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Abstract: Nonylphenol (NP) is an ultimate degradation product of nonylphenol 

polyethoxylates (NPE) that is primarily used in cleaning and industrial processes. Its 

widespread use has led to the wide existence of NP in various environmental matrices, 

such as water, sediment, air and soil. NP can be decreased by biodegradation through the 

action of microorganisms under aerobic or anaerobic conditions. Half-lives of biodegradation 

ranged from a few days to almost one hundred days. The degradation rate for NP was 

influenced by temperature, pH and additions of yeast extracts, surfactants, aluminum 

sulfate, acetate, pyruvate, lactate, manganese dioxide, ferric chloride, sodium chloride, 

hydrogen peroxide, heavy metals, and phthalic acid esters. Although NP is present at low 

concentrations in the environment, as an endocrine disruptor the risks of long-term 

exposure to low concentrations remain largely unknown. This paper reviews the occurrence 

of NP in the environment and its aerobic and anaerobic biodegradation in natural 

environments and sewage treatment plants, which is essential for assessing the potential 

risk associated with low level exposure to NP and other endocrine disruptors. 
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1. Introduction 

Since the early 1990s, a lot of research has been performed concerning the endocrine disruptors 

which are widespread in the environment.  Previous studies have demonstrated that nonylphenol (NP) 

is one of the endocrine disruptors, and many studies have shown that NP can exert adverse effects to 

an ecosystem.  

NP is usually reacted to produce nonylphenol polyethoxylates (NPEs). NPEs are mainly used in a 

number of industrial processes and products, including cleaners, detergents and plastics. Annual world 

production of NPEs was about 520,000 tons in 1995, and the demand is increasing annually. In China, 

the production of NPEs is about 50,000 tons per year, and most enters into the aquatic environment [1]. 

The wide variety in use makes products containing NPEs potential sources of diffuse emissions of 

NPEs and NP. NPEs can biodegrade into NPs in sewage treatment works or in the environment. NP is 

persistent, lipophilic and tends to bioaccumulate more than the parent compounds [2,3]. Due to the 

endocrine potential of NP, the “Oslo and Paris Commission for the Protection of the Marine 

Environment of the north-east Atlantic” called for phasing out the use of NPEs in domestic cleaning 

agents by 1995 and in industrial cleaning agents by 2000. Following these recommendations, many 

countries, such as Sweden, Belgium, Great Britain, Germany, Holland, etc., have drastically limited 

the use of NPEs. Switzerland has completely banned the use of these substances [4]. In 2006, the 

U.S. Environmental Protection Agency (EPA) released final aquatic life ambient water quality criteria 

for NP, which recommends NP concentrations in both freshwater (28 μg/L, acute; 6.6 μg/L, chronic) 

and saltwater (7.0 μg/L, acute; 1.7 μg/L chronic). In Canada and Japan the use and production of NPEs 

are strictly monitored. But in many developing countries, such as China and India, no schedule was 

made to decrease the use of NP step by step. Meanwhile, the production of NPEs in these countries 

was increased annually.  

2. Occurrence of Nonylphenol in the Environment 

NP is a compound which has numerous isomers. The side chain has nine carbons and can be 

attached to phenol at different points on the ring, thus producing different isomers. 4-NP is the most 

common commercial forms of NP, which is often used in experimentation and the analysis [5,6]. At 

room temperature, NP is a pale yellow liquid with an approximate molecular weight of 215 to  

220 g/mol and a specific gravity of 0.953 g/mL at 20 °C. It has a dissociation constant (pKa) of  

10.7 ± 1.0 and an Octanol-Water Partition Coefficient (log Kow) between 3.8 and 4.8, and exhibits 

both pH- and temperature-dependent solubility, showing values of 6,350 μg/L at pH 5 and 25 °C [7].  

NP is the biological breakdown products of widely used nonionic surfactant, NPEs, which is directly 

discharged into the environment. NP has been widely found in the environment: in water, sediment, air, 

soil, aquatic organisms and even human food. 
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2.1. Water and Sediment 

2.1.1. Surface Water and Sediment 

Generally, NP occurs in the aquatic environment with concentrations varying widely in surface 

water from tens of ng/L [8,9] to dozens of mg/L [10]. In sediment, NP concentrations were higher than 

that of surface water. Table 1 shows the occurrence and distribution of NP in surface water and 

sediment in many countries. Because of the implementation of the European Directive 2003/53/EC, 

NP concentrations in European countries were much lower than in Asia. 

Duong C.N. et al. [11] estimated the occurrence and distribution of NP in Korea and seven other 

Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia.  

The results showed that the NP concentrations in samples of most Asian countries were at a higher 

level in comparison to those reported in European countries, America and Japan. 

The domestic and industrial wastewater produced, as well as surface runoff, could possibly be 

sources of NP in the aquatic environment. The distribution and characteristics of pollution sources 

along the river affected the spatial variation of NP [1]. There was a direct relationship between 

concentrations of NP and the presence of urban or industrial activities near the sampling point [12]. 

Inadequately treated domestic wastewater caused high concentrations of NP in aquatic environment. 

Concentrations in the Kaoping River’s polluted tributaries were higher due to inadequate wastewater 

treatment in these regions [13], which caused high risk downstream of the river. The concentrations of 

NP in the Jialu River ranged from 75.2 to 1520 ng/L. Zhengzhou city is regarded as the main discharge 

source to this river as the annual discharge of NP from its urban zone to the river was 726 kg [14]. All 

of these results demonstrated that even a small river without adequately treated domestic wastewater 

could cause high mass loadings of NP and high risk [13]. In addition, many other factors affect the 

variation of NP in surface water, such as temperature, flow rate, and biodegradation etc. Temperature 

was the key factor affecting the seasonal variation of NP in water and suspended particles. In Seine 

River Estuary, NP maximum levels in the dissolved phase and in the suspended particulate matter were 

observed during winter periods while significant decreases were observed during spring and autumn 

periods [9]. These declines could be ascribed to maximum biological activities during these seasons. 

However, in terms of most water and suspended particles samples in Lanzhou Reach of Yellow River, 

concentrations were higher in warmer seasons than in colder seasons [1]. The higher NP 

concentrations in the warm season confirm the relationship between NP contamination and sewage 

discharge into the surface water, because more detergents, showers with shower cream, and plastic 

ware were used in the warm season compared to the cold one [15]. As to the flow rate, concentrations 

of NP in the water’s low flow period were higher than in its high flow period due to a low dilution  

factor [13,16]. 

Due to its hydrophobic properties, NP in surface water tends to be absorbed by sediment particles, 

which caused a preferential accumulation in sediments [8]. The reported sedimentary concentrations of 

NP were from a few μg/kg dry weight (dw) up to several hundred mg/kg dw (Table 1). The most 

contaminated sediment was found at Lake Donghu, China in 2003 [15]. NP was found at the highest 

concentration at 119,100 μg/kg dw. Similar circumstances were observed in Wuhan urban lakes [17] 

and Pearl River of China [18,19]. In Pearl River of China some researchers found there is a positive 
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correlation between NP and total organic carbon (TOC), which indicated that sedimentary organic 

carbon (SOC) is a key factor in controlling the distributions of the endocrine disruptors [18,19]. 

Nowadays even in some European areas the NP concentrations in sediment were very high. For 

example, in the Danube River maximum sediment concentrations were 2,830 μg/kg dw for 

nonylphenol [20]. Table 1 shows the NP concentrations in samples of some countries in recent years. 

Generally speaking, the NP concentrations in sediment were at a higher level in developing countries 

than in developed countries.  

High NP accumulation made the sediments a long-term pollutant sink and reservoir. The adsorbed 

compounds can be released into the water phase and become source of contaminants when hydraulic 

regimes of rivers change. However, De Weert et al. [21] thought that NP in the water phase was more 

available for biodegradation than in sediments. When the rate of biodegradation in the water is higher 

than the rate of desorption, NP is generally biodegraded in the sediment-water interphase and will not 

reach the bulk water, which may result in a limited hazard for the organisms in the aquatic 

environment. The effects of changing conditions on desorption and biodegradation processes are 

essential for adequate prediction of the fate of pollutants and the ecological effects of  

polluted sediments. 

Table 1. Nonylphenol (NP) levels in surface water and sediment samples. 

NP levels 

Location Detected time ReferenceSurface water  

(μg/L) 

Sediment 

(μg/kg) 

0.034–0.599 38.4–863.0 Lanzhou Reach of Yellow River, China 
July and 

November 2004 
[1] 

NA-0.53 LOD-79 Llobregat basin, Spain 2005–2006 [8] 

0.112 266 Thermaiko Gulf, Greece  [22] 

0.227 - Loudias River, Greece  [22] 

<LOD-310 - Kaoping River and its tributaries, Taiwan 
July 2004–

December 2005 
[13] 

0.075–1.520 - Jialu River, China September 2007 [14] 

0.266 ± 0.028 - Yeongsan and Seomjin rivers, Southern Korea 2008 [11] 

0.043 ± 0.005 - 
Ton River in Souan Mone, Pear Lart and Park 

Ton, Laos 
2008 [11] 

< LOD - Siem Reap River, Chong Srok area, Cambodia 2008 [11] 

2.097 ± 0.212 - Long Xuyen city and nearby area, Vietnam 2008 [11] 

0.372 ± 0.040 - Fenhe River, China 2008 [11] 

0.039 ± 0.005 - Cikamasan, Cisarua, Indonesia 2008 [11] 

0.918 ± 0.103 - Khong River, Thailand 2008 [11] 

0.814 ± 0.089 - Tuaran, Salut River area, Malaysia 2008 [11] 

<0.029–0.195 - Glatt River, Switzerland September 2006 [23] 

1.94–32.85 3,540–32,430 Wuhan urban lakes, China October 2005 [17] 

<0.1–1.4 44–567 Rieti district, Italy 2002, 2003 [12] 

0–0.24 - Danube River 
August–

September 2007 
[24] 

0–1.40 - Tributaries of Danube River 
August–

September 2007 
[24] 
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Table 1. Cont. 

NP levels 

Location Detect time ReferenceSurface water  

(μg/L) 

Sediment 

(μg/kg) 

- <20–2,830 Danube River 2007 [20] 

<0.029–0.233 - Ria de Aveiro, Portugal August 2006 [25] 

LOD-0.015 LOD-1,750 
Great Lakes coastal wetland, Cootes Paradise, 

Canada 
2001, 2002 [26] 

75.2–179.6 
5,460–

119,100 
Lake Donghu, China April 2003 [15] 

0.036–33.231 - Pearl River Delta, China 2005, 2006 [10] 

0.152–13.757 - Thessaloniki, Greece 2005–2006 [27] 

0.015–0.386 - Seine River Estuary, France 2002–2004 [9] 

<LOD-0.770 - Hessisches Ried region, Germany 2003–2006 [28] 

<LOD-0.511 - Donggang River, Taiwan 2002 [16] 

0.1–0.5 75–340 Cuyahoga River, Ohio, USA  [29] 

<0.210 <350 Minnesota lakes, USA 2008 [30] 

0.068–0.326 - Glatt River, Switzerland 2004 [31] 

- 107–16,198 Pearl River system, China 2006–2007 [18] 

- 13–225 Bay of Cadiz, Spain 2002 [32] 

- 31–21,885 Pearl River Delta, China 2006–2007 [19] 

 3.1 Dianchi Lake, China  [33] 

 <LOD-1,364 Upper Danube River 2006 [34] 

 47–192 Venice lagoon, Italy 2001–2002 [35] 

LOD: Detection limit. NA: not analyzed. 

2.1.2. Groundwater 

Groundwater is of special interest because it makes up about twenty percent of the world’s fresh 

water supply and it is extraordinarily vulnerable to contamination by a variety of contaminants due to 

urban activities [36]. Micropollutants may enter the ground water nearly un-attenuated by bank 

filtration of affected surface waters or by infiltration or artificial recharge of treated wastewater into 

groundwater [37]. Contamination of groundwater is directly linked to the transport of the pollutant 

within the soil column supporting the advective and diffusional flow system, the geochemistry of the 

groundwater, and the overall groundwater flow [38]. 

Generally speaking, concentrations of NP in the groundwater were very low. In some area NP was 

not detected [38]. When NP was used as one of indicators for assessing anthropogenic impact on urban 

surface and groundwater in the cities of Halle/Saale and Leipzig (Germany), concentrations of NP 

were observed about 100 ng/L [39]. Loos R. et al. [37] collected and analyzed 164 individual 

groundwater samples from 23 European Countries. NP was found in 11% of the samples (with a LOD 

of 30 ng/L), with a maximum concentration of 3.8 μg/L, exceeding the European groundwater quality 

standard for pesticides of 0.1 μg/L for several samples. In Austria, the most abundant industrial 

chemicals in groundwater samples were NP, occurring in about half of the samples. The maximum 

concentration of NP was 1,500 ng/L, and the 90th percentile of NP was 424 ng/L [40]. The NP 

pollution of groundwater may threaten human and ecosystem health. 
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2.1.3. Drinking Water 

Recently, drinking water safety has received significant attention. Contaminants, such as NP, in 

drinking water might pose health risks to some residents. NP were detected in bottled water with the 

concentration of about 7.9 ng/L [41]. Li X. et al. [42] investigated the 4-NP level in tap water in 

Guangzhou (China) using gas chromatography–mass spectrometry with negative chemical ionization. 

Five of the tap water samples from six drinking water plants were found to contain 4-NP both in June 

and December. The highest concentration in tap water for 4-NP was 1,987 ng/L. In Chongqing, 

another major city of southwestern China, the 4-NP removal rate by the water treatment process varied 

in a range from 62% to 94%, resulting in a considerably high residual 4-NP concentration in drinking 

water in July (0.1–2.7 μg/L) [43]. Although the daily intake values of 4-NP for a human is much lower 

than their tolerable daily intake (TDI) values, which are 5 μg/kg body weight for NP [42], more 

attention should be paid to the ecological risk. 

2.1.4. Wastewater Treatment Plants 

NP are the most abundant compounds in raw wastewater as well as in effluents from all the 

treatment stages of sewage treatment plants. In influent wastewater, concentrations of NP ranging from 

0.08 to 96.4 μg/L [44–49] have been reported by investigators. Biodegradation was the main removal 

pathway of NP, as it was more effective in removing NP from the aqueous phase than physical 

treatment [50]. A wide range of microorganisms were involved in NP biodegradation via different 

degradation pathways, which reduced the possible risk of NP in the environment under aerobic 

conditions [51]. Removal rates of NP ranging from 13.6 to >99% have been reported in  

literature [50,52–54]. Generally, the elimination efficiency varied between 73% and 92% [46]. In the 

European Union Wastewater Treatment Plants (WWTPs) 4-NP has shown remarkable decreasing 

influent and effluent concentrations since the implementation of Directive 2003/53/EC [46].  

In a wastewater treatment plant many factors can influence the removal of NP, such as influent load, 

water quality of influents, plant configurations, hydraulic residence time (HRT), sludge retention time 

(SRT), biomass characteristics and the environmental conditions [50,52,53,55,56]. Longer HRT or 

SRT and greater microbial activity appear to have a positive influence on the ability of the activated 

sludge system to eliminate NP [50,57]. At aerobic conditions the NP degradation potential was 

affected by changes in pH value or temperature, and by the addition of yeast extract, aluminum sulfate, 

hydrogen peroxide or surfactant [58]. Nie et al. thought that warm temperature and a high MLSS 

concentration would benefit the removal of NP from wastewater in the Anaerobic/Anoxic/Oxic 

(A/A/O) bioreactor [59]. 

During wastewater treatment, NP accumulated in sewage sludge at a concentration of several 

hundred mg/kg [48,60,61]. Because NP may be highly toxic to organisms, further research is needed to 

evaluate their degradability and set up disposal procedures to minimize the environmental impact 

produced by the use of sludge for agricultural purposes [48]. 
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2.2. Air 

The occurrence of NP in the air was ubiquitous in urban, remote, industrialized, coastal regions, and 

even in the central part of the North Sea (Table 2). NP is not produced naturally so their presence in 

the environment is the consequence of anthropogenic activity [62]. As NP present short atmospheric 

life they are not considered as environmentally persistent or subjected to significant long-range transport. 

Wind direction did not show significant influence on NP concentration. Therefore the atmospheric NP 

originated from local sources [63]. For this reason, the concentration of NP was higher in a densely 

populated and more polluted urban area [64] than remote area [65]. As a semivolatile organic 

compound, NP can vaporize into atmosphere from wastewater discharges, wastewater treatment plant 

effluents (liquid and sludge) or polluted surface waters [62,63]. The NP occurrence in the atmosphere 

may be an important human and ecosystem health issue in the world [64]. 

Table 2. NP levels in air. 

NP levels (ng/m3) 
Location Detected time Reference

Gas Aerosol 

19.2 (1.5–69) 6.1 (0.1–14) Hudson River Estuary, USA 

June–October, 1998 [64] 10.2 (0.9–56) 9.8 (0.3–51) Sandy Hook, USA 

2.5 (0.2–8.1) 5.6 (1.8–23) Liberty Science Center, USA 

6.9 (nd-56) 5.4 (0.067–51) Sandy Hook, USA 

June–December 1998 [66] 2.6 (nd-17) 3.8 (0.23–23) Liberty Science Center, USA 

13 (0.13–81) 0.55 (0.020–6.4) New Brunswick, USA 

1.60–16.5 - Urban site of Thessaloniki, Greece January–February 2007 [63] 

0.15–1.0 0.0017–0.117 NE-Bavaria, Germany May–November 2001 [65] 

0.22 (0.055–0.42) 0.040 (0.010–0.12) GKSS Research Centre, Germany - 

[67] 0.056 (0.029–

0.11) 
0.010 (0.005–0.017) North Sea - 

About 0.01–0.1 - North Sea February–March 2004 [68] 

The atmospheric concentration of NP showed declining trends from land to the open sea, suggesting 

that the atmosphere is a significant pathway for the transport of alkylphenols in the environment [67]. 

Sea could be an important sink for the NP, and might be as a potential source for the occurrences of 

NP in the oceans and remote area [68]. In the winter, atmospheric deposition was dominant. However 

in the warm seasons, re-volatilization might happen [68]. The similar seasonal trends were observed in 

the lower Hudson River Estuary [66]. At all the sampling sites, gas-phase NP concentrations were 

significantly higher during the summer (June–September) than during the fall and early winter 

(October–December). Temperature might be a critical factor contributing to the seasonal trends of NP 

in atmosphere.  

2.3. Soil 

NP can be introduced into soils in various ways, for example from atmospheric deposition, from 

soil amendment with sewage sludge, and from wastewater for irrigation of agricultural land [69]. 

During wastewater treatment, large quantities of NP can be quickly sorbed by the organic rich solid 
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phase and eventually concentrated in biosolids with levels from a few mg/kg up to several  

thousand mg/kg [70,71]. Biosolids are often used as fertilizer on agricultural soils and additionally it 

improves soil structure and aids the recycling of nutrients and organic matter [72]. NP could be 

introduced to soils via land application of biosolids, potentially leading to accumulation in soils and 

crops. NP was detected at μg/kg levels in the biosolids-amended soils [73] and the wastewater irrigated 

soils [74].  

Although NP is capable of being leached from soil, its short half-life means that its passage from 

soil to freshwater will be low [75]. Previous studies showed that no NP will accumulate over time and 

plant uptake or water quality impairment will be minimal [75–77]. This suggests that NP in the soils 

most probably pose very low risks to the soil and freshwater ecosystems and even human health [74,75]. 

3. Biodegradation of Nonylphenol in the Environment 

NP can be decreased by biodegradation in the water, sediment and soils through the action of 

microorganisms. In the Jialu River, about 23.7% of total decrease in NP concentration was caused by 

biodegradation [14]. As there are many chemical and environmental factors which influence 

biodegradation of NP, half-lives (t1/2) for NP aerobic degradation in sewage sludge and sediments 

ranged from 1.1 to 99.0 days [78–80]. Aerobic degradation rate for NP was enhanced by shaking, 

increased temperature and the addition of yeast extract (5 mg/L) and surfactants such as brij 30 or  

brij 35 [78–80]. The addition of aluminum sulfate, hydrogen peroxide, Pb, Cd, Cu, Zn, phthalic acid 

esters (PAEs), and NaCl inhibited NP degradation [78,80]. Reduced levels of ammonium, phosphate, 

and sulfate also delayed the aerobic degradation rate for NP [79]. And the optimal pH value for NP 

biodegradation was 7.0 [78]. Biodegradation ability was also related to light intensity in some 

microorganisms, such as C. vulgaris [81].  

NP degradation under anaerobic conditions has only recently been demonstrated. Half-lives of 

anaerobic degradation ranged from 23.9 to 69.3 days [82,83]. Anaerobic degradation rate for NP was 

enhanced by increasing temperature and the addition of yeast extract or surfactants such as brij 30 or 

brij 35. The addition of aluminum sulfate, acetate, pyruvate, lactate, manganese dioxide, ferric chloride, 

sodium chloride, heavy metals, and phthalic acid esters inhibit the degradation rate. The  

high-to-low order of degradation rates was: sulfate-reducing conditions > methanogenic conditions > 

nitrate-reducing conditions [82,83]. 

Upon entering soil, NP can undergo a number of reactions (e.g., sorption, biodegradation, leaching, 

plant uptake) that ultimately control its fate and potential environmental hazard [75]. The concentrations 

of NP sharply declined with increasing soil depth, indicating limited soil leaching of this compound [73]. 

Previous studies showed that different NP isomers exhibited different degradation rates, but only 

minimal amounts of all isomers persisted after 45 d [76,84]. Das and Xia found that isomers with  

a-methyl-a-propyl structure transformed significantly slower than those with less branched tertiary  

a-carbon and those with secondary a-carbon [70]. The main factors controlling the degradation and the 

rate of degradation are initial concentration of NP, soil parameters, environmental conditions, as well 

as agricultural practices [84,85]. Trocme et al. showed that NP degraded rapidly during incubation at 

low concentrations, but was more persistent at higher concentrations [86]. Appropriate pH value, 

temperature and the aeration status in soils contribute to increase microbial activity, and consequently 
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enhance NP degradation. The addition of different substrates such as yeast extract, compost, or brij 35 

also changed the microbial community and thus affected NP degradation in soil [87]. Some treatments, 

such as sludge centrifugation and lime stabilization, decrease the rate of mineralization and 

significantly lower degradation [85]. 

During recent years, a lot of research has been performed concerning the molecular mechanism for 

degradation of nonylphenol by a number of different strains. Understanding in more detail the 

molecular events in degradation of nonylphenol were illuminated from two different pathways.  

The ring cleavage pathway was elucidated through gene cloning and biochemical studies [88,89], 

which involves two critical steps. First, the aromatic ring was monohydroxylated by a multicomponent 

phenol hydroxylase at the ortho position. Then aromatic ring was cleaved either by catechol  

1,2-dioxygenase (C12O) (which is responsible for the ortho-pathway) or catechol 2,3-dioxygenase 

(C23O) (which is responsible for the meta-pathway). Zhang et al. [88] investigated the changes of 

possible key catabolic genes during the degradation of NP in natural water microcosms and found that 

the copy number of catechol 2,3-dioxygenase (C23O) DNA increased significantly during NP 

degradation. This result suggested that meta-cleaving pathway might be involved in the degradation  

of NP natural water microcosms. However, Nguyen et al. [89] found that most of the isolated 

alkylphenol-degrading bacteria are able to degrade long-chain alkylphenols via multicomponent 

phenol hydroxylase and the ortho-cleavage pathway. The ipso-hydroxylation pathway was responsible 

for the removal of the alkyl chain from NP by Sphingomonas strains [90–96], in which NP isomers 

were initially hydroxylated at the ipso-position forming dienones, and subsequently the nonyl chain 

shifts to the oxygen atom in the introduced hydroxyl group to form alkoxyphenols, from which the 

alkyl moieties can be easily detached as alcohols by known mechanisms [95,97].  

4. Conclusions 

NP is a virtually ubiquitous contaminant in the environment. The occurrence of NP has been 

reported around the world in waters, sediment, airs and soils. It can be decreased by biodegradation in 

natural environments and sewage treatment plants through the action of microorganisms under aerobic 

or anaerobic conditions. Although NP is present at low concentrations, the risks of long-term exposure 

to low concentrations remain largely unknown. More research needs to be done to determine the 

potential human and environmental health risks posed by exposure to NP in the environment.  

References 

1. Xu, J.; Wang, P.; Guo, W.F.; Dong, J.X.; Wang, L.; Dai, S.G. Seasonal and spatial distribution of 

nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 2006, 65, 1445–1451. 

2. Ekelund, R.; Granmo, A.; Magnusson, K.; Berggren, M. Biodegradation of 4-nonylphenol in 

seawater and sediment. Environ. Pollut. 1993, 79, 59–61. 

3. Ahel, M.; Giger, W.; Koch, M. Behavior of Alkylphenol polyethoxylate surfactants in the aquatic 

environment. 1. Occurrence and transformation in sewage-treatment. Water Res. 1994, 28,  

1131–1142. 

4. Ferrara, F.; Fabietti, F.; Delise, M.; Bocca, A.P.; Funari, E. Alkylphenolic compounds in edible 

molluscs of the Adriatic Sea (Italy). Environ. Sci. Technol. 2001, 35, 3109–3112. 



Int. J. Mol. Sci. 2012, 13             

 

 

500

5. Giger, W.; Brunner, P.H.; Schaffner, C. 4-nonylphenol in sewage-sludge—Accumulation of toxic 

metabolites from nonionic surfactants. Science 1984, 225, 623–625. 

6. Sekela, M.; Brewer, R.; Moyle, G.; Tuominen, T. Occurrence of an environmental estrogen  

(4-nonylphenol) in sewage treatment plant effluent and the aquatic receiving environment.  

Water Sci. Technol. 1999, 39, 217–220. 

7. Ahel, M.; Giger, W. Aqueous solubility of alkylphenols and alkylphenol polyethoxylates. 

Chemosphere 1993, 26, 1461–1470. 

8. Brix, R.; Postigo, C.; Gonzalez, S.; Villagrasa, M.; Navarro, A.; Kuster, M.; de Alda, M.J.L.; 

Barcelo, D. Analysis and occurrence of alkylphenolic compounds and estrogens in a European 

river basin and an evaluation of their importance as priority pollutants. Anal. Bioanal. Chem. 2010, 

396, 1301–1309. 

9. Cailleaud, K.; Forget-Leray, J.; Souissi, S.; Lardy, S.; Augagneur, S.; Budzinski, H. Seasonal 

variation of hydrophobic organic contaminant concentrations in the water-column of the Seine 

Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoid, copepod). Part 2: 

Alkylphenol-polyethoxylates. Chemosphere 2007, 70, 281–287. 

10. Peng, X.Z.; Yu, Y.J.; Tang, C.M.; Tan, J.H.; Huang, Q.X.; Wang, Z.D. Occurrence of steroid 

estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water 

of the Pearl River Delta, South China. Sci. Total Environ. 2008, 397, 158–166. 

11. Duong, C.N.; Ra, J.S.; Cho, J.; Kim, S.D.; Choi, H.K.; Park, J.H.; Kim, K.W.; Inam, E.; Kim, S.D. 

Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. 

Chemosphere 2010, 78, 286–293. 

12. Vitali, M.; Ensabella, F.; Stella, D.; Guidotti, M. Nonylphenols in freshwaters of the hydrologic 

system of an Italian district: Association with human activities and evaluation of human exposure. 

Chemosphere 2004, 57, 1637–1647. 

13. Chen, T.C.; Yeh, Y.L. Ecological risk, mass loading, and occurrence of nonylphenol (NP), NP 

mono-, and diethoxylate in Kaoping River and its tributaries, Taiwan. Water Air Soil Poll. 2010, 

208, 209–220. 

14. Zhang, Y.Z.; Tang, C.Y.; Song, X.F.; Li, F.D. Behavior and fate of alkylphenols in surface water 

of the Jialu River, Henan Province, China. Chemosphere 2009, 77, 559–565. 

15. Xue, X.; Wu, F.; Zhang, X.; Deng, N. Occurrence of endocrine disrupting compounds in rivers 

and lakes of Wuhan City, China. Fresenius Environ. Bull. 2008, 17, 203–210. 

16. Shue, M.F.; Chen, F.A.; Chen, T.C. Total estrogenic activity and nonylphenol concentration in the 

Donggang River, Taiwan. Environ. Monit. Assess 2010, 168, 91–101. 

17. Wu, Z.B.; Zhang, Z.; Chen, S.P.; He, F.; Fu, G.P.; Liang, W. Nonylphenol and octylphenol in 

urban eutrophic lakes of the subtropical China. Fresenius Environ. Bull. 2007, 16, 227–234. 

18. Gong, J.; Chen, D.Y.; Yang, Y. Occurrence of endocrine-disrupting chemicals in riverine 

sediments from the Pearl River Delta, China. Mar. Pollut. Bull. 2011, 63, 556–563. 

19. Gong, J.; Yang, Y.; Chen, D.Y.; Ran, Y. Sequential ASE extraction of alkylphenols from 

sediments: Occurrence and environmental implications. J. Hazard. Mater. 2011, 192, 643–650. 

20. Micic, V.; Hofmann, T. Occurrence and behaviour of selected hydrophobic alkylphenolic 

compounds in the Danube River. Environ. Pollut. 2009, 157, 2759–2768. 



Int. J. Mol. Sci. 2012, 13             

 

 

501

21. De Weert, J.; Vinas, M.; Grotenhuis, T.; Rijnaarts, H.; Langenhoff, A. Aerobic nonylphenol 

degradation and nitro-nonylphenol formation by microbial cultures from sediments. Appl. 

Microbiol. Biotechnol. 2010, 86, 761–771. 

22. Arditsoglou, A.; Voutsa, D. Determination of phenolic and steroid endocrine disrupting compounds 

in environmental matrices. Environ. Sci. Pollut. Res. Int. 2008, 15, 228–236. 

23. Jonkers, N.; Kohler, H.P.E.; Dammshauser, A.; Giger, W. Mass flows of endocrine disruptors in 

the Glatt River during varying weather conditions. Environ. Sci. Pollut. Res. Int. 2009, 157,  

714–723. 

24. Loos, R.; Locoro, G.; Contini, S. Occurrence of polar organic contaminants in the dissolved water 

phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res. 2010, 

44, 2325–2335. 

25. Jonkers, N.; Sousa, A.; Galante-Oliveira, S.; Barroso, C.M.; Kohler, H.P.E.; Giger, W. Occurrence 

and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ. Sci. 

Pollut. Res. Int. 2010, 17, 834–843. 

26. Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J. Occurrence of 

alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Environ. 

Pollut. 2007, 147, 683–690. 

27. Arditsoglou, A.; Voutsa, D. Partitioning of endocrine disrupting compounds in inland waters and 

wastewaters discharged into the coastal area of Thessaloniki, Northern Greece. Environ. Sci. 

Pollut. Res. Int. 2010, 17, 529–538. 

28. Quednow, K.; Puttmann, W. Temporal concentration changes of DEET, TCEP, terbutryn, and 

nonylphenols in freshwater streams of Hesse, Germany: Possible influence of mandatory 

regulations and voluntary environmental agreements. Environ. Sci. Pollut. Res. Int. 2009, 16, 

630–640. 

29. Rice, C.P.; Isabelle, S.; Loyo-Rosales, J.E.; Edward, L.; Roger, T.; Laura, F. Alkylphenol and 

alkylphenol-ethoxylates in carp, water, and sediment from the Cuyahoga River, Ohio. Environ. 

Sci. Technol. 2003, 37, 3747–3754. 

30. Writer, J.H.; Brown, G.K.; Taylor, H.E.; Kiesling, R.L. Anthropogenic tracers, endocrine disrupting 

chemicals, and endocrine disruption in Minnesota lakes. Sci. Total Environ. 2010, 409, 100–111. 

31. Voutsa, D.; Schaffner, C.; Giger, W. Benzotriazoles, alkylphenols and bisphenol a in municipal 

wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. Int. 2006, 13, 333–341. 

32. Lara-Martin, P.A.; Gomez-Parra, A.; Barcelo, D.; Gonzalez-Mazo, E. Presence of surfactants and 

their degradation intermediates in sediment cores and grabs from the Cadiz Bay area. Environ. 

Pollut. 2006, 144, 483–491. 

33. Wang, B.; Zhao, S.; Wang, Y.; Yu, F. Analysis of six phenolic endocrine disrupting chemicals in 

surface water and sediment. Chromatographia 2011, 74, 297–306. 

34. Grund, S.; Schoenenberger, R.; Suter, M.J.F.; Giesy, J.P. The endocrine disrupting potential of 

sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and 

chemical analysis. Environ. Sci. Pollut. Res. Int. 2011, 18, 446–460. 

35. Pojana, G.; Jonkers, N.; Marcomini, A. Natural and synthetic endocrine disrupting compounds 

(EDCs) in water, sediment and biota of a coastal lagoon. Environ. Int. 2007, 33, 929–936. 



Int. J. Mol. Sci. 2012, 13             

 

 

502

36. Tubau, I.; Vazquez-Sune, E.; Carrera, J.; Gonzalez, S.; Petrovic, M.; de Alda, M.J.L.; Barcelo, D. 

Occurrence and fate of alkylphenol polyethoxylate degradation products and linear alkylbenzene 

sulfonate surfactants in urban ground water: Barcelona case study. J. Hydrol. 2010, 383, 102–110. 

37. Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; 

Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic 

persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. 

38. Hildebrandt, A.; Lacorte, S.; Barcelo, D. Assessment of priority pesticides, degradation products, 

and pesticide adjuvants in groundwaters and top soils from agricultural areas of the Ebro river 

basin. Anal. Bioanal. Chem. 2007, 387, 1459–1468. 

39. Strauch, G.; Moder, M.; Wennrich, R.; Osenbruck, K.; Glaser, H.R.; Schladitz, T.; Muller, C.; 

Schirmer, K.; Reinstorf, F.; Schirmer, M. Indicators for assessing anthropogenic impact on urban 

surface and groundwater. J. Soil Sediment 2008, 8, 23–33. 

40. Hohenblum, P.; Gans, O.; Moche, W.; Scharf, S.; Lorbeer, G. Monitoring of selected estrogenic 

hormones and industrial chemicals in groundwaters and surface waters in Austria. Sci. Total 

Environ. 2004, 333, 185–193. 

41. Amiridou, D. Alkylphenols and phthalates in bottled waters. J. Hazard. Mater. 2011, 185,  

281–286. 

42. Li, X.; Ying, G.G.; Su, H.C.; Yang, X.B.; Wang, L. Simultaneous determination and assessment 

of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. 

Int. 2010, 36, 557–562. 

43. Shao, B. Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues 

in the area of Chongqing, China. Arch. Environ. Contam. Toxicol. 2005, 48, 467–473. 

44. Nakada, N.; Tanishima, T.; Shinohara, H.; Kiri, K.; Takada, H. Pharmaceutical chemicals and 

endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge 

treatment. Water Res. 2006, 40, 3297–3303. 

45. Stasinakis, A.S.; Gatidou, G.; Mamais, D.; Thomaidis, N.S.; Lekkas, T.D. Occurrence and fate of 

endocrine disrupters in Greek sewage treatment plants. Water Res. 2008, 42, 1796–1804. 

46. Hohne, C.; Puttmann, W. Occurrence and temporal variations of the xenoestrogens bisphenol A, 

4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants. Environ. 

Sci. Pollut. Res. Int. 2008, 15, 405–416. 

47. Klecka, G.M. Occurrence of nonylphenol ethoxylates and their metabolites in municipal 

wastewater treatment plants and receiving waters. Water Environ. Res. 2010, 82, 447–454. 

48. Cespedes, R.; Lacorte, S.; Ginebreda, A.; Barceloa Occurrence and fate of alkylphenols and 

alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter 

River (Catalonia, NE Spain). Environ. Pollut. 2008, 153, 384–392. 

49. Fernandez, M.P.; Buchanan, I. An assessment of estrogenic organic contaminants in Canadian 

wastewaters. Sci. Total Environ. 2007, 373, 250–269. 

50. Zhou, H. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants 

of Beijing, China. Environ. Monit. Assess. 2010, 161, 107–121. 

51. De Weert, J. Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial 

cultures from sediments. Appl. Microbiol. Biotechnol. 2010, 86, 761–771. 



Int. J. Mol. Sci. 2012, 13             

 

 

503

52. Pothitou, P.; Voutsa, D. Endocrine disrupting compounds in municipal and industrial wastewater 

treatment plants in Northern Greece. Chemosphere 2008, 73, 1716–1723. 

53. Tan, B.L.L. Comprehensive study of endocrine disrupting compounds using grab and passive 

sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ. 

Int. 2007, 33, 654–669. 

54. Vogelsang, C.; Jantsch, T.G.; Tollefsen, K.E.; Liltved, H. Occurrence and removal of selected 

organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in 

Norway. Water Res. 2006, 40, 3559–3570. 

55. Cirja, M. Factors affecting the removal of organic micropollutants from wastewater in conventional 

treatment plants (CTP) and membrane bioreactors (MBR). Rev. Environ. Sci. Biotech. 2008, 7, 

61–78. 

56. Ying, G.G. Environmental fate of alkylphenols and alkylphenol ethoxylates—A review. Environ. 

Int. 2002, 28, 215–226. 

57. Johnson, A.C. Comparing steroid estrogen, and nonylphenol content across a range of European 

sewage plants with different treatment and management practices. Water Res. 2005, 39, 47–58. 

58. Chang, B.V.; Chiang, F.; Yuan, S.Y. Anaerobic degradation of nonylphenol in sludge. 

Chemosphere 2005, 59, 1415–1420. 

59. Nie, Y. Fate and seasonal variation of endocrine-disrupting chemicals in a sewage treatment plant 

with A/A/O process. Sep. Purif. Technol. 2011, 84, 9–15.  

60. Gonzalez, M.M.; Martin, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence and risk assessment 

of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional 

treatment processes. Sci. Total Environ. 2010, 408, 563–570. 

61. Lin, J.G.; Arunkumar, R.; Liu, C.H. Efficiency of supercritical fluid extraction for determining  

4-nonylphenol in municipal sewage sludge. J. Chromatogr. A 1999, 840, 71–79. 

62. Cincinelli, A.; Mandorlo, S.; Dickhut, R.M.; Lepri, L. Particulate organic compounds in the 

atmosphere surrounding an industrialised area of Prato (Italy). Atmos. Environ. 2003, 37,  

3125–3133. 

63. Salapasidou, M.; Samara, C.; Voutsa, D. Endocrine disrupting compounds in the atmosphere of 

the urban area of Thessaloniki, Greece. Atmos. Environ. 2011, 45, 3720–3729. 

64. Dachs, J.; van Ry, D.A.; Eisenreich, S.J. Occurrence of Estrogenic Nonylphenols in the Urban 

and Coastal Atmosphere of the Lower Hudson River Estuary. Environ. Sci. Technol. 1999, 33, 

2676–2679. 

65. Berkner, S.; Streck, G.; Herrmann, R. Development and validation of a method for determination 

of trace levels of alkylphenols and bisphenol A in atmospheric samples. Chemosphere 2004, 54, 

575–584. 

66. Van Ry, D.A.; Dachs, J.; Gigliotti, C.L.; Brunciak, P.A.; Nelson, E.D.; Eisenreich, S.J. 

Atmospheric seasonal trends and environmental fate of alkylphenols in the lower Hudson River 

estuary. Environ. Sci. Technol. 2000, 34, 2410–2417. 

67. Xie, Z.; Selzer, J.; Ebinghaus, R.; Caba, A.; Ruck, W. Development and validation of a method 

for the determination of trace alkylphenols and phthalates in the atmosphere. Anal. Chim. Acta 

2006, 565, 198–207. 



Int. J. Mol. Sci. 2012, 13             

 

 

504

68. Xie, Z.; Lakaschus, S.; Ebinghaus, R.; Caba, A.; Ruck, W. Atmospheric concentrations and  

air-sea exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the 

North Sea. Environ. Pollut. 2006, 142, 170–180. 

69. Gibson, R.; Duran-Alvarez, J.C.; Estrada, K.L.; Chavez, A.; Jimenez Cisneros, B. Accumulation 

and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils 

irrigated with wastewater in the Tula Valley, Mexico. Chemosphere 2010, 81, 1437–1445. 

70. Das, K.C.; Xia, K. Transformation of 4-nonylphenol isomers during biosolids composting. 

Chemosphere 2008, 70, 761–768. 

71. La Guardia, M.J.; Hale, R.C.; Harvey, E.; Mainor, T.M. Alkylphenol ethoxylate degradation 

products in land-applied sewage sludge (biosolids). Environ. Sci. Technol. 2001, 35, 4798–4804. 

72. Zhang, H.; Spiteller, M.; Guenther, K.; Boehmler, G.; Zuehlke, S. Degradation of a chiral 

nonylphenol isomer in two agricultural soils. Environ. Pollut. 2009, 157, 1904–1910. 

73. Xia, K.; Hundal, L.S.; Kumar, K.; Armbrust, K.; Cox, A.E.; Granato, T.C. Triclocarban, triclosan, 

polybrominated diphenyl ethers, and 4-nonylphenol in biosolids and in soil receiving 33-year 

biosolids application. Environ. Toxicol. Chem. 2010, 29, 597–605. 

74. Chen, F.; Ying, G.G.; Kong, L.X.; Wang, L.; Zhao, J.L.; Zhou, L.J.; Zhang, L.J. Distribution and 

accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils 

in Hebei, China. Environ. Pollut. 2011, 159, 1490–1498. 

75. Roberts, P.; Roberts, J.P.; Jones, D.L. Behaviour of the endocrine disrupting chemical 

nonylphenol in soil: Assessing the risk associated with spreading contaminated waste to land. Soil 

Biol. Biochem. 2006, 38, 1812–1822. 

76. Brown, S.; vin-Clarke, D.; Doubrava, M.; O’Connor, G. Fate of 4-nonylphenol in a biosolids 

amended soil. Chemosphere 2009, 75, 549–554. 

77. Petersen, S.O.; Henriksen, K.; Mortensen, G.K.; Krogh, P.H.; Brandt, K.K.; Sorensen, J.;  

Madsen, T.; Petersen, J.; Gron, C. Recycling of sewage sludge and household compost to arable 

land: Fate and effects of organic contaminants, and impact on soil fertility. Soil Till. Res. 2003, 72, 

139–152. 

78. Yuan, S.Y.; Yu, C.H.; Chang, B.V. Biodegradation of nonylphenol in river sediment. Environ. 

Pollut. 2004, 127, 425–430. 

79. Chang, B.V.; Chiang, F.; Yuan, S.Y. Biodegradation of nonylphenol in sewage sludge. 

Chemosphere 2005, 60, 1652–1659. 

80. Chang, B.V.; Liu, C.L.; Yuan, S.Y.; Cheng, C.Y.; Ding, W.H. Biodegradation of nonylphenol in 

mangrove sediment. Int. Biodeterior. Biodegrad. 2008, 61, 325–330. 

81. Gao, Q.T.; Wong, Y.S.; Tam, N.F.Y. Removal and biodegradation of nonylphenol by different 

Chlorella species. Mar. Pollut. Bull. 2011, 63, 445–451. 

82. Chang, B.V.; Chiang, F.; Yuan, S.Y. Anaerobic degradation of nonylphenol in sludge. 

Chemosphere 2005, 59, 1415–1420. 

83. Chang, B.V.; Yu, C.H.; Yuan, S.Y. Degradation of nonylphenol by anaerobic microorganisms 

from river sediment. Chemosphere 2004, 55, 493–500. 

84. Sjostrom, A.E.; Collins, C.D.; Smith, S.R.; Shaw, G. Degradation and plant uptake of 

nonylphenol (NP) and nonylphenol-12-ethoxylate (NP12EO) in four contrasting agricultural soils. 

Environ. Pollut. 2008, 156, 1284–1289. 



Int. J. Mol. Sci. 2012, 13             

 

 

505

85. Kouloumbos, V.N.; Scheffer, A.; Corvini, P.F.X. Impact of sewage sludge conditioning and 

dewatering on the fate of nonylphenol in sludge-amended soils. Water Res. 2008, 42, 3941–3951. 

86. Trocme, M.; Tarradellas, J.; Vedy, J.C. Biotoxicity and persistence of nonylphenol during 

incubation in a compost-sandstone mixture. Biol. Fert. Soils 1988, 5, 299–303. 

87. Chang, B.V.; Chiang, B.W.; Yuan, S.Y. Biodegradation of nonylphenol in soil. Chemosphere 

2007, 66, 1857–1862. 

88. Zhang, Y.; Sei, K.; Toyama, T.; Ike, M.; Zhang, J.; Yang, M.; Kamagata, Y. Changes of catabolic 

genes and microbial community structures during biodegradation of nonylphenol ethoxylates and 

nonylphenol in natural water microcosms. Biochem. Eng. J. 2008, 39, 288–296. 

89. Nguyen, N.T.; Lin, Y.W.; Huang, S.L. Analysis of bacterial degradation pathways for long-chain 

alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol 

dioxygenase genes. Bioresour. Technol. 2011, 102, 4232–4240. 

90. Corvini, P.F.X.; Meesters, R.J.W.; Schaffer, A.; Schroder, H.F.; Vinken, R.; Hollender, J. 

Degradation of a nonylphenol single isomer by Sphingomonas sp strain TTNP3 leads to a 

hydroxylation-induced migration product. Appl. Environ. Microbiol. 2004, 70, 6897–6900. 

91. Corvini, P.F.X.; Vinken, R.; Hommes, G.; Mundt, M.; Hollender, J.; Meesters, R.; Schroder, H.F.; 

Schmidt, B. Microbial degradation of a single branched isomer of nonylphenol by Sphingomonas 

TTNP3. Water Sci. Technol. 2004, 50, 189–194. 

92. Corvini, P.F.X.; Schaffer, A.; Schlosser, D. Microbial degradation of nonylphenol and other 

alkylphenols—Our evolving view. Appl. Microbiol. Biotechnol. 2006, 72, 223–243. 

93. Corvini, P.F.X.; Hollender, J.; Ji, R.; Schumacher, S.; Prell, J.; Hommes, G.; Priefer, U.; Vinken, R.; 

Schaffer, A. The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp strain 

TTNP3 involves a type II ipso-substitution mechanism. Appl. Microbiol. Biotechnol. 2006, 70, 

114–122. 

94. Corvini, P.F.X.; Mundt, M.; Schaeffer, A.; Schmidt, B. Contribution to the detection and 

identification of oxidation metabolites of nonylphenol in Sphingomonas sp Strain TTNP3. 

Biogegradation 2007, 18, 233–245. 

95. Gabriel, F.L.P.; Rentsch, D.; Giger, W.; Guenther, K. A novel metabolic pathway for degradation 

of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram: 

ipso-Hydroxylation and intramolecular rearrangement. J. Biol. Chem. 2005, 280, 15526–15533. 

96. Kohler, H.P.; Giger, W. ipso-Substitution—A novel pathway for microbial metabolism of 

endocrine-disrupting 4-nonylphenols, 4-alkoxyphenols, and bisphenol A. CHIMIA Int. J. Chem. 

2008, 62, 358–363. 

97. Staples, C.A.; Naylor, C.G.; Losey, B.S. C8- and C9-alkylphenols and ethoxylates: I. Identity, 

physical characterization, and biodegradation pathways analysis. Hum. Ecol. Risk Assess. 2008, 

14, 1007–1024. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


