 
supplementation has been attributed to the high rate of recovered 
COVID-19 patients (ca.88%) from Yadgir district in India [95,96]. 

3.4. Selenium role in the immune system and viral infection 

Selenium also plays a fundamental role in human health regarding 
by acting in a wide range of protective functions, including antioxidant, 
anti-inflammatory and immunomodulatory [97,98]. Se is biologically 
active as selenoproteins whose coding involves 25 genes from human 
genome [98,99]. For example, GPxs and thioredoxin reductase (TrxRs) 
have an important antioxidant role acting in the inactivation of ROS and 
RNS (reactive nitrogen species). GPx catalyzes the glutathione (GSH) – 
glutathione dissulfite (GSSH) redox system, promoting the ROS reduc
tion and subsequently regulating the nuclear factor kappa-B (NF-kB) 
which controls the production of various pro-inflammatory cytokines 
and chemokines [100]. Se may also contribute to innate and adaptive 
immunity including antibody production, NKC activity, T-lymphocyte 
and B-lymphocyte [100,101]. In this sense, Se has a recognized role in 
the prophylaxis and therapy of some viral diseases caused by human 
immunodeficiency virus (HIV), human T cell leukemia virus type 1 
(HTLV-1), Ebola virus, coxsackievirus, influenza and hantavirus, as well 
as diabetic retinopathy, asthma, and tuberculosis [102,103]. Consid
ering SARS-CoV-2, studies have been reported demonstrating a positive 
relationship between the high levels of Se in hair and serum from sur
viving COVID-19 patients in Germany and in different provinces of 
China [97,104]. Recently, Hackler et al. also found the highest serum Se 
levels in another group of patients surviving COVID-19 in Germany 
[105]. These findings on the effects of Se can be attribute to the anti
oxidant defense of GPx and TrxR maintaining ROS homeostasis and 
preventing a cytokine storm due to NF-kB by the new coronavirus [100, 
106]. Furthermore, GPx and the synthetic counterpart called ebselen 
have been shown to be potent inhibitor of the main protease of 
SARS-CoV-2 (Mpro) that plays a key role in viral replication in the host 
[107,108]. Moreover, ACE2 can also be inhibited by Se in the form of 
selenoneine [109]. Sodium selenite has shown a protective function by 
inactivating the new coronavirus through the oxidation of thiol groups 
of the protein dissulfite isomerase and avoiding its penetration into 
healthy host cells [110]. Although the essential level of intake is very 
low, Se deficiency is prevalent in a large part of the population, espe
cially in some European countries, sub-Saharan Africa, and several 
provinces in China [97,110]. Most studies have demonstrated that Se 
deficit leads to increase host-susceptibility to viral infections, as well as 
serious diseases and fatal outcomes, since a Se deficiency promotes the 

weakening of the antioxidant defense and immune response, favoring 
mutation, replication and increased in viral virulence [106,109]. 
Furthermore, SARS-CoV-2 can significantly suppress the expression of 
ferroptosis-associated GPx4, DNA synthesis-related TrxR3 and endo
plasmic reticulum-resident selenoproteins as SelF, SelK, SelM and SelS 
[111]. In South Korea, Se deficit has been associated with ca. 42% of 
critically ill patients with COVID-19 [112]. On the other hand, Se sup
plementation has well-known beneficial effects on viral infection in 
different types of hosts [101,103]. For example, supplying Se can restore 
GPx and TrxR levels alleviating oxidative stress and the inflammatory 
response in respiratory system tissues, as well as enhancing innate im
munity, increasing CD4+ T lymphocytes proliferation and activity of 
natural killer cells [97,103,106]. Indeed, a high daily intake and 
maintenance of the optimal Se level can contribute to protection and 
resistance against COVID-19 infection [112–114]. It is important to 
highlight that interference of SARS-CoV-2 in the Se metabolism can 
induce diseases such as coagulopathy and/or increase the severity of 
others such as neurological diseases [106,115]. In addition to the 
disturbance of Se homeostasis related to GPx and selenoproteins, 
SARS-CoV-2 has been shown to have the potential to disrupt Rho 
GTpases associated with synaptic irregularity exhibited in patients with 
Alzheimer’s disease [96]. 

3.5. Role of other elements in immune system and viral infection 

In addition to the essential elements already described, other ele
ments can present distinct functions in immune system against viral 
infection. Although, Mn is also a cofactor of SOD like Zn and Cu, it has 
shown a less prominent contribution to the immune system [2,86]. In 
fact, recent findings on the human proteome provide evidence of a low 
interaction (ca. 0.3%) between Mn metalloproteins and proteins of 
SAR-CoV-2 [48,96,101]. In contrast, nickel (Ni) has demonstrated a 
significant effect in modulating the immune response which it can 
improve the T and B lymphocyte cells proliferation and increase the 
natural killer cells activity [2,5]. Furthermore, like Cu, the new coro
navirus demonstrated high sensitivity on Ni-composite surfaces which 
has been attributed to ROS production induced by the high redox ac
tivity of metals [5]. Lithium (Li) has been shown to have high antiviral 
potential against several viruses, including members of the coronavirus 
family as coronavirus bronchitis virus [116]. The dose-dependent effect 
of lithium prevented the entry of coronaviruses in Vero cells and 
inhibited their replication blocking transcription and translation of the 
viral protein [5,116]. Lithium can improve severe inflammation by 
inhibiting pro-inflammatory factors of the immune system for example 
COX-2 (prostaglandin endoperoxide synthase 2), IL-1β (interleukin 1 
beta) and TNF-α (tumor necrosis factor – alpha) [116,117]. Lithium 
prophylaxis and therapy against COVID-19 infection requires more data, 
however, Li-based drugs have been used for decades to treat serious 
mental illnesses as schizophrenia [15]. Magnesium (Mg) plays a crucial 
role for cell-mediated and humoral adaptive immunity [2,48]. Defi
ciency of Mg is linked to a defect in the magnesium transporter 1 
(MAGT1) and promotes a drop in the serum levels IgG and IgM, NKCs 
and T CD8+ cells [2,118,119]. Prolonged severe acute inflammation in 
lung tissues has been related to Mg deficit due to susceptibility to pro
duction of cytokines, free radicals (ROS and RNS) and acute-phase 
proteins [48]. The efficacy of Mg supplementation to alleviate the 
severity of complications induced by several cardiovascular, neurolog
ical and respiratory disease has been reported and therefore can be 
considered for COVID-19 [120,121]. However, for this, it is important to 
consider the predicted high probability of interaction between 
Mg-binding proteins with SAR-CoV-2 ones, resulting in possible imbal
ances in the homeostasis of these metalloproteins in human cells [96]. 
Regarding non-essential elements like arsenic (As), cadmium (Cd), 
mercury (Hg) and lead (Pb) have been associated as damage promoters 
to human innate and adaptive immunity that depend on the level of 
exposure [122]. Therefore, exposure to toxic element can be considered 
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as a risk factor for increasing susceptibility and severity of viral diseases 
focused on the respiratory system including COVID-19 [2,122]. 

4. Trace elements distribution in the brain and its imbalance 
after coronavirus infection: an implication for neurological 
system 

The brain is composed by two important components: (i) neurons 
and (ii) glial cells [15]. Neurons are specialized cells that can receive and 
transmit chemical or electrical signals, while glia are cells that provide 
support for neurons, playing a role in processing information comple
mentary to neurons [15,123,124]. Neurons are characterized by not 
regenerating and are maintained during an individual’s entire lifetime 
[15]. Chronic dysfunction of neuronal cells (a characteristic of neuro
logical disorders) can be caused by irreversible damage and cell death 
[14]. A wide range of viruses can cause immediate or delayed neuro
logical manifestations in humans and animals [13,14,18,125]. For 
example, studies involving patients infected with two different corona
viruses that caused epidemic infections in the past, SARS-CoV, and 
Middle East respiratory syndrome-associated coronavirus (MERS-CoV) 
have developed neurological symptoms, from two to three weeks after 
the appearance of typical symptoms, such as neuropathy, myopathy, 
bickerstaff, brainstem encephalitis (BBE), and Guillain Barré syndrome 
(GBS) [125,126]. The SARS-CoV-2 infection in the brain begins with the 
spike protein S1 binding to the host receptor ACE2 (Fig. 2). The human 
brain expresses ACE2 at a high level, which can allow the virus to invade 
the central nervous system (CNS) [127]. Moriguchi et al. reported the 
first confirmed cases of encephalitis and meningitis caused by 
SARS-CoV-2 [128]. It has been suggested that these signs of neurological 
damage may be caused by severe hypoxemia and hypoxia, an inflam
matory process triggered by SARS-CoV-2 infection, or by virus infiltra
tion and spread in the brain [129]. In addition, although 
neurodegenerative diseases have not been described in association with 
COVID-19, there is strong evidence of protein unfolding after viral 
infection, suggesting accumulation of amyloidogenic prion protein (PrP) 
in the brain which is a hypothesis of neurodegenerative disorder. 

The imbalance of metals, such as Cu, Zn, Mn among others can 

accelerate SARS-CoV-2 neurovirulence and increase the neurotoxicity. 
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP- 
MS) images of trace elements in mice brain show the distribution of trace 
elements in different sections of brain, evidencing the important role of 
trace elements in the neural cell homeostasis (Fig. 3)[125–127]. Fig. 3-A 
and Fig. 3-B show elemental distribution in mice and human brains, 
respectively, highlighting the different distribution of analytes (metals 
and non-metals) in substructures of interest, as for example, the hip
pocampus, corpus callosum, and the substantia nigra. Fig. 3-C illustrates 
Cu distribution in young (2-month-old) and old (14-month-old) mice, 
showing significant differences in elements distribution with age, sug
gesting a high risk of neuronal dysfunction after COVID-19 infection in 
the elderly due to micronutrients deficit. 

In fact, after Fe, Zn is the second most abundant transition metal in 
the brain, followed by Cu [128]. Zn is found at the highest levels in the 
amygdala, hippocampus, cerebral cortex, and thalamus [12,120,129]. 
General brain activity is modulated by secreted Zn2+, which binds to 
N-methyl-D-aspartate (NMDA) type glutamate receptors, g-amino
butyric acid (GABA) receptors, and glycine receptors [129–131]. In 
addition, secreted Zn is essential for information processing, synaptic 
plasticity, learning, and memory [15,132]. Zn imbalance in the brain 
results delayed mental, immune dysfunction, and learning disabilities in 
children, whereas in adults, Zn deficiency produces learning, taste, and 
odor disorders [15]. Cu dysregulation caused by mutations of Cu 
transporters has been linked to neurodegenerative diseases (ND), 
including Wilson’s disease (WD) and Menkes disease (MD) [133,134]. 
Recent studies suggest that intracellular Cu2+ accumulates in the syn
aptic vesicles and is then released into synaptic clefts during neuronal 
excitation, like Zn [131,132,134–136]. Released Cu2+ has modulating 
effects on neuronal information processes, as it supposedly binds to 
NMDA-type glutamate and other receptors and modulates neuronal 
excitability [137,138]. Fe can exist in two different forms: ferrous iron 
(Fe2+) and ferric iron (Fe3+) [15]. When Fe2+ ions enter the circulation 
system, they are oxidized to Fe3+ by ferroxidases, such as hephaestin or 
ceruloplasmin [139,140]. The Fe3+ ion binds to transferrin (an 
iron-binding protein that binds two Fe3+ ions), crosses the blood-brain 
barrier (BBB) via transferrin receptors, and enters neurons or glial 

Fig. 2. The SARS-COV-2 spreads throughout the body via the bloodstream. Brain infection can occur via circulation and/or an upper nasal transcranial route that 
enables the COVID-19 to reach the brain. COVID-19 docks on the ACE2 via spike protein. Lungs, heart, intestines, and brain express ACE2 receptors and are possible 
targets for COVID-19. 
Image adapted of Baig et al. [122]. 
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cells [140,141]. Then, Fe3+ is reduced to bioactive Fe2+ by ferrir
eductase, and transferred to neuronal enzymes, which require Fe2+ as a 
cofactor [15,140,142]. Therefore, Fe levels as well as the ratio between 
Fe2+ and Fe3+ are strictly regulated in normal brains [140,143]. 

Some studies involving animals have suggested the synapse as a 
vulnerable region of the brain to neurological disorders after viral 
infection [132,144,145]. Synapse is an important region of the brain 
where memory formation takes place [144]. Memory formation can be 
derived from the interaction between metals and neurotransmitters that 
are co-released from the synapse, at presynaptic terminals [145]. In this 
region, metals bind to receptors in postsynaptic domains (PSDs) [132]. 
In this sense, it is plausible that neurotransmitters and metals may be 
concentrated in synaptic clefts, and their levels may be much higher 
than the level of extracellular fluid [15,132,144,145]. Many neurolog
ical processes must certainly be associated with homeostasis of metal 
and metalloproteins [119,133]. Considering this combined evidence, a 
possible mechanism can be suggested involving the metal’s synaptic 
effects under normal and abnormal conditions, such as neurological 
disorders (Fig. 4) [15,132,138,145]. Under typical physiological con
ditions, Zn can be released with glutamate and can bind to NMDA type 
glutamate receptors or other receptors, thus, inhibiting general brain 
excitability [137,138]. Fig. 4 shows a general scheme pointing out the 
relationship between trace elements and amyloidogenic proteins at the 
synapse under normal conditions. In Fig. 4, it is observed that under 
normal conditions, Zn has a neuromodulating function in the synapse, 
transmitting the space-time information on neuronal activity. This fact 
can allow ‘‘lateral inhibition’’ based on signaling contrast and may be 
based on synaptic plasticity [15,132,144,145]. Synaptic Zn enters 
postsynaptic neurons through NMDA channels and Ca2+ channels, 
regulating the functions of several channels and receptors [137,138]. 
Recent evidence suggests that the Zn transporter (ZnT-1), which in
creases the flow of Zn to the extracellular compartment, is in the post
synaptic membranes [137]. The Zn transporter binds to NMDA-type 

glutamate receptors and regulates their activity. In comparison, the 
cellular prion protein (PrPC), an analog of ZIP (Zn transporters), is on the 
postsynaptic membranes that bind to the AMPA-type glutamate recep
tor, which facilitates the Zn flux. Therefore, it is likely that Zn synaptic 
levels are controlled by ZnT-1 and PrPC [132,138,145]. Metal
lothioneins (MT) secreted by neurons or glia can also regulate Zn ho
meostasis at synapses. Another contributor to Zn homeostasis is 
carnosine (CAR), an endogenous antioxidant and anti-crosslinking 
peptide, which is synthesized in glial cells [131,132,146,147]. Cu is 
also secreted in the synaptic clefts after neuronal excitation [15,145, 
147]. PrPC binds to Cu in its N-terminal domain and regulates synaptic 
levels of Cu [15]. For PrPC, it is also possible to provide Cu to amyloid 
precursor protein (APP) or to NMDA-type glutamate receptor, thus, 
influencing the production of beta-amyloid peptide (AβP) or the 
neuronal excitability [138,148]. APP also regulates Cu levels by 
reducing Cu2+ to Cu+, and both APP and PrPC attenuate Cu-induced 
toxicity [145]. Furthermore, APP controls Fe homeostasis by binding 
to ferroportin and promoting Fe flux. On the other hand, both PrPC and 
α-synuclein have ferrireductase activity that regulates the Fe2+/Fe3+

ratio in synapses, thereby, controlling the neurotransmitter synthesis 
[15,145,146]. However, when homeostasis of metals is interrupted, 
degradation of neuronal synapses occurs, contributing to the patho
genesis of neurological disorders [15,19,149,150]. A mechanism of 
metal imbalance in the synapse, contributing to neurological disorders 
has also been suggested (Fig. 5) [15]. 

In case of neurotoxicity, AβP oligomerization can form amyloid 
channels on synaptic membranes, producing Ca2+ dyshomeostasis and 
initiating synaptotoxicity and neurotoxicity, resulting in neurological 
disorders [131,151–153]. In contrast, micronutrients supplementation, 
can inhibit amyloid channels and have neuroprotective properties [15, 
48,84,133,154]. However, excess of micronutrients from overexcitation 
during ischemia also disrupts metal homeostasis at the synapse, starting 
neurodegeneration and contributing to the pathogenesis of vascular 

Fig. 3. Bioimaging of brain by LA-ICP-MS at µm scale. A) Mass spectrum of a line scan (top left) and images of selected metals and non-metals measured by LA-ICP- 
MS in routine mode. B) Metal distributions in the human brain measured by LA-ICP-MS. C) Comparison of copper images of mice brain sections from 2- to 14-month- 
old mice measured by LA-ICP-MS. 
(a) Image adapted of Becker et al. [125] under permission of Elsevier. (b) Image adapted of Becker [127] under permission of Wiley. (c) Images adapted of Becker 
et al. [125] under permission of Elsevier. 

J.R. de Jesus et al.                                                                                                                                                                                                                              



Journal of Trace Elements in Medicine and Biology 71 (2022) 126964

8

dementia [15]. 

5. Trace elements role in available treatment for COVID-19 

Although a variety of vaccines have been developed and are being 
applied to prevent severe cases of COVID-19 infection, the protective 
efficacy of these vaccine decreases when new variants of the virus 
emerge [155]. In this sense, the search for treatment against 
SARS-CoV-2 is a reality. Some treatments have been suggested for this 
infection from another viral infection. For example, some drugs used to 
treat HIV (e.g., lopinavir/ritonavir), and Ebola virus, and MERS diseases 
(e.g., remdesivir) have been tested for the treatment of SARS-CoV-2, 
suggesting similarity in the viral life cycle [2]. Recently, the Medicines 
and Healthcare products Regulatory Agency (MHRA), in the United 
Kingdom, approved Lagevrio (molnupiravir) as first oral antiviral for 
treatment of COVID-19. Molnupiravir showed to be a safe and effective 
drug against severity of COVID-19. In addition, Food and Drug Admin
istration (FDA) has approved and authorized the emergency use of 
monoclonal antibodies for the treatment of mild or moderate COVID-19 
in patients at high risk of progression to severe COVID-19 and/or hos
pitalization. Monoclonal antibodies are laboratory-made molecules that 
act as substitute antibodies [156]. They can help the immune system 
recognize and respond more effectively to the virus, making it more 
difficult for the virus to reproduce and cause harm. Considering this fact 
and all the points mentioned above about the role of trace elements in 
the immune system, it is reasonable to suggest the importance of 
micronutrients supplementation (Zn, Cu, Fu, Mg among others) for the 
success of these treatments against SARS-Cov-2 replication, since such 
micronutrients can normalize impaired immune functions through the 
modulation of neutrophil activity, the blastogenic response to T cell 
mitogens, and the upregulation of B cells, producing more antibodies 

[2]. However, more studies are needed to ensure this evidence. 

6. Outlook and summary 

Considering all the points discussed in this text, it is clear that trace 
elements play important roles in viral infections, such as helping in the 
activation of immune cells, producing antibodies, and inhibiting virus 
replication. However, the relationship between trace elements and virus 
infections is still complex. Therefore, there is still a lot to be explored to 
understand the biochemical mechanisms involved between trace ele
ments and viral infections, especially in the brain. The inclusion of vi
ruses in the etiology and diagnosis of neurological disorders has a 
positive impact on the management and treatment of disabling and 
potentially lethal complications. 

In this sense, the search for complementary processes, including the 
exploration of strategies based on metallomics to assist health pro
fessionals in better understanding and treating diseases, is welcome and 
of great importance, mainly aiming at the development of novel control 
and intervention therapies, such as specific antiviral drug and more 
efficient vaccines against different variants of the virus. In this sense, 
some analytical alternatives can be applied to help the medical, bio
logical, toxicological team, in such assessments, which involve the 
application of ICP-MS based-techniques such as inductively coupled 
plasma mass spectrometry, laser ablation mass spectrometry, among 
others [157]. Additionally, recently, based on the concept of the single 
particle-ICP-MS (SP-ICP-MS), Degueldre reported the concept of single 
virus ICP-MS (SV-ICP-MS) that brings the possibility of characterizing 
smallest biological systems, as virus, through the evaluation some trace 
elements, allowing the characterization of the species using molar ratios 
and quantification of their number concentration [158]. As these ratios 
vary considering the nature of each virus, their identification through 

Fig. 4. General scheme of the synapse under normal conditions, showing a relationship between trace elements and amyloidogenic proteins. High concentrations of 
Zn are secreted from synaptic vesicles along with glutamate. Zn binds to the NMDA–type glutamate receptor (NMDA–R) and regulates its excitability. Secreted Zn can 
then spread into nearby neurons and regulate the information, and finally, contribute to memory formation. ZnT-1 (zinc transporter 1), AMPA-R (AMPA-type 
glutamate receptor), NMDA-R (NMDA-type glutamate receptor), and MT-3 (metallothionein 3). 
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SV-ICP-MS might be possible, therefore, helping to identify new variants 
of SARS-CoV-2 and the development of new treatment against viral 
infection. 
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