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The time-dependent reproduction number, Rt, is a key metric used by epide-
miologists to assess the current state of an outbreak of an infectious disease.
This quantity is usually estimated using time-series observations on new
infections combined with assumptions about the distribution of the serial
interval of transmissions. Bayesian methods are often used with the new
cases data smoothed using a simple, but to some extent arbitrary, moving
average. This paper describes a new class of time-series models, estimated
by classical statistical methods, for tracking and forecasting the growth
rate of new cases and deaths. Very few assumptions are needed and those
that are made can be tested. Estimates of Rt, together with their standard
deviations, are obtained as a by-product.
1. Introduction
The degree of infectiousness of a disease is given by the basic reproduction
number, R0, defined as the number of infections that are expected to result from
a single infectious individual in a completely susceptible population. As an infec-
tion spreads, immunity starts to develop and for serious diseases, such as
coronavirus disease 2019 (COVID-19), social behaviour may change endogen-
ously, or may be modified, perhaps by the imposition of lockdown and social
distancing measures. The progress of an epidemic is then usually tracked by the
effective, or instantaneous, reproduction number, Rt, which is the number of
people in a population who get infected by an individual at any specific time
(e.g. [1–3]). Such tracking is of considerable importance for planning, but it
raises the question of whether estimating Rt is to be regarded as an end in itself
or as a means to an end, namely tracking and forecasting the number of new
cases, hospital admissions and deaths.

Harvey&Kattuman [4]—hereafterHK—developed a class of generalized logis-
tic (GL) time-series models for predicting future values of a variable which, when
cumulated, is subject to an unknown saturation level. These models are relevant
for many disciplines, but attention in HK was focused on applications for corona-
virus.1 Observations on the cumulative series are transformed to growth rates
and the logarithms of these growth rates are modelled with a time trend. Allowing
this trend to be timevarying introduces flexibility and enables the effects of changes
in policy and the environment to be tracked by filters for the level and slope.
The filters are functions of current and past observations implied by the model.
They can produce nowcasts of the current level of the incidence curve, together
with forecasts of its future direction. Estimation is by maximum likelihood (ML)
and goodness of fit can be assessed by standard statistical test procedures.

The methods used by epidemiologists to assess the current state of an infec-
tious disease use time-series observations on new infections, together with
information on the distribution of the serial interval of transmissions, sometimes
called the infection profile (e.g. [5–8]). A brief description of the method in [5] can
be found in appendix A. Bayesian methods are often used to combine the infor-
mation on the serial interval with the observations on new cases, often smoothed
by a simple, but to some extent arbitrary, moving average. These formulae
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effectively link estimates of Rt to the growth rate in new cases,
as do the more general formulae given in [1].

In ourapproach, estimates of the growth rate ofnewcases are
produced directly by the time-series model from the raw data.
The nowcasts and forecasts of Rt, together with the equivalent
of Bayesian credible intervals, therefore emerge as a by-product.
Theunderlyingassumptions are clearandare subject todiagnos-
tic tests, so estimates of Rt are implicitly validated. In contrast to
Rt, which is not observed directly, the accuracy of forecasts of
future observations can be assessed ex post, providing further
testing of the effectiveness of the model.

The HK model is reviewed in §2 and in §3 it is shown
how new cases growth rate estimates can be used to nowcast
Rt and make short-term predictions. The implicit weights in
the model-based filter are compared with the weights in the
simple moving average ratio estimators used by the Robert
Koch Institute, Germany (RKI). In §4, data from Germany
and Florida are used to illustrate how the model is able to
assess the importance of spikes in new cases and track
second waves. Section 5 concludes by suggesting that track-
ing an epidemic by methods dependent on Rt may be
neither necessary nor desirable: the focus should be on the
growth rates of new cases and deaths, together with their
predicted time path.
2. The dynamic Gompertz model and its
implementation

The model in HK uses data on the time series of the cumulat-
ive total, Yt, of a target series, such as confirmed cases of a
disease or deaths. HK show how the theory of GL growth
curves suggests observational models of the form

ln yt ¼ r lnYt�1 þ dþ gtþ 1t,

r � 1, g , 0, t ¼ 2, . . . , T, ð2:1Þ
where yt = ΔYt =Yt−Yt−1 is the daily change and εt is a
disturbance term. The model for the Gompertz curve is
obtained by setting ρ = 1, but subtracting lnYt−1 from both
sides gives a simple time trend regression for the logarithm
of the growth rate of the cumulated series, that is, lngt
where gt = yt/Yt−1 or ΔlnYt.

Remark 2.1. The growth curve for the ascending phase of an
epidemic proposed in [9] implies an observational equation
of the form (2.1) with γ = 0 and with ρ a deceleration par-
ameter in the range 0≤ ρ≤ 1; see also [7]. When ρ = 1 the
cumulative total grows exponentially. The introduction of a
time trend with γ < 0 gives sub-exponential growth.

Deterministic trends are too inflexible for most practical
time-series modelling. A stochastic trend may be introduced
into the equation for lngt and this extra flexibility allows ρ
to be set to 1. The resulting dynamic Gompertz model is

ln gt ¼ dt þ 1t, 1t � NIDð0, s2
1Þ, t ¼ 2, . . . ,T, ð2:2Þ

where2

dt ¼ dt�1 þ gt�1 þ ht, ht � NIDð0, s2
hÞ,

and gt ¼ gt�1 þ zt, zt � NIDð0, s2
zÞ,

9=
; ð2:3Þ
and the normally distributed and serially independent
irregular, level and slope disturbances, εt, ηt and ζt respectively,
are mutually independent. When s2

z is positive but s2
h ¼ 0,

the trend, δt, is an integrated random walk (IRW). It is this
form of the stochastic trend that turns out to be most useful
for tracking an epidemic because it is the movements in
slope γt which are crucial for that purpose. The key parameter
is then the signal–noise ratio, q ¼ s2

z=s
2
1. A deterministic

trend is obtained when q is zero. Other components, such as
day of the week effects, may be included in the right-hand
side of (2.2).

Stochastic trend models can be estimated using tech-
niques based on state-space models and the Kalman filter
(KF) [10,11]. Here the computations were performed using
the STAMP package3 [12]. The KF outputs the estimates
of the state vector (δt, γt)

0
. Estimates of the state at time t con-

ditional on information up to and including time t are
denoted (δt|t, γt|t)

0
and given by the contemporaneous

filter; the predictive filter, which outputs (δt+1|t, γt+1|t)
0
,

estimates the state at time t + 1 from the same information
set. It may sometimes be useful to review past movements
by the smoother, denoted (δt|T, γt|T)

0
, which is the esti-

mate of the state at time t based on all T observations.
Estimation of the unknown variance parameters is by ML.
Tests for normality and residual serial correlation are based
on the standardized innovations, that is, one-step-ahead
prediction errors, vt = lngt− δt|t−1, t = 3,…, T.

Figure 1 shows data for the logarithm of the growth rate
of the cumulated series of new cases of COVID-19 in England
from early November 2020 until 17 February 2021.4 The
model, which includes a day of the week component and a
signal–noise ratio set to q = 0.005, was fitted to observations
up to and including 4 February 2021. The bold line indicates
the smoothed estimates of the trend and, as will be shown in
the next section, it is the estimates of the trend and slope at
the end of the series that provide the information needed to
compute the nowcasts of Rt. The dashed line shows the fore-
casts from 5 February 2021 onwards. As can be seen these
two-week-ahead forecasts are successful in capturing the
trend and day of the week movements. Recursions for
making forecasts of the actual number of new cases, that is,
the y0ts, are given in HK. However, the emphasis in this article
is on nowcasting and forecasting of the growth rate of yt and
this only requires estimates of δt and γt.

Remark 2.2. When yt is small, it may be better to specify its
distribution, conditional on past values, as discrete. The
usual choice is the negative binomial. The way in which a
dynamic model may be constructed is set out in HK; software
can be found in [13].
3. Tracking R
A simple and transparent estimator of Rt is

bRk,t,t ¼
Pk�1

j¼0 yt�jPkþt�1
j¼t yt�j

¼
Pk�1

j¼0 yt�jPk�1
j¼0 yt�t�j

¼ DkYt

DkYt�t
, ð3:1Þ

where ΔkYt =Yt−Yt−k, k = 1, 2,…. The lag of τ reflects the
generation interval, which is the number of days that must
elapse before an infected person can transmit the disease.
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Figure 1. COVID-19 in England from early November 2020 until 17 February 2021. Trend from the fitted model is given by the bold line and the forecasts from
5 February 2021 are shown by dashes. The estimate of the trend and its slope on 4 February 2021 are δT|T =−5.433 and γT|T =−0.046, respectively.
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The length of the moving average, k, determines the degree of
smoothing; a value of k = 7 has the advantage of removing the
day of the week effect but at the cost of a slower response.
The rationale for bRk,t,t comes from [5]. In Germany, the
national figure used by RKI is based5 on setting τ = 4 and
k = 4 or 7, but with some prior nowcasting of the data as
described in [14].

A little algebraic manipulation shows

bRk,t,t ¼ 1þ tbgy,t ≃ expðtbgy,tÞ, ð3:2Þ

where

bgy,t ¼ 1
t

DkYt � DkYt�t

DkYt�t

is an implicit estimator of gy,t, the growth rate in yt, and the
exponential approximation applies when bgy,t is small. In a
dynamic Gompertz model, the growth rate of gt is tracked
by the filtered estimates of the slope, that is, γt|t, while the
growth rate itself is tracked by gt|t = expδt|t. Following the
continuous time argument6 leads to gy,t being estimated as

gy,tjt ¼ gtjt þ gtjt, t ¼ t0, . . . , T, ð3:3Þ

where t0 is the time at which the estimates are deemed to be
reasonably reliable. The nowcast of Rt suggested by equation
(3.2) with k = τ is

eRt,t ¼ 1þ tgy,tjt or eRe
t,t ¼ expðtgy,tjtÞ: ð3:4Þ

The RKI estimator for COVID-19 implies τ = 4.
A general formula linking Rt to gy,t is given in [1]. When
gy,t is estimated by (3.3), the expression is

eRM
t ¼ 1

Mð�gy,tjtÞ , ð3:5Þ

where M(.) is the moment-generating function of the serial
interval distribution, defined as the time between the onset
of symptoms in a primary case and the onset of symptoms
in secondary cases. When the distribution is degenerate, so
that all secondary infections occur after exactly τ days, eRM

t ¼
expðtgy,tjtÞ, which is the same as eRe

t,t. When the serial interval
has a gamma distribution with parameters a and b, implying
a mean of ab and a variance of ab2, eRM

t ¼ ð1þ bgy,tjtÞa. Keeping
the mean constant and letting b→ 0 confirms that eRM

t ¼
expðtgy,tjtÞ, where τ is the mean generation interval. Setting
a = b = 2, which is consistent with some of the estimates of
the mean and variance obtained for COVID-19, yields

eRM
t ¼ ð1þ 2gy,tjtÞ2 ¼ 1þ 4gy,tjt þ 4g2y,tjt,

so, when gy,t|t is small, eRM
t ≃ 1þ 4gy,tjt ¼ eR4,t. Finally, we note

the observation in [1, p. 602] that exp(τgy,t|t) is an upper bound
for eRM

t in equation (3.5).Overall it seems that, if a single formula
is to be adopted for COVID-19, eR4,t or eRe

4,t is not a bad choice.

3.1. Sampling variability of nowcasts
When q, the signal–noise ratio in the Gaussian IRW model, is
treated as known, the distribution of γt, conditional on cur-
rent and past observations, is normal with a mean γt|t and
a variance s2

g,tjt that are produced by the KF. The growth
rate of the incidence curve, gy,t, depends on gt as well as γt
but, as argued below, its contribution to the variability of
gy,t is dominated by that of γt. When the variability in gt is
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ignored, the probability that Rt exceeds 1, that is,
Prðgt . �gtjtÞ where gt|t is treated as fixed, can be obtained
directly from the conditional distribution of γt. This prob-
ability does not depend on which equation estimates Rt

from gy,t|t and it does not depend on τ.
When Rτ,t is defined as 1 + τgy,t, its distribution, again con-

ditional on current and past observations, is normalwithmean
1 + τgy,t|t and standard deviation (SD) τσγ,t|t. On the other
hand, the conditional distribution of Re

t,t is lognormal with
mean

EtðRe
t,tÞ ¼ expðtðgtjt þ gtjt þ

t

2

� �
s2
g,tjtÞÞ ð3:6Þ

and SD

SDtðRe
t,tÞ ¼ EtðRe

t,tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðexpt2s2

g,tjt � 1Þ
q

: ð3:7Þ

Note that expt 2s2
g,tjt � 1 ≃ t2s2

g,tjt, so, when Et(Rτ,t) is close to
1, SDtðRe

t,tÞ will be very close to the SDt(Rτ,t).
Why is the variability in gt|t ignored? From equation (2.2),

gt = expδt and, because δt is normal, gt is lognormal with
mean mg,tjt ¼ expðdtjt þ 0:5s2

d,tjtÞ and variance VarðgtÞ ¼ m2
g,tjt

ðexps2
d,tjt � 1Þ, where s2

d,tjt is the variance of δt. However, s2
d,tjt

is typically small so μg,t|t≃ expδt|t = gt|t and VarðgtÞ ≃
m2
g,tjts

2
d,tjt ≃ g2tjts

2
d,tjt. Now

Varðgy,tÞ ¼ VarðgtÞ þ VarðgtÞ þ 2Covðgt, gtÞ,
but, although s2

d,tjt is usually larger than s2
g,tjt, the former is

multiplied by g2tjt to get Var(gt), whereas VarðgtÞ ¼ s2
g,tjt;

note that s2
d,tjt itself does not depend on the value of gt|t.

Although gt|t can be high near the beginning of an epidemic,
it tends to fall quite rapidly and once the epidemic is underway
it rarely exceeds 0.05. The example of Florida, where the
second wave increases gt|t, shows that, even in this case,
Var(gt) remains negligible compared with Var(γt).

3.2. Predictions of R
Predictions of Rt in the dynamic Gompertz model can be
made from predictions of gy,t, that is,

gy,Tþ‘jT ¼ expdTþ‘jT þ gTþ‘jT
¼ expðdTjT þ gTjT‘Þ þ gTjT ,

‘ ¼ 1, 2, . . . , ð3:8Þ
where ℓ is the number of steps ahead.When gy,T|T is positive, so
any estimate of RT given by (3.5) is greater than 1, there is still a
saturation level for Yt so long as γT|T is negative; for example as
T→∞, eRe

t,Tþ‘jT ! expðtgTjTÞ. When γT|T is zero, the growth of
yt is exponential and in this case it is helpful to characterize
it by the doubling time, ln2/gy,T|T = 0.693 exp(− δT|T). When
γT|T is positive, as can happen at the start of a new wave,
predictions of gy,t should not be made from (3.8). However, it
may still be useful to quote the doubling time based on gy,T|T.

If, as in the previous sub-section, it can be assumed that gt
is relatively small, the predictive distribution of gy,T+ℓ, and
hence of RT+ℓ, is available because the conditional distri-
bution of γT+ℓ given observations up to and including time
T is Gaussian with mean γT+ℓ|T = γT|T and variance s2

Tþ‘jT ,
as produced by the predictive equations of the KF.

Remark 3.1. The ability to make predictions offers insight into
how to deal with reporting delay, as described in [15, pp. 3–4].
If the observation at time t actually relates to an eventℓ days ear-
lier, the currentRt is better estimated byanℓ-step-ahead forecast.
When γT|T is negative, this forecastwill be less than the nowcast.
3.3. Weights
The filtered estimates of gt and γt in the dynamic Gompertz
model, equation (2.2), are obtained by discounting past
observations, with the rate of discounting depending on the
signal–noise ratio, q. Weights implied by the KF and
smoother for estimated states in a linear model can be
obtained as output from the STAMP package, using a
method described in [16]. The forcing variable in the filter
is lngt and the weights assigned to it in the contemporaneous
filter are the weights for γt|t plus the weights for gt|t. When Yt

is much larger than yt, as will be the case when an epidemic
has been underway for some time, gt|t will be relatively small
and attention can be focused on γt|t. Then, if the weights for
the slope, γt|t, are denoted wj, j = 0, 1, 2,…,

gy,tjt ≃ gtjt ¼
Xt�2

j¼0

wjðln yt�j � lnYt�j�1Þ ≃
Xt�2

j¼0

wj ln yt�j, ð3:9Þ

where the last approximation follows because lnYt−j−1 is
assumed to be changing very slowly and

Pt�2
j¼0 wj ¼ 0. When

multiplied by τ, the weights in equation (3.9) feed directly
into the estimators ofRt implied by equation (3.4). In particular

bRe
t,t ¼

Yt�2

j¼0

ytwj

t�j ¼
Q

wj�0 y
twj

t�jQ
wj,0 y

twj

t�j

, ð3:10Þ

which is similar in form to (3.1) but with summations replaced
by products.

Figure 2 shows the weights for the slope produced when q
is 0.001 and 0.01. ML estimates of q are typically between these
values. Setting q = 0.005, which has the first four weights posi-
tive and the next 17 negative, is a reasonable default. A higher
value gives a faster response, which may be appropriate when
there is a sharp change in the environment, perhaps because of
a change in policy. However, it comes at the cost of making
nowcasts and forecasts less stable.

3.4. The early phase of an epidemic
Any modelling is very difficult at the start of an epidemic
because of the lack of data; see, for example, the remarks in
appendix 3 of [5]. In the dynamic trend model initializing
the KF in the absence of prior information is generally done
with a non-informative (diffuse) prior on the level and slope,
as in the STAMP package; alternatively they can be estimated
as unknown parameters. However, in the early part of an epi-
demic the growth is exponential or very close to it; see, for
example, the analysis of the 1918 outbreak of Spanish flu in
[17]. Thus, we could set γ0 = 0. The filter for δt, the level of
lngt, can have a prior distribution informed by knowledge
about the basic reproduction number, R0. A rough estimate
of lng0 is then given from bg0 ¼ ð1=btÞ ln bR0 or bg0 ¼ ðbR0 � 1Þ=bt.
Choosing a suitable variance for δ0 is more problematic.
4. Waves and spikes
After an epidemic has peaked, daily cases start to fall and the
concern shifts to the possibility of a second wave and the
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Figure 2. Weights assigned to lngt by the filter for the slope with (a) q = 0.001 and (b) q = 0.01.
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Figure 3. Rt for German new cases in June 2020.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210179

5

need to deal with outbreaks indicated by spikes in the data so
that they do not morph into waves. The monitoring of waves
and spikes raises different issues, primarily because a wave
applies to a whole nation or a relatively large geographical
unit, whereas a spike is localized.
4.1. Spikes
When national numbers are low, a localized outbreak can also
result in a jump in the national estimate of Rt. However, such a
jump does not indicate that there has been a sudden change in
the way the infection spreads and so has few implications for
overall policy. Figures for new cases in Germany show a sharp
increase towards the end of June 2020, caused by an outbreak
at a meat-processing factory in the Gütersloh area in Westpha-
lia. Estimates produced by RKI at the time showed a big
increase in Rt, accompanied by what seems to us to be a
rather narrow credible interval. Figure 3 compares the
model-based reproduction number estimate, eRe

4,t, with the
4-day and overlapping 7-day moving average estimates, bR4,t

and bR7,4,t. The bR4,t estimates are very erratic and seriously
affected by the failure to take account of the daily pattern. Esti-
mates for Sundays and Mondays are typically lower. The peak
in bR4,t has observations for Wednesday to Saturday in the
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Figure 4. Logarithm of the growth rate of the total number of confirmed cases in Florida, together with the logarithm of the growth rate of the fraction of positives
out of the total tested.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210179

6

numerator. Although bR7,4,t irons out some of the daily move-
ment, the estimate of Rt is still affected. The model-based eRe

4,t
evolves more smoothly. After June the data give no indication
of a sustained increase in new cases so the jump in estimates of
Rt, particularly bR4,t, can safely be classed as a spike.

The model was estimated using data from 25 March to 26
June 2020, using cases data sourced from the European Centre
for Disease Prevention and Control (ECDC) website.7 Estimates
obtained using RKI’s nowcast data are not very different.8 The
fit was good with very little evidence of residual serial corre-
lation; the Q(15) statistic is 9.58. A Gaussian distribution seems
a good approximation because the Bowman–Shenton test stat-
istic, which is asymptotically distributed as x22 under the null
hypothesis, is only 0.77. The estimate of q was 0.0026.

The SD of the conditional distribution of γt is 0.0276. Thus
the SD of Rt = 1 + 4γt is 0.110. For Re

4,t setting EtðRe
4,tÞ ¼ 1 gives

SDtðRe
4,tÞ ¼ 0:111, so the probability that it lies in the interval9

[0.895, 1.117] is 0.68. It makes little difference whether Rt is
taken to be normal or lognormal. As regards the contribution
of gt to the variability gy,t, the 26 June value of gT|T was only
0.0030 and SD(gT) was less than 1% of the SD of γT.
4.2. Waves
TheUS state of Florida, the thirdmost populous in the USAwith
a population of around 20 million, provides an example of a
second wave. A graph of daily new cases10 from early March
until 19 July 2020 shows a peak in early April followed by a
steady decline. This is similar to the pattern for Germany and
reflects the fact that Florida, like Germany, was in lockdown
during April 2020. After April restrictions in Florida were
eased there was a levelling out in May 2020, followed by a
sharp rise in June.

Figure 4 shows the logarithm of the growth rate of the
number of confirmed cases, deaths and fraction of positives,
starting 22 March 2020. (Before 22 March the data are very
erratic.) After May there was an increase in testing.
However, the growth rate in tests is roughly constant
from the end of May onwards and this shows up in
figure 4, where the logarithm of the growth in the pro-
portion of positives follows a similar path to that of the
logarithm of the growth in total cases. This suggests that
confirmed cases are still a good indicator of the path of
new infections.

Fitting the dynamic Gompertz model, with a daily com-
ponent, to data on confirmed cases from 22 March to 12
July 2020 gave residuals with very little residual serial corre-
lation as the Q(16) statistic was only 8.42. The Bowman–
Shenton test statistic was only 0.11 so a Gaussian distribution
cannot be rejected. Graphical confirmation for the good fit is
provided by figure 5.

The signal–noise estimate, q, was 0.0014. Figure 6 shows
the filtered estimates of gt and γt. At the beginning of June,
γt|t becomes positive and its sharp rise is accompanied by
an attendant rise in gt|t. The increase in γt|t continues until
the end of June, when it changes direction and gt|t peaks.
The implied time series of nowcasts of Rt follows directly
from their sum, gy,t|t. Thus eRe

4,t reaches 1.5 by the end of
June 2020 and then falls in July so that ultimately eRe

4,t ≃ 1:1.
The filtered estimates of gt and γt for confirmed cases in Flor-

ida are very different from those for Germany in that gt|t no
longer becomes negligible with time. Indeed for most of June
it is of a similar order of magnitude to γt|t. Nevertheless its con-
tribution to the variability of gy,t is still negligible. The SD of the
conditional distribution of γt is 0.0275 while that of δt is 0.1296,
translating into a SD of 0.0057 for gt. If the covariance term is
ignored, the SD of gy,t is 0.0281, which is only a little above the
SD of γt.

Re-estimating the model with another week of data has
γT|T down to −0.031 but the SD is little changed at 0.027.
The estimate of gT is 0.034, giving eRe

4,T ¼ 1:01. Finally estimat-
ing using data up to 12 August leaves γT|T virtually
unchanged but, because gT|T is down to 0.011, eRe

4,T is
below 1, with a value of 0.91.
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5. Conclusion
New time-series models are able to track the progress of an
epidemic by providing nowcasts and forecasts of the daily
number of new cases and deaths. Estimates and forecasts of
the instantaneous reproduction number Rt can be computed
as a by-product, using a formula that links it to the estimated
growth rate of new cases, based on assumptions made about
the serial interval distribution. The availability of the full con-
ditional distribution allows the variability of the estimates to
be assessed.
Current methods for tracking Rt do not pay due attention
to the time-series properties of the data, whereas the method
described in this paper is based on time-series techniques that
have been shown to be effective in a range of disciplines. The
dynamic response depends on a signal–noise ratio that can be
estimated from the data rather than being inferred from
knowledge about the serial interval of infections. An impor-
tant element in time-series methodology is diagnostic
checking and the fit of the model. We show how diagnostic
methods can be applied in the context of epidemics and in
doing so we raise questions about some of the assumptions,
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explicit or implicit, that are currently made in the estimation
of Rt. The ability of the model to track spikes and waves is
illustrated with COVID-19 data from Germany and Florida.

We stress again that computing Rt is a by-product of our
approach. Information on R0 could be used at the start of an
epidemic, but with a dynamic time-series model its impact
soon wears off. After that, calculations involving Rt play
no part in nowcasting and forecasting daily cases and
deaths.
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Endnotes
1

The models have been used as the basis for weekly trackers provid-
ing forecasts for regions and nations in the UK since the early part of
2021 (see https://www.niesr.ac.uk/latest-covid-19-tracker-0); and for
states in India since May 2021 (see https://www.jbs.cam.ac.uk/
covid-india). Past issues of both trackers are available on the
websites.
2

HK had a negative sign in front of γ in (2.1) and (2.2) because in a
growth curve the growth rate is always falling so it is more con-
venient to let γ be positive. This ceases to be the case once there are
second waves.
3

A fully documented R script to carry out the estimation will be avail-
able shortly. An R script with the essential code is presented in the
electronic supplementary material.
4

Sourced from: https://coronavirus.data.gov.uk/.
5

Erläuterung der Schätzung der zeitlich variierenden Reproduktions-
zahl R. Robert Koch Institute, 15 May 2020.
6

The continuous-time incidence curve is μ0(t) = g(t)μ(t), where μ(t) is
the growth curve and g(t) is its growth rate. Taking logarithms and
differentiating provides the rationale for our formula for gy,t|t; see
the discussion surrounding eqn 6.1 in HK.
7

Sourced from: https://www.ecdc.europa.eu/en/publications-data/
download-todays-data-geographic-distribution-covid-19-cases-
worldwide.
8

Sourced from: https://www.rki.de/DE/Content/InfAZ/N/Neuar
tiges_Coronavirus/Projekte_RKI/Nowcasting.html.
9

Since Rt, like γt, is a random variable this is not, strictly speaking, a
confidence interval. In a fully Bayesian framework, it would be called
a credible interval.
10

Data on Florida are sourced from: https://covidtracking.com/data.
Appendix A. Cori et al. [5] method for
estimating Rt
FollowingCori et al. [5], Thompson et al. [6] generate an estimate
of the current level of new cases, yt, that combines the estimate of
Rt with an estimate, Ltjt�1, of the previous level based on the
sum of new cases in the previous time period weighted by the
infectivity function, or infectious profile after infection, fj, j = 0,
1, 2,…. This estimate can be written Ltjt�1 ¼

Pt
j¼1 f jyt�j,

where
Pt

j¼t f j ¼ 1 with fj describing the serial distribution.
This distribution is based on prior knowledge, such as data col-
lected from household studies in the early phase of an infection.
The estimate ofRt is obtained byBayesianmethods. Cori et al. [5,
appendix 1] assume a Poisson distribution for yt and a (conju-
gate) gamma prior for Rt−1 with parameters a and b. The
posterior mean of Rt—its nowcast—is then

bR�
k,t ¼

aþPk�1
j¼0 yt�j

b�1 þPt�1
j¼1 Lt�jjt�j�1

¼ aþPk�1
j¼0 yt�j

b�1 þPt�1
j¼1

P j
i¼1 f jyt�i

¼ aþPk�1
j¼0 yt�j

b�1 þPt
j¼1 wjyt�j

, (A 1Þ

while the associated nowcast for the mean of new cases is

bmtjt ¼ bR�
k,tjtLtjt�1 ¼

aþPk�1
j¼0 yt�j

b�1 þPt
j¼1 wjyt�j

Xt

j¼1

f jyt�j:

It is proposed in [6] that a = 1 and b = 5 at the outset so that both
themean, ab, and SD, ab2, are set to 5.With no prior information
a = 1/b = 0.

The numerator in bR�
k,t provides an estimate of the level at

time t based on the last k observations. The value of k reflects
a trade-off between response and stability. The choice of
equal weights seems to be arbitrary. The weights in the
second term reflect the structure implied by the sometimes
imperfect knowledge of the distribution of the serial interval.

Cori et al. [5, appendix 2] suggest letting the summation
in the denominator of equation (A 1) start at j = τ, where τ is
the generation interval. Approximating the weights by a
simple moving average of length k and assuming no prior
information then gives equation (3.1), which is the formula
for the instantaneous reproduction number used by RKI.
The value of k may be set equal to the length of the serial
interval.

In our time-series approach, the lag structure depends
solely on the observations, yt, and the properties of the fitted
model. The weights in figure 2 are comparable with those
used to construct bR�

k,t in equation (A 1), except that they
are multiplicative in the implied estimator of Re

t . The
negative weights in figure 2 correspond to the weights in the
denominator of bR�

k,t.
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