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ABSTRACT
Objective To determine the effect of visual feedback
on rate of chest compressions, secondarily relating the
forces used.
Design Randomised crossover trial.
Setting Tertiary teaching hospital.
Subjects Fifty trained hospital staff.
Interventions A thin sensor-mat placed over the
manikin’s chest measured rate and force. Rescuers
applied compressions to the same paediatric manikin for
two sessions. During one session they received visual
feedback comparing their real-time rate with published
guidelines.
Outcome measures Primary: compression rate.
Secondary: compression and residual forces.
Results Rate of chest compressions (compressions per
minute (compressions per minute; cpm)) varied widely
(mean (SD) 111 (13), range 89–168), with a fourfold
difference in variation during session 1 between those
receiving and not receiving feedback (108 (5) vs 120
(20)). The interaction of session by feedback order was
highly significant, indicating that this difference in mean
rate between sessions was 14 cpm less (95% CI −22 to
−5, p=0.002) in those given feedback first compared
with those given it second. Compression force (N) varied
widely (mean (SD) 306 (94); range 142–769). Those
receiving feedback second (as opposed to first) used
significantly lower force (adjusted mean difference −80
(95% CI −128 to −32), p=0.002). Mean residual force
(18 N, SD 12, range 0–49) was unaffected by the
intervention.
Conclusions While visual feedback restricted excessive
compression rates to within the prescribed range, applied
force remained widely variable. The forces required may
differ with growth, but such variation treating one
manikin is alarming. Feedback technologies additionally
measuring force (effort) could help to standardise and
define effective treatments throughout childhood.

INTRODUCTION
Since 2010 the International Resuscitation
Guidelines have promoted paediatric compression
rates of 100–120/min, depressing the chest by at
least one-third of its anteroposterior diameter and
allowing minimal interruption to compressions.1 2

However, evidence suggests that, even among
health professionals, chest displacement during car-
diopulmonary resuscitation (CPR) is variable, com-
pression rates often do not meet the guidelines,
and the physiological effects of different patterns
of CPR vary.3–9 Guideline-compliant chest

compressions (≥51 mm) appear to be associated
with longer 24 hour survival in children compared
with shallower depths.7 Others have highlighted
the need for further scientific debate regarding
effective compression depth in children.10 11

Feedback devices can improve CPR perform-
ance.12–15 However, commercial devices measuring
chest compressions are often not suitable for use
with babies and young children.14–18 Many are rigid
in composition, which reduces feedback on the chest
movement received through the rescuers’ hands.
Chest compliance reduces with growth, and tactile
feedback on full chest recoil may be particularly
important in young children, with compliant ribs.16

Quantifying the effort (the force) required for effect-
ive chest compression and offload in children of dif-
ferent sizes may offer additional growth-related
comparative data to aid paediatric CPR training and
performance. Loads simulating ‘leaning’ during CPR
have been shown to prevent full chest recoil in
anaesthetised children, decrease coronary perfusion
pressure, and elevate intrathoracic and right atrial

What is already known on this topic?

▸ Patterns of compressions for cardiopulmonary
resuscitation (CPR) are variable, and
appropriate feedback technologies can improve
performance.

▸ Paediatric data on chest compression forces are
scarce.

▸ Use of inappropriate compression profiles may
be dangerous or ineffective.

What this study adds?

▸ This form of visual feedback reduced excessive
rates and brought performance into the
prescribed range.

▸ The study revealed more than a fourfold
variation in compression forces used by
professionals to treat one manikin, independent
of the rate of chest compression.

▸ In the clinical scenario, the highest
compression (770 N) and residual (50N) forces
may have deleterious effects, suggesting value
in measuring the efforts required throughout
childhood.
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pressures.16 The authors of that study reported that these clinic-
ally important haemodynamic effects warranted further study. We
are aware of no subsequent paediatric publications on chest com-
pression force.

We therefore devised a technique to measure dynamic force and
provide feedback on the rate of chest compressions for paediatric
CPR. We conducted a randomised, crossover trial to examine the
impact of visual feedback on the rate of chest compressions and to
explore any secondary effects of rate feedback on the load profile
(compression and residual forces). We hypothesised that visual
feedback would bring performance closer to international guide-
lines, secondarily reducing any variation in force.

METHODS
Creation of appropriate technology
The researchers defined the specifications of a sensor-mat
system to measure and provide visual feedback on the rate of
chest compressions for CPR in children. The commissioned
device measured dynamic pressure and force using 143 indi-
vidually calibrated capacitive sensors, each sensor measuring 10
mm×10 mm (Pliance x-32 analyzer, Novel GMBH, Munich,
Germany) (figure 1). The lightweight mat was ∼1.5 mm thick,
conforming fully to the convexity of the chest, sampled at a fre-
quency of 100 Hz over a range of 0–400 kPa, with a drift of
<5% and minimal hysteresis. The sensor-mat was calibrated
daily with incremental step increases of known air pressure to
each sensor using the Novel calibration device. System perform-
ance and accuracy have been reported.19

Descriptive variables (figure 1) of the chest compression were
identified as:
▸ Compression force: peak force applied (N)
▸ Residual force: force remaining on decompression (ie, ‘lean

load’ N)
▸ Rate: number of compressions per minute (cpm)

The feedback system for rate comprised a digital display
(here, 107 cpm) and a colour-coded horizontal sliding bar of
the real-time compression rate, symbolising performance within
and outside the prescribed range (figure 1).

Study measuring chest compressions for paediatric CPR
The study was conducted in a tertiary hospital and approved by
the National Research Ethics Service Committee, Bloomsbury,
London (registration number 12/LO/1700, protocol V.1).
Written, informed consent was obtained from all participants.
Rescuers were informed that all data were anonymised.

Recruitment
Fifty staff (10 men) were recruited to a randomised, crossover
trial between January and July 2015, figure 2. Nursing, medical
and paramedical staff who had received hospital training in
CPR in the last year were eligible. Individuals were excluded if
they refused to give consent or were not in a fit state to perform
chest compressions—for example, because of back pain.
Recruitment occurred either by direct invitation on the ward
(conducted by RKG) or by approaches to staff after their hos-
pital resuscitation training (conducted by DW).

Equipment
A paediatric manikin (Laerdal Medical, New York, USA) with
an estimated age of 6 years was secured supine on an Akron
hi-low plinth (HNE Akron, Ipswich, UK, figure 1). Chest com-
pressions were applied directly through the sensor-mat which
was taped in a standardised position to the lower half of the
manikin’s sternum. The measurement system included the
sensor-mat, an electronic interface and a laptop computer for
data acquisition and feedback display.

Protocol
Rescuers applied compressions to the paediatric manikin for
two sessions. They were informed that this was a compressions-
only resuscitation simulation, requiring no airway management
and that the researcher would prompt each phase using ‘start’
and ‘stop’ voice cues. Using a computer-generated code list,
each rescuer was randomised to receive visual feedback during
either the first or the second of the two sessions (RKG).
Henceforth, those receiving feedback in the first session will be
called the ‘feedback first’ group and those receiving feedback in
the second session the ‘control first’ group. The rescuers were
given two sets of information. First, they were to continue chest
compressions without interruption during each of the three
2 min phases per session, resting for 2 min between phases and
for 5 min between sessions. They were reminded of the recom-
mended rate (100–120 cpm), and advised to offload fully
between compressions. Rescuers practised five chest compres-
sions on the manikin and were encouraged to adjust the plinth
to suit their height. Separately, immediately before each res-
cuer’s feedback session, they were instructed in the visual feed-
back system. A beat-on-beat, colour-coded three-dimensional
(3-D) dynamic pressure profile was also demonstrated. It was
emphasised that, since no recommendations exist on the most
effective forces to be applied to children, they should deliver

Figure 1 (A) Prototype equipment providing visual feedback on chest
compressions; (B) an example force–time analysis profile.
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what they considered appropriate for a 6-year-old child to
depress the chest according to the guidelines.1

Outcome measures
The primary outcome measure was the rate of compressions,
expressed as cpm. Secondary outcomes were the compression
and residual forces.

Statistical analysis
Statistical analyses were conducted with SPSS, V.21. Data were
collected in the three phases per session (300 recordings); the
phases were then averaged by session, resulting in 100 measures,
two per rescuer. The effect of providing feedback on rate was
estimated using univariable and multivariable linear mixed-effects
models, with fixed effects for session number and randomisation
order (and their interaction) plus a random effect for rescuer.
Secondary analysis estimated the effect of rate feedback on force.
The trial was reported according to the Consort 2010 statement,
paying attention to numerical presentation.20 21

Sample size
Comparing the results of a group of 50 rescuers would allow
detection of a between-subject difference of 0.6 SD with 80%
power and 5% significance. Assuming a between-subject SD of
13, 0.6 SD equates to a difference in rate of 8 cpm.

For the within-subject comparisons based on 50 rescuers and
focusing on the interaction between feedback condition and
order of presentation, the study was designed to have 80%
power at 5% significance to detect an effect size of 6 cpm.

RESULTS
The age, gender and general characteristics of the two random-
isation groups were similar, as shown in table 1.

All the rescuers completed the protocol phases, from recruit-
ment through randomisation to data analysis (figure 2).

Primary outcomes
Table 2 summarises the results for chest compressions by session
and feedback order.

The rate varied widely (mean 111 cpm; SD 13; range 89–
168), with a fourfold difference in SD during session 1 between
those receiving and not receiving feedback. Of the results in the

two sessions for the two groups, in session 1 the control first
group (receiving feedback second) stood out, with both mean
and SD raised, while feedback in session 2 normalised the rates
(table 2 and figure 3A). The interaction of session by feedback
order was highly significant, indicating that this difference in
mean rate between sessions was 14 cpm less (−22 to −5,
p=0.002) in those given feedback first compared with those
given it second.

Secondary outcomes
Figure 3B demonstrates the wide variation in compression force
applied to the manikin (mean 306 N (SD 94); range 142–769),
a more than fivefold difference. Before averaging, the highest
recorded force exceeded 800 N.

As summarised in table 2, forces were greater and more vari-
able in session 1 among those receiving feedback compared
with those not (337 (90) vs 262 (66), p=0.001). Overall, those
receiving feedback second (control first) used significantly lower
compression force (adjusted mean difference −80 (95% CI
−128 to −32), p=0.002). The mean residual force of 18 N (SD
12, range 0–49) was the same in both groups.

Figure 2 Consort diagram summarising the randomised rescuers’ protocol progression.

Table 1 Characteristics of the two groups defined according to
intervention allocation

Characteristics Control first, n=25 Feedback first, n=25

Profession:
Nurse ≥ 5 y experience 8 10
Nurse < 5 y experience 6 6

Teaching / research staff 5 5
Doctor 6 4
Female 20 20
Right-handed 23 21
Age (y) 33 (9) 33 (8)
Weight (kg) 66 (16) 69 (16)
Height (cm) 165 (8) 169 (10)
BMI 24 (5) 24 (5)

Values are mean (SD).
BMI, body mass index.

405Gregson RK, et al. Arch Dis Child 2017;102:403–409. doi:10.1136/archdischild-2016-310691

Original articleOriginal articleOriginal article

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth

arvinth
Sticky Note
None set by arvinth

arvinth
Sticky Note
MigrationNone set by arvinth

arvinth
Sticky Note
Unmarked set by arvinth



DISCUSSION
Statement of findings
Rate
Use of visual feedback ensured CPR performance within the
prescribed rate range. Without feedback, many rescuers
exceeded the guidelines, which could result in poorer outcome.
This is shown by the wide SD of the control first group in
session 1 (table 2). Their median rate was above 120 cpm
(figure 3A), demonstrating that more than half of these rescuers
exceeded the upper prescribed limit. The control first group in
session 1 were the only rescuers behaving ‘naturally’, as in the
other three sessions, rescuers were, or had just been, exposed to
feedback. Since all rescuers were reminded of the guidelines
before ‘treating’ the manikin, this finding suggests that judging
compression rate is difficult and rescuers ‘over-try’ to meet the
recommendations. When external chest compressions were first
promoted in the 1960s, it was suggested that ‘anyone, any-
where’ with ‘two hands’ could perform effective chest compres-
sions for resuscitation.22 However, our research suggests that,
without real-time feedback, it is difficult to deliver appropriate
chest compressions for children.

Force
Strikingly, the forces delivered to a single manikin showed unex-
pectedly large variation. In the control first group, as their rate
slowed with feedback in the second session, so the residual
force maintained between compressions decreased. While the
most clinically effective range of forces in children has yet to be
determined, both extreme loading and incomplete offloading of
force may adversely impact outcome.16 17 As chest compliance
varies greatly with age, lower treatment forces would be
expected for babies compared with teenagers. Precise force cat-
egories required for effective sternal depression are likely to be
influenced by both the child’s clinical condition and their age
and body size.23 Young children and the elderly are two groups
of patients likely to be vulnerable to chest injury and inefficient
external chest compression.10 11 24 25 The ability to measure
and compare the effort required throughout childhood is inte-
gral to optimising the training of paediatric healthcare profes-
sionals, creating appropriate instincts and reflexes through
immediate feedback both in hospital and outside.

Feedback effect
In the control first group, their compression force appeared to
be established in that first ‘natural’ session, unlike the feedback
first group whose force increased in session 2. While no

feedback system for force was provided, a 3-D pressure profile
of real-time data was displayed on the computer screen. The res-
cuers were told to focus on the rate feedback display, applying
whatever force they felt was clinically appropriate for a
6-year-old, as no guidelines exist for force. The mere presence
of the pulsing 3-D display may have motivated some in the feed-
back first group to push harder on the manikin from the outset,
as shown in table 2. Just as different feedback systems have been
shown to produce varying responses, these extraneous data may
have been distracting.12

Comparison with published literature
This study concurs with others showing performance of chest
compressions at variable and excessive rates.4 5 13 26 Valuable
paediatric data have been published regarding differing com-
pression depths, patterns of CPR and patient survival.4 7–9 17 27

Outcome is often related to treatment duration rather than
force application.28

Paediatric force
Few data exist regarding forces required throughout childhood,
specifically in younger children.2 29 A hospital-based study of
eight children aged below 8 (four children in each arm, non-
randomised) demonstrated that, even in an experienced paediat-
ric centre using an audiovisual feedback facility, their cumulative
assessment measure of ‘excellent CPR’ was achieved in 28% of
the treatments with feedback and 0% without.4 Feedback
resulted in 80% of chest compressions falling within the recom-
mended rate. As was the case here, most benefit was derived
from slowing excessive rates. There was no direct measure of
compression force but ‘quality CPR’ included the measure of
residual lean load <2.5 kg, equating to approximately 25 N.
Residual forces exceeding 25 N were recorded in this study.

In an earlier study, the group determined paediatric thoracic
force-deflection characteristics for CPR.30 Chest compression
forces of 309 (SD 55) N were recorded in 18 subjects aged
between 8 and 22 years. The researchers combined these data
with their earlier results, reporting age-related changes in thor-
acic mechanics, the stiffness of the thorax increasing from youth
to middle age and decreasing in the elderly. They highlighted a
need to increase the sample size and age range studied. Their
results concur with equivalent values of 306 (SD 94) N
recorded here, this study recording greater extreme forces of
almost 800 N. The earlier publication was conducted in older
subjects, in whom proportionately higher forces might have
been expected, to depress their stiffer chests.19

Table 2 Summary of rate and force of chest compressions for CPR according to session and intervention order

Session 1,
mean (SD)

Session 2,
mean (SD)

Session 2−Session 1,
difference (95% CI) p Value

Difference between Control
first and Feedback first (95% CI) p Value

Rate, cpm
Control first 120 (20) 107 (5) −13 (−21 to −5) 0.003 −14 (−22 to −5) 0.002
Feedback first 108 (5) 109 (7) 1 (−2 to 4) 0.6

Compression force, N
Control first 262 (66) 270 (69) 9 (−6 to 23) 0.2 −9 (−29 to 12) 0.4
Feedback first 337 (90) 355 (112) 17 (2 to 33) 0.03

Residual force, N
Control first 21 (13) 16 (12) −5 (−9 to 0) 0.05 −5 (−11 to 2) 0.2
Feedback first 18 (11) 18 (14) 0 (−5 to 5) 0.9

Shaded boxes denote feedback sessions; p≤0.05. Bold indicates significance.
cpm, compressions per minute; CPR, cardiopulmonary resuscitation.
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Compression variables and feedback
CPR measurement systems often derive chest compression
variables—for example, effective compression ratio and fraction,
and duty cycle (the ratio of compression to relaxation).31 32

Researchers have examined the effects of different duty cycles
on cerebral and aortic perfusion, in animals, by modelling and
latterly in human subjects.33 34 Both duty cycle and residual
force (or lean load) would appear to be physiologically important
variables. Audiovisual feedback has been used in isolation and in
combination with post-event debriefings.35 36 In children and
adults, adhering to the 2010 International Guidelines-recommended
depth of at least 51 mm could improve outcomes from cardiac
arrest.4 6 However, the use of accelerometers may result in over-
estimation of chest displacement and may be influenced by vari-
ables such as the composition of the underlying surface on
which CPR is performed.9 18 37 38

Study strengths
Each of the 50 rescuers performed a total of 12 min of chest com-
pressions on the manikin, providing robust results from, on
average, over 1300 compressions. The thin sensor-mat conformed
exactly to the manikin and to children’s chests.19 It allowed the
rescuer immediate feedback through their hands regarding the
child’s chest depression and recoil responsiveness, unlike other
more rigid feedback systems used for older subjects.14 15 39

Study limitations
This was not a crisis scenario and the research was conducted
on a manikin, which cannot be considered an ideal replacement
for an unresponsive child. However, it was important to stand-
ardise the subject in order to examine variability in rescuers’
performance. It is both unethical and impossible to apply chest
compressions for CPR to healthy children.

Figure 3 Variability in (A) rate and
(B) force of chest compressions applied
to the same manikin by 50 rescuers.
(A) Effect of visual feedback on rate,
randomised by order, and (B)
compression and residual forces. (A)
The horizontal broken lines represent
the feedback limits set to indicate the
desired rate.
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Clinical implications
Direct measurement of manual forces applied to children’s
chests could yield valuable insight when used in combination
with simultaneous recording of clinical response. Such studies
should help clarify the profiles required to increase intrathoracic
pressure and achieve effective coronary perfusion pressure for
children of different ages.33 There is heterogeneity of outcomes
used to date in such clinical trials.40 While measures such as
arterial blood pressure and end-tidal CO2 are useful in high-tech
environments, it has been proposed that definition of the spe-
cific physiological markers of most use in children may suggest a
unique direction for paediatric CPR studies.29

CONCLUSION
This study highlights the variability of chest compression pro-
files for paediatric CPR. While visual feedback reduced exces-
sive rates to ensure performance within a prescribed rate range,
applied force showed alarming variation. Incomplete offload
between compressions was also recorded. Feedback technologies
that measure the force required to reverse cardiac arrest could
provide the tools to define the inter-related details of paediatric
CPR. Understanding factors promoting effective chest compres-
sions from birth to adulthood could help to optimise perform-
ance and thus improve children’s survival.

Twitter Follow Emmanouil Bagkeris at @ebagkeris
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