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Abstract: Crowd counting is of significant importance for numerous applications, e.g., urban security,
intelligent surveillance and crowd management. Existing crowd counting methods typically require
specialized hardware deployment and strict operating conditions, thereby hindering their widespread
application. To acquire a more effective crowd counting approach, a device-free counting method
based on Channel Status Information (CSI) is proposed. The wavelet domain denoising is introduced
to mitigate environment noise. Furthermore, the amplitude or phase covariance matrix is extracted
as the eigenmatrix. Moreover, both the spatial diversity and frequency diversity are leveraged to
improve detection robustness. At the same experimental environment, the accuracy of the proposed
CSI-based method is compared with a renowned crowd counting one, i.e., Electronic Frog Eye:
Counting Crowd Using WiFi (FCC). The experimental results reveal an accuracy improvement of
30% over FCC.
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1. Introduction

In some overpopulated countries, the contradiction between the limited indoor space and large
population is becoming increasingly prominent. Thus, it is of vital significance to implement crowd
counting in public places, e.g., libraries, museums, shopping malls and college classrooms, which are
with limited resources and strong mobility. In the meantime, it is a crucial and challenging task to
acquire the human traffic or accurately calculate the population in some particular circumstances.
Therefore, signal changes caused by human motion has been utilized to acquire crowd counting [1].
Since crowd counting can lead to an efficient utilization of space resources, it has been widely applied
to intelligent surveillance, guided to tour, crowd management and urban security, etc.

Numerous crowd counting approaches have emerged over the past decades, e.g., video-based
recognition, infrared-based induction, and non-image-based localization. However, these methods
all require specialized hardware deployment and strict operating conditions which hinder their wide
deployment. First, video-based recognition has the advantages of high-accuracy, rapidness and
low-cost, and is applicable to various commercial and security fields. However, it is encountered by
some constrains, e.g., many blind spots cannot be monitored and the environmental requirements
are high [2]. Second, although infrared-based induction has also been widely applied in markets,
subways and buses, it will be challenging to obtain a high counting accuracy, when the people
flow becomes denser [3]. Third, non-image-based solutions typically require people to carry
wearable devices. Unfortunately, it is impractical and expensive to distribute equipments to each
individual in a public place, and is not feasible under an emergent event [4,5].
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The legacy crowd counting methods not only consume manpower and materials, but also
encounter the statistical error. In recent years, Wireless Sensor Network (WSN) technology has
been gradually applied from theoretical research to industries. Besides, some network technologies,
e.g., Wi-Fi., are also utilized in the field of crowd counting. The Received Signal Strength Indicator
(RSSI) could realize crowd counting from the perspective of localization [6] and estimate human
position in small areas or homes [7,8]. However, the RSSI is only applicable to the MAC layer
information at the packet level, and its value will not remain stable with time fluctuation, and it
meanwhile, does not provide sufficient recognition and robustness in complex indoor environments,
thus the counting error will exist. Nowadays, some commercial ordinary wireless network cards (such
as 802.11 a/g/n networks) can provide both amplitude and phase information on different subcarriers,
utilizing the form of Channel State Information (CSI) by Orthogonal Frequency Division Multiplexing
(OFDM). Different from RSSI, the CSI is a type of physical layer information and could obtain matrix
of all subcarriers from transmit antennas to receive antennas [9]. More importantly, the CSI acquired
by different subcarriers would exhibit distinct fading. These fading can be suppressd by the Multiple
Input Multiple Output (MIMO) technique (such as IEEE 802.11n, 3GPP LTE, and mobile WiMAX
systems), which can increase the capacity, range and reliability of wireless systems from the space
dimension [10]. MIMO could enhance data throughput and transmission distance, without additional
bandwidth and transmission power. Thus, CSI has both frequency diversity provided by OFDM and
spatial diversity supplied by MIMO. As the specific RSSI at the physical layer, CSI is expected to
enable more accurate and reliable detections, which has also attracted intensive attentions from both
academic and industrial domains, and thus it would be a promising one in crowd counting.

The contradiction between limited indoor space and large population necessitates crowd number
counting [1]. Meanwhile, people-counting also plays an significantly role in security monitoring and
energy management for smart homes. We aim to find a baseline indicating the relationship between
CSI and people number. In addition, it is worth noting that the widespread deployment of WiFi
networks can also further boost our study. However, the same environment and conditions should
be required (e.g., the same transmitter and receiver, as well as the same indoor environment) in
this scenario, which has been widely considered in existing works [11,12].

The main contributions of our work are listed as follows:

• We present a device-free indoor people-counting method based on CSI. Since CSI is relatively
stable in the static environment and sensitivity to human bodies, we leverage it to exactly achieve
the crowd/people-counting.

• We utilize the linear transformation to obtain available phase information. In addition, the wavelet
denoising is introduced to mitigate environment noises (e.g., indoor settings) and get relatively
transparent CSI measurements. For multi-dimensional sample data, we extract the amplitude
or phase covariance matrix as the eigenmatrix. Since covariance matrix can not only describe
multi-dimensional data, but the diagonal elements represent the variance of each dimension.

• We attempt to combine both space diversity provided by MIMO and frequency diversity supplied
by OFDM subcarriers, to enable more robust and accurate counting.

• We validate a monotonic relationship that lies between the CSI variations and crowd size.
In addition, we utilize the percentage in the extension covariance matrix of amplitude and
phase as baseline that estimate this relationship. Meanwhile, we compare the differences and
similarities between phase and amplitude information in crowd counting.

2. Related Works

CSI can evaluate the channel information on each subcarrier, and characterize the frequency
selective fading characteristics of Wi-Fi channels. In addition, CSI contains the amplitude and
phase information on each subcarrier, thereby enhancing richer frequency domain information.
Next, we summarize the existing works of the CSI form the aspect of phase and amplitude.
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The amplitude-based detection. An amplitude-based scheme has attracted more attention in recent
years since it is sensitive to adjacent humans, while unrelated background noise remains relatively
stable. In this context, Xiao et al. [13] proposed a CSI feature extraction model based on the first and
second largest eigenvalues of the Pearson correlation matrix of CSI amplitude, to detect the presence
of humans. The existence detection is performed by outlier identification using normal features of
density-based clustering. In [14], a monotonic function was proposed to depict the relationship between
the crowd number and CSI amplitude variation. The function can be leveraged by a new dilated CSI
matrix of the percentage of nonzero elements and the Grey Verhulst Model. In [15], a system was
proposed to capture the variance between CSI amplitude of each subcarrier as features and uses Hidden
Markov Model (HMM) to detect the human movement with different speed followed by a speed
independent device free entity detection. In E-eyes [16], the distribution of CSI amplitude was utilized
to classify the activities in entire home environment and identifies activities by calculating the similarity
of each CSI segment and pre-structured activity files. Han et al. [17] designed a device-independent
passive fall detection system using time stability and frequency diversity of CSI amplitude, in view
of the fact the static human body is independent of the time domain variation of wireless signals.
Experimental results showed that Wi-Fall can achieve a detection accuracy of 87%.

The Amplitude and Phase-based detection. Despite the fact that quite a few works have studied
CSI for device-free detection, most previous studies only utilized amplitude information but not phase
information. However, in [18], it was found that the CSI phase information is more sensitive to the
detection process. Therefore, both the amplitude and phase information are utilized to calculate the
maximum eigenvalues of Pearson correlation matrices, in order to compose a two-dimensional feature
to infer the existence of a moving human body. This paper further employed an SVM machine learning
model to achieve human moving detection. In [19], a new feature with the coefficient of phase variation
was defined. The coefficient of phase variation is the ratio of the standard deviation to the mean of the
CSI phase, in which human movement is detected when the averaged ratio is set within a predefined
confidence interval. Qian et al. [20] proposed a device-free PAssive detection of moving humans
with Dynamic Speed (PADS). The features are extracted from the covariance matrices of both CSI
amplitude and phase, then, the eigenvalues of both matrices are calculated; maximum and second
maximum eigenvalue of each matrix to form a four-tuple of features are selected; meanwhile, the SVM
classifier to detect humans is selected. Cheng et al. [21] proposed an enhanced people-counting system
with the DNN model as the classifier. In particular, a feature space expansion scheme is presented
to enhance the DNN model. Nevertheless, this paper only showed the CSI is related to the crowd
counting in indoor environment, without illustrating phase is more sensitive and explaining between
the relationship CSI and the number of crowd.

Although there are prior works that utilize the CSI amplitude and phase information to conduct
detection of moving humans, they typically ignore the relationship between the variation of CSI
amplitude or phase and the number of moving people. In our work, an explicit relationship description
is concentrated. In addition, we should also seek a baseline to indicate the relationship. Meanwhile,
to further illustrate that the phase information is not only available, but is also more sensitive to the
environment factors than amplitude information. Therefore, we attempt to respectively utilize the
amplitude and phase information to achieve the counting, and exploit the frequency diversity and
spatial diversity of CSI to obtain more accurate and robust counting result.

3. Crowd Counting Based on CSI

3.1. Architecture

Figure 1 shows the system architecture of this paper, and the system architecture consists of
four stages: (1) data collection; (2) data preprocessing; (3) feature extraction and (4) learning counting
method. To verify the validity of the architecture, we perform a series of experiments to examine the
relationship between CSI changes and the number of moving people.
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Figure 1. System architecture.

First, we obtain CSI observations by different numbers of volunteers and, then, filter out both
phase and amplitude noise from original CSI observations through wavelet denoising. It is worth
noting that the phase information needs linear transformation.

Second, following data preprocessing, we further extract the covariance matrix as the eigenvector
from both the amplitude and phase information, respectively.

Finally, since multiple transmit and receiver antennas combine into different streams, CSI consists
of these streams, which constitute the spatial diversity of CSI. Meanwhile, the multipath effect
exists indoors, which makes different subcarriers provide frequency diversity for CSI. This will
also make the covariance characteristic vectors more reliable. Therefore, these works will enhance
robustness, accuracy, and reliability of our method.

3.2. Data Preprocessing

Although standard wireless network cards provide RSSI information, the RSSI is only
a rough estimate of the wireless channel, and it does not involve a specific number of antennas
and subcarriers. Nowadays, some common IEEE 802.11n standard commercial wireless network cards
have begun to emerge, which could provide detailed amplitude and phase information on different
subcarriers in the form of CSI. The CSI is a type of physical layer information on the subcarrier scale,
referring to the channel characteristics of a communication link. This type of information describes
how the signal passes through the air from transmitter to receiver, and reflects the fading factor of
signal on each transmission path, environmental degradation, signal scattering, and power attenuation
with distance, etc.

In the narrow-band flat fading channel, the OFDM system in the frequency domain is modelled as

y = Hx + N, (1)

where y, x, H and N are respectively denoted as the receive vector, the transmit vector, the channel
matrix and the additive white Gaussian noise (AWGN) vector.

Next, the CSI message, which represents the channel response of multiple subcarriers, is divided into
30 groups. Hence, the CSI value with N = 30 groups collected at the receive that can be represented as

H( fi) = ‖H( fi)‖ejsin( 6 H( fi)) ,

i ∈ [1, 30],
(2)

where H( fi) is the CSI at the subcarrier with the carrier frequency fi, 6 H( fi) denotes its amplitude
value and ‖H( fi)‖ denotes its phase value.
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Environmental factors (such as temperature, lighting and room settings) might appear with
outliers in the CSI measurements, and these outliers would affect the detection performance to
some extent. Thus, the measurements of amplitude and phase of CSI will be the basic input for
our method, which would be through a wavelet transform denoising process beforehand. The wavelet
transform denoising removes the observation value with larger deviations and meanwhile restore
original signals as much as possible.

Given the original signal Cϕ , ϕ(t) constitutes the fundamental wavelet, i.e., if ϕ(t) meets
Equation (3)

Cϕ = 2π
∫ +∞

−∞

ϕ(w)2

|w| dw < ∞, (3)

then the continuous wavelet transform f (t) can be written as

W f (a, b) =
1√
Cϕ
− 1√

|a|

∫ +∞

−∞
f (t)ϕ(

t− b
a

)dt,

a, b ∈ R, a 6= 0,
(4)

where ϕ̄ denotes the conjugate of ϕ , and R represents a real number set.
The associated inverse transformation formula f (t) can be written as

f (t) =
1√
Cϕ

∫ +∞

−∞
db

∫ +∞

−∞
W f (a, b)|a|−

1
2 ϕ(

t− b
a

)
da
a2 . (5)

In the following, Figure 2 illustrates the original CSI amplitude and phase as well as the
filtered signal, respectively. Among them, Symlet is a discrete wavelet function, which can reduce
signal phase distortion to a certain extent. In this paper, the dataset is discrete and the data
volume is relatively small. In addition, to ensure the integrity and readability of denoising CSI data,
system wavelet is selected and wavelet scale is set to 2 in this work. From Figure 2, it is observed that
the graph curve becomes smoother after the signal is filtered by the wavelet, and the frequent random
fluctuations are filtered out. Thus, wavelet denoising can effectively filter out interference signals. It can
be also revealed that the denoised signal retains the basic characteristics of the original one as well.
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Figure 2. Comparison between the original and the filtered signal. (a) amplitude; (b) phase.

3.3. Feature Extraction

A suitable feature plays a key role. Nowadays, various statistical features [22–24] have been
exploited for detection, such as the variance, mean, std, max-min. Nevertheless, these measures can
only describe one-dimensional data (i.e., scalar), which necessitates the introduction of amplitude
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and phase covariance matrix as a feature one to enable counting in the multi-dimensional data.
Then, the corresponding feature matrix can be represented as,

a(i, j) = cov( 6 H(i), 6 H(j)),

b(i, j) = cov(‖H( fi)‖, ‖H( f j)‖),
(6)

where 6 H(i) , ‖H( fi)‖ are the phase and amplitude information, respectively.
In the following, A and B are utilized to denote the amplitude and phase covariance matrix,

respectively, i.e.,

A = [a(i, j)]N∗N ,

B = [b(i, j)]N∗N ,
(7)

where a(i, j) and b(i, j) denote the phase and information covariance between vectors i and j,
respectively.

Both Figures 3 and 4 show the variation of CSI amplitude values with different numbers of
moving people. Herein, Figure 3 demonstrates the CSI changes with one antenna when 0, 2, 4 people
are walking, respectively, and Figure 4 displays the change with three antennas. The X-axis denotes
the package index, while the Y-axis denotes the CSI amplitude value. For both cases, it can be clearly
observed that the different degree of change of the CSI amplitude with the number of people increases.
In addition, the amplitude varies sharply with the increase of packet number instantaneous. Therefore,
the amplitude information can be considered as means of the crowd counting.
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Figure 3. CSI amplitude changes with the people number on one antenna. (a) zero people; (b) two
people; (c) four people.
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Figure 4. CSI amplitude changes with the people number on three antennas. (a) zero people; (b) two
people; (c) four people.

Since there is a random noise and unsynchronized time clock, the raw phase information
is unavailable, as shown in Figure 5a. However, most existing works also involve the phase
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information [18,19,25,26]. One of the most important reasons is that the phase information is
more sensitive. In our work, in order to achieve people-counting through the phase information,
we employ a linear transformation to remove random noise from the raw phase values. The measured
phase φ̂i for the ith subcarrier can be expressed as

φ̂i = φi + 2πki4t + 2πki4w, (8)

where φi is the raw phase. 2πki4t and 2πki4w are the unknown phase shifts caused by the clock
offset t and frequency difference w, respectively.

To remove the impact of random noise, the linear transformation can be written as

φ̄ = φ̂i − αki − β, (9)

where α and β denote intuitively the slope and offset of phase change over all subcarriers, respectively,
φ̄ is the random phase offset which has been removed. Figure 5b illustrates an example of the phase
after transformation, which is stably distributed.
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Figure 5. Phase before and after linear transformation. (a) random raw phase measurements; (b) phase
after linear transformation.

3.4. Crowd Counting Algorithm

Our work aims to achieve crowd counting indoors (i.e., laboratory, corridor and office) settings
at the Xi’an University of Technology, that is, the relationship between the number of moving
people and CSI amplitude and phase variances is found, respectively. In PEM, presented in [14],
the percentage of non-zero Element, can demonstrate the crowd size. PEM can adaptively reflect
the relationship between CSI and the people number. In other words, it can intuitively represent
different numbers of people. Neverthless, the FCC system [14] only considers amplitude information
and directly uses the raw amplitude, i.e., the CSI phase information is ignored. Therefore, we propose
to further improve the FCC system. In particular, it proposes to mitigate the environmental noise by
wavelet denoising, extract CSI amplitude and phase covariance matrix as feature matrices and convert
them into two-dimensional matrix, and expand the two-dimensional matrix using an algorithm and
calculate the non-zero elements percentage of dilatation matrix. The idea of the expansion matrix
method is that when a point expands to a certain size in the form of a circle, it will coincide with
other points, and the size of these coincidence areas is contrary to the change of CSI strength. It should
be noted that, our proposed method is with small amount of calculations and the data amount is less,
leading to a counting time in the magnitude order of milliseconds. In Algorithm 1, C[i][j] represents
the processed two-dimensional matrix (S× P), with and being the number of subcarriers and packets,
respectively. Cmin and Cmax are the maximum and minimum value of covariance matrix, respectively,
and D is the dilatation coefficient and q is percentage.
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The aforementioned crowd counting approach can be listed as follows:

• We adopt wavelet transforms to remove the random noise, and then extract both the CSI amplitude
and phase covariance matrix as the feature vector.

• All elements in the CSI amplitude or phase covariance matrix M0 are initialized to “0”, and each
CSI value C[i][j] is converted into integer k by k = dC[i][j]−Cmin

Cmax−Cmin
· (R− 1)e . Then, the elements in

row k and column j of M0 is set to be “1”.
• The elements around D are set to “1”, which is called matrix expansion. The size of the expansion

is related to the D. After dilation, the M0 is transformed into matrix M. The matrix M is occupied
by more “1”, and usually comes along with the CSI changes drastically.

• The number of “1” in the matrix M is counted, and the percentage of non-zero elements in the
matrix M of each subcarrier is calculated by q = q/(P× S). This percentage is a guideline that
the relationship between the CSI and the number of moving people.

Algorithm 1 Crowd Counting based on Channel State Information

Require: Sample Data ([H1, H2, · · · , Hk], k ∈ (1, 30)), Matrix Resolution (R), Dilatation Coefficient

(D), Number of Subcarrier (S), Number of Packets (P), Covariance Matrix (C(i, j)), Maximum

Value of Covariance (Cmax), Minimum Value of Covariance (Cmin), Expansion Matrix (M)
Ensure: Percentage of Element (q)

1: the covariance matrix is extracted from wavelet transformed data
2: for i = 1 to S do
3: the integet k is calculated
4: the matrix M is dilated // the element in row k and column j is set to be “1”
5: for u = −D to D do
6: for v = −D to D do
7: the matrix M is dilated // the element in a radius of D is set to be “1”
8: end for
9: end for

10: end for
11: for l = 1 to P do
12: for h = 1 to S do
13: M = M (1, h) // the percentage of the matrix M of each subcarrier
14: q = q/(P× S) // the percentage is calculated
15: end for
16: end for

3.5. Leveraging Space Diversity

Nowadays, multiple antennas are adopted in more and more popular MIMO communication
systems, since the signal strength variability can be reduced based on small-scale fading compensation.
In an MIMO system, both the transmitter and receiver have multiple antennas, and each combination
of receiving and transmitting antennas can be regarded as a stream. CSI consists of these streams.
In addition, each stream implies a spatial choice. That is, these streams provide spatial diversity for CSI.
Due to different propagation paths of diverse streams in the indoor environment, the CSI received by
different antennas are differentiated. Therefore, all streams H( fi) are with p× q dimensions and can
be represented as:

H( fi) =


h11 h12 · · · h1q
h21 h22 · · · h2q

... · · · · · ·
...

hp1 hp2 · · · hpq

 , (10)
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where hpq is complex numbers representing the amplitude and phase of each subcarrier for an antenna,
and p, q indicate the number of transimit and receive antennas, respectively.

As such, without enhancing the bandwidth and transmission power, multiple antennas can
improve the reliability of spatial diversity [27,28]. Figure 6a shows the amplitude characteristic
distribution of different numbers of people, while the phase characteristic distribution is displayed
in Figure 6b. It can be observed that the features distribution of amplitude and phase do vary over
different antennas. In addition, the phase features of all antennas remain relatively stable, but the
amplitude features exist significant differences. Meanwhile, the feature variation is also different,
whether in amplitude or phase. In this work, we exploit multiple antennas to improve the accuracy
and robustness of counting a crowd. Therefore, the antenna with less variation should be selected
when counting different people. If the antenna which great variation is selected, that is, the antenna is
utilized mistakenly.
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Figure 6. Antenna diversity: (a) antenna diversity of amplitude features; (b) antenna diversity of phase features.

4. Experiment Results and Analysis

4.1. Experiment Setup

To evaluate the performance of proposed approach, a real experiment platform is built at the
elevator. We utilize the AP-link wireless router with two-antennas as transmitter and the PC with
three-antennas as receiver, which form monitoring area. As illustrated in Figure 7a,b, all volunteers
randomly walk in the monitoring area. In addition, considering the influence of different moving
speed on counting accuracy, as such, volunteers have the same speed motion in this paper.

Since CSI information is highly sensitive to environmental factors. If too much people closely walk
with each other in the monitoring area, it inevitably appears signal occlusion. Therefore, in this paper,
the sensing range is 25 m2 of the elevator mouth, both AP and PC are placed at the height of 1.5 m,
the distance between them is 5 m. Different volunteers scattered move within the sensing range,
the transmitter continuously sends packets to the receiver, and the CSI information will be detected.
It’s worth mentioning that these people try not to hide other people while walking. The 4 min data
is collected at each sample point and 400 stable data packets are selected in the intermediate state,
which will be experimental samples.
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(a) (b)

Figure 7. The experiments equipment and scenes. (a) receiver and router; (b) experiment scene.

4.2. Relation Between Population and Amplitude (or Phase)

Figure 8 shows the relationship between the percentage and the number of moving people on
different antennas. It is observed that a monotonous relationship between them. Among them,
Figure 8a reveals the percentage of CSI amplitude when 0, 1, 2 and 3 people are walking, and Figure 8b
shows the percentage change in CSI phase. Although the monotonic relation exists both in amplitude
and phase information, the curve track of is different. However, it can be observed that the trajectory of
phase information on different antennas is more concentrated, and the curve changes more dramatically
when describing the monotonic relationship.
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Figure 8. The relationship between the number of people and the percentage at the different antennas.
(a) amplitude; (b) phase.

In this work, the CSI phase or amplitude covariance matrix is extracted to achieve crowd counting.
Figure 9a compares the variance of each dimension of the amplitude and phase, that is the diagonal
elements of covariance matrix. It can be observed that the amplitude information is with a large
fluctuation, while the phase information fluctuate is relatively stable. Figure 9b shows the percentage
of amplitude and phase crowding count, where the percentage of amplitude information increase
slowly from the sixth person and phase from the ninth person. Thus, the phase information is more
reliable and sensitive to environmental changes and can detect more people.
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Figure 9. Comparison of amplitude and phase. (a) Comparison of mean in eigenvalue; (b) the
relationship between percentage and the number of people.

4.3. Impact of Dilatation Coefficient

The dilatation coefficient is a scaling factor, which used to expand the percentage. We random
choose integer 0–20 as scale factor, and this factor is not affected by the environmental change. Figure 10
shows the impact of dilatation coefficient. It can be seen that the percentage increases with the growth
of dilatation coefficient, when the matrix resolution R is constant. Among them, the percentage reveals
the relationship between the number of people and CSI variations. Although there is great difference
in the percentage when the number of people is different, it would not induce detection errors.
Figure 10a,b shows the variation on the percentage of amplitude and phase (under different dilatation
coefficient D), respectively.
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Figure 10. The impact on dilatation coefficient. (a) amplitude; (b) phase.

When D = 0, the percentage remains constant with the increase in the number of people, since
each column has only one non-zero element before dilatation. When D = 20, the percentage not
only keeps constant, but tends to 100%. As such, the dilatation coefficient D = 20 is the maximum
scale factor in this paper. Thus, if D is excessively either high or low, then it will affect the detection
results. However, when D is equal to 5, 10 and 15, although there exists a monotone increase between
percentage and number of people, the curve track is different. Therefore, the different dilation
coefficients will bring different experimental results. Many experimental results show that D = 10 is
optimal value selection. Therefore, in our work, D = 10 is set as the dilation coefficient.
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4.4. Comparison with Existing Approaches

Table 1 compares the number of people identified by FCC system with our method. The percentage
is used to indicate the number of people in the sensing area, and The percentage is saturated in the table.
In addition, it is worth noting that the comparison result is performed in the same environment and
the same setting conditions (i.e., same position of transmitters and receivers, same volunteers and
equipment) [29]. For phase information, the percentage reached saturation of our method from the
seventh person, which FCC system from the fourth person. The percentage reached saturation means
that the method can detect so many people at most. In other words, although the percentage increases
as the number of moving people grows, it would be saturated when the crowd density reaches a certain
threshold. Therefore, for the percentage at saturation, our method is 42% higher than the FCC system,
with three more people identified. A similar case occurs at the amplitude.

Table 1. Comparison FCC with our method amplitude or phase.

Method Identified Number of People Percentage

Amplitude Phase Amplitude Phase

FCC 5 4 52% 43%
Our method 8 7 92% 85%

5. Conclusions

Crowd counting plays a key role in many applications, but existing counting methods usually
require specialized hardware deployment and strict use of conditions which hinder their wide
deployment. Therefore, a Device-Free Indoor people-counting Method based on Channel Status
Information is proposed in this paper. The experimental results show that a monotonic relationship lies
between the CSI variations and crowd size in indoor environments (i.e., laboratory, corridor and office).
Meanwhile, from the similarities and differences of amplitude and phase changes that CSI phase has
higher detection accuracy and sensitivity. Comparing the proposed method with FCC systems in the
same experimental environment, it can be observed that the proposed method can detect more people
and have higher counting accuracy, regardless of either the amplitude or phase covariance matrix as
the feature vector. In the next step, a method should be proposed to accurately estimate the population
in the special environment with more people. Moreover, the more accurate method will be studied
when the target has different speeds.
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