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Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key 
pathways in neurodegenerative diseases like Alzheimer’s disease (AD). Targeting these mechanisms with 
antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial 
for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, 
fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted 
interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, 
which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of 
evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for 
application in treating and managing AD. This article will provide insight into the molecular mechanisms 
underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in 
vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and 
symptomatic treatment strategies for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent form 
of dementia, accounting for 60-80% of cases [1]. Accord-
ing to the World Health Organization (WHO), about 55 
million people worldwide currently live with dementia, 
and this number is expected to burgeon to 139 million by 
2050 [2]. Dementia imposes significant physical, psycho-
logical, and financial burdens on both patients and their 
families [1]. In 2019, global dementia care costs were es-
timated at approximately $1.3 trillion, with unpaid care-
givers bearing about half of this financial burden [1]. The 

physical and psychological stresses of caregiving also put 
these individuals at risk of health complications [3].

Current AD treatments are primarily palliative, 
which aim to delay cognitive deterioration and alleviate 
symptoms without addressing the underlying pathology 
[4,5]. FDA-approved drugs like donepezil, rivastigmine, 
and galantamine are acetylcholinesterase (AChE) inhib-
itors that increase acetylcholine levels in the brain by 
preventing its breakdown [6]. However, these treatments 
can cause adverse effects, therefore slow dose escalation 
in modest increments is essential for minimizing adverse 
events [6]. Memantine, another FDA-approved drug, is 
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an N-methyl-D-aspartate receptor (NMDAR) antagonist 
that mitigates neurotoxicity by inhibiting excessive glu-
tamatergic signaling [5]. Recently, a few anti-Aβ mono-
clonal antibodies including aducanumab and lecanemab 
have been approved as disease-modifying drugs [7,8] by 
lowering amyloid burden in AD patients [5,9].

The incomplete understanding of disease etiologies 
and pathological mechanisms, the difficulty for early di-
agnosis and intervention, and the limited drug penetration 
across the blood-brain barrier (BBB) are major imped-
iments to developing effective treatments for neurode-
generative diseases [10,11]. Over the last few decades, 
research efforts have focused on novel therapeutic strat-
egies, including immunotherapy, gene therapy, treatment 
with neurotrophic factor, and epigenetic modulation, all 
of which are still being evaluated in clinical studies [4]. 
Considering the pivotal roles of the pathological mech-
anisms (eg, oxidative stress, loss of proteostasis, mito-
chondrial dysfunction, neuroinflammation, apoptosis) in 
neurodegenerative diseases, targeting these mechanisms 
may help manage symptoms and delay disease progres-
sion [12]. For instance, antioxidants that reduce reactive 
oxygen species (ROS) in neurons can mitigate oxidative 

stress and neuroinflammation, preventing oxidative cell 
death [13].

Given the limited efficacy and side effects of existing 
AD drugs [4,6], natural products have garnered attention 
as potential alternative therapies. Bioactive compounds 
from macroalgae and microalgae have been extensive-
ly studied for their antioxidant, anti-inflammatory, and 
neuroprotective properties [14]. Macroalgae contain 
a variety of beneficial metabolites, including phenolic 
compounds, alkaloids, isoprenoids, polysaccharides, and 
polyunsaturated fatty acids (PUFAs) [14-16]. Similarly, 
microalgae produce secondary metabolites such as pig-
ments (eg, phycobiliproteins, carotenoids, chlorophylls), 
PUFAs (eg, omega-3 and omega-6 fatty acids), carbohy-
drates, vitamins, amino acids, and sterols with import-
ant health-promoting properties [17,18]. This review 
explores the molecular mechanisms by which bioactive 
compounds from macroalgae and microalgae exert their 
anti-inflammatory, antioxidant, and neuroprotective ef-
fects in models of neuroinflammation and AD. We will 
also discuss their potential as symptomatic treatments 
and disease-modifying approaches for the management 
of AD.

Graphical Abstract.
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NEUROPROTECTIVE EFFECTS OF 
MACROALGAE- AND MICROALGAE-
DERIVED BIOACTIVE COMPOUNDS 
AGAINST AD

Algae can be classified by size into macroalgae and 
microalgae, or by pigments into Chlorophyceae, Phae-
ophyceae, and Rhodophyceae (green, brown, and red 
algae, respectively) [19]. Macroalgae, more commonly 
known as seaweed, are macroscopic multicellular organ-
isms, whereas microalgae are microscopic unicellular 
prokaryotes (eg, cyanobacteria) or eukaryotes (eg, dia-
toms, Chlorophyta) [18,19]. Algae thrive in fluctuating 
and hostile conditions of salinity, light, tidal current, and 
temperature [20,21]. To survive in extreme environments, 
they undergo structural, physiological, and biochemical 
adaptations, resulting in the synthesis of stress-tolerant 
molecules such as PUFAs, phenolic compounds, carot-
enoids, chlorophylls, and polysaccharides, which have 
biological functions in human pathologies [22,23].

Phenolic Compounds
Phloroglucinol: Phloroglucinol, a polyphenol found 

exclusively in brown macroalgae, is renowned for its 
antispasmodic properties and has been traditionally used 
clinically as a spasmolytic agent [24]. Phloroglucinol im-
pedes the breakdown of catecholamines such as dopamine 
and norepinephrine by inhibiting the catechol-O-methyl-
transferase (COMT) enzyme, consequently increasing 
their levels. This increase in neurotransmitter levels acti-
vates the sympathetic nervous system in specific smooth 
muscle tissues, leading to an increased sympathetic tone 
and subsequent relaxation [24]. Emerging studies have 
unveiled its neuroprotective potential due to potent an-
tioxidant activities, such as scavenging intracellular free 
radicals, enhancing the antioxidant system, and reducing 
oxidative stress [25]. In vitro studies using neuronal mod-
els of AD showed that phloroglucinol diminished Aβ1-42-
induced ROS elevations and accumulations and restored 
dendritic spine density [26]. In vivo, it improved cognitive 
performance in 5XFAD mice and reduced cognitive im-

Figure 1. Chemical structures of phlorotannins isolated from marine algae. Phlorethol and Fuhalol with 
ether linkage, Fucol with phenyl linkage, Fucophlorethol with ether and phenyl linkages, Eckol and Carmalol with 
benzodioxin linkage.
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and biocompatibility, making them versatile assets in the 
fields of medicine, food, cosmetics, and agriculture. They 
are formed by oligomerization of phloroglucinol units 
and can be further divided into six subgroups: phlore-
thols, fuhalols, fucols, fucophlorethols, eckols, and car-
malols based on the type of structural linkages between 
aromatic units [14]. For instance, phlorotannins with an 
ether linkage include fuhalols and phlorethols; eckols and 
carmalols have a benzodioxin linkage, while fucols and 
fucophlorethols have an ether and a phenyl linkage [32], 
as shown in Figure 1.

Collectively, studies have shown that the brown algal 
phlorotannins especially dieckol (a hexamer), eckol (a 
closed-chain trimer of phloroglucinol), and phlorofuco-
furoeckol-A (PFF-A) have potent free radical scavenging 
activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH), H2O2, 
hydroxyl radical, and superoxide anion [34-39]. A study 
evaluated the antioxidant capacity of the phlorotannins 
974-A and 974-B isolated from Ecklonia kurome (E. ku-
rome) using the DPPH and the 2′,7′-dichlorofluorescein 
diacetate (DCFH-DA) intracellular radical scavenging 
assays [40]. In the study, both compounds exhibited 
strong DPPH radical scavenging abilities with IC50 
values of 10 µM and 11 µM respectively, comparable 
to other well-known algal phlorotannins like PFF-A and 
dieckol. Additionally, they showed superior intracellular 
scavenging activity compared to most tested algal phloro-
tannins, including phloroglucinol, PFF-B, α-tocopherol, 
and ascorbic acid. These results suggest that they may 
be useful as effective antioxidants in neurodegenerative 
diseases like AD, where oxidative stress plays a crucial 
role in disease progression. Phlorotannins were recent-
ly extracted from the cell walls of Pelvetia canaliculate 
and Fucus vesiculosus to examine their antioxidant and 
neuroprotective effects on cell culture models of AD and 
Parkinson’s Disease (PD) [41]. These cell wall-bound 
phlorotannins demonstrated comparable neuroprotective 
effects to their intracellular fractions, with less cytotox-
icity but milder antioxidant activity, indicating that they 
may be promising candidates for therapeutic applications 
in neurodegenerative diseases [41]. On the other hand, 
phlorotannins isolated from brown seaweed, such as 
eckol, dieckol, and bieckol, have been shown to have 
anti-inflammatory properties. The mechanisms of action 
include downregulating the NF-κB and MAPKs (p38, 
JNK, and ERK) inflammatory signaling pathways, which 
suppresses the production of proinflammatory mediators 
(eg, iNOS, COX-2, PGE2, TNF-α, and IL-6) and ROS 
[42-45].

Glutamate toxicity leads to Ca2+ overload, which 
triggers mitochondrial dysfunction, an increase in oxida-
tive and ER stress, and apoptotic signaling, which ulti-
mately results in neuronal cell death in neurodegenerative 
diseases [46,47]. A study showed that dieckol isolated 

pairments, as observed by improved performance in Mor-
ris water maze, T-maze, and Y-maze tests, which assess 
spatial learning and memory. In a study, phloroglucinol, 
eckol, dieckol, triphlorethol-A, and eckstolonol isolated 
from Ecklonia cava demonstrated neuroprotective effects 
by lowering intracellular ROS and Ca2+ levels, as well as 
by inhibiting apoptosis in H2O2-treated HT22 cells [13].

Phloroglucinol derived from macroalgae has been 
shown to be a promising anti-inflammatory agent in 
addition to its antioxidant activities. In a 5XFAD mouse 
model of AD, phloroglucinol was administered orally and 
showed reductions in Aβ plaque burden, BACE1 protein 
levels, and neuroinflammation as indicated by decreased 
expression of inflammatory markers (Iba-1, GFAP, 
TNF-α, and IL-6) in the hippocampal dentate gyrus and 
CA1 subfields [27]. In the study, phloroglucinol-treated 
AD mice showed improvement in cognitive deficits and 
synaptic plasticity impairment induced by Aβ1-42 and 
homocysteine (Hcy) aggregates [27]. The anti-neuroin-
flammatory effects of phloroglucinol may be due to its 
ability to directly bind to and inhibit the aggregation of 
Aβ1-42 with Hcy seeds and to disassemble the pre-formed 
amyloid aggregates [28]. These findings suggest a poten-
tial therapeutic role for phloroglucinol in AD, although 
further research is warranted to elucidate the mechanisms 
underlying its neuroprotective effects and establish its 
clinical utility. Future investigations could explore its in-
teractions with specific molecular targets involved in AD 
pathology, such as those involved in the amyloidogenic 
pathway, oxidative stress pathways, and inflammatory 
cascades. Notably, phloroglucinol was predicted to cross 
the BBB [28,29]. In support of this, studies have high-
lighted the neurological activity of phloroglucinol in the 
CNS [30,31], and a certain amount of phloroglucinol was 
detected in the brain shortly after oral administration [27]. 
Hence, it is imperative to characterize the pharmacoki-
netic and pharmacodynamic profiles of phloroglucinol in 
the CNS to help in dosing optimization and understand 
its distribution and duration of action in the brain. Fur-
thermore, rigorous evaluation of the safety and tolerabil-
ity of CNS administration of phloroglucinol is essential. 
This includes the assessment of potential adverse effects, 
toxicity risk, and long-term safety profiles, especially 
concerning chronic use.

Phlorotannins: Phlorotannins are the seaweed poly-
phenol class that has garnered the most attention in both 
the academic and industry research domains for their 
multifaceted benefits. They are a major group of poly-
phenolic secondary metabolites present in large amounts 
in brown seaweed [25,32]. Phlorotannins possess a wide 
range of biological activities, including antioxidant, an-
ti-inflammatory, antimicrobial, antiviral, anticancer, an-
tidiabetic, antihypertensive, and hepatoprotective proper-
ties [33]. Phlorotannins also exhibit good safety profile 
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[55]. For phlorotannins to advance into clinical trials 
for neurodegenerative diseases, several barriers must 
be addressed, including obtaining regulatory approval, 
recruiting volunteers, and establishing extensive preclin-
ical evidence supporting their potential neuroprotective 
effects, alongside comprehensive mechanistic studies and 
safety profiles. Many trials involving phlorotannins face 
limitations due to small sample sizes, short durations, and 
lack of long-term efficacy data [55]. In addition, stan-
dardization of extraction methods and formulations is es-
sential for precise dosing and reliable study results. Iden-
tifying the individual bioactive compounds responsible 
for observed effects can help elucidate their mechanisms 
of action and potential health benefits [55]. Optimizing 
extraction methods to improve yield and purity of phlo-
rotannin extracts is also fundamental to further enhance 
their potential therapeutic utility.

Carotenoids
Xanthophylls: Fucoxanthin (tetraterpenoid) is an im-

portant carotenoid present primarily in brown seaweeds 
including Eisenia, Undaria, Sargassum, Laminaria, Dic-
tyota, Fucus; and in microalgae such as Isochrysis, Phae-
odactylum, Cylindrotheca, Cyclotella, Nitzschia, Prym-
nesium, Chaetoceros, and Odontella [56,57]. In bone 
marrow-derived astrocytes and immune cells, fucoxan-
thin from the microalga Phaeodactylum tricornutum 
prevented ATP- and LPS-induced activation of NF-κB 
and NLRP3 inflammasomes [58]. In neurodegenerative 
diseases, NLRP3 is a crucial regulator of microglia-medi-
ated neuroinflammation [59,60]; NF-κB plays a vital role 
during the priming step of NLRP3 [61,62]. Moreover, fu-
coxanthin may be a powerful anti-inflammatory agent as 
it also suppressed the expressions of cleaved caspase-1, 
phosphorylated IκBα, and pro-IL-1β, and inhibited the 
oligomerization of apoptosis-associated speck-like pro-
tein containing a caspase recruitment domain (ASC), all 
of which are essential for inflammasome signaling [58]. 
Several lines of evidence have also indicated that one of 
the key anti-inflammatory mechanisms of fucoxanthin is 
the inhibition of MAPK and NF-κB signaling pathways, 
which reduced the production of inflammatory mediators 
including TNF-α, IL-6, IL-1β, ROS, and iNOS [63-66].

The neuroprotective activities of the xanthophylls 
fucoxanthin and astaxanthin in AD have been linked to 
several processes, including the regulation of antioxi-
dant enzymes such as SOD and CAT through inhibition 
of the ERK pathway, and inhibition of AChE, BuChE, 
and BACE-1 [67]. The combined effects of these are de-
creased Aβ accumulation, improved cholinergic function 
and diminished neuroinflammation that ultimately pre-
vented neurotoxicity in AD models [67]. A recent study 
showed that fucoxanthin has antioxidant effects in PC12 
cells exposed to Aβ by upregulating the expression of 

from E. cava can prevent glutamate-induced cytotoxic-
ity in neuronal cultures by scavenging free radicals in a 
dose-dependent manner and activating the antioxidative 
nuclear factor-like 2 (Nrf2)/heme oxygenase-1 (HO-1) 
pathway [46]. In addition, dieckol pretreatment also pro-
tected against mitochondrial dysfunction as it decreased 
mitochondrial membrane depolarization and increased 
intracellular adenosine triphosphate (ATP) levels in the 
glutamate-stimulated neurons [46]. Likewise, PFF-A pre-
treatment in PC12 cells was demonstrated to prevent the 
loss of mitochondrial mass and disruption of mitochon-
drial membrane potential, as well as decrease the rise in 
intracellular ROS [48].

It has been demonstrated that the polyphenols de-
rived from brown seaweed selectively inhibit BACE1 
[49,50]. Butanol extract of E. cava was shown to inhibit 
Aβ synthesis by inhibiting BACE1 activity [51]. This 
prevents Aβ oligomerization and protects the neurons 
from Aβ-induced cytotoxicity [51]. In a subsequent 
study, E. cava extract upregulated the α-secretase activity 
while downregulating the γ-secretase activity, potentially 
through lower PSEN1 expression, which led to decreased 
Aβ production in HEK293 APPsw cells [52]. Particu-
larly, PFF-A isolated from E. cava demonstrated strong 
inhibitory activity of around 60% on BACE1, which is 
comparable to that of a known strong BACE1 inhibitor 
with 75% inhibitory activity [50]. Taken together, these 
studies showed that phlorotannins from marine algae may 
be used as a disease-modifying therapy strategy to treat 
AD patients by targeting the amyloidogenic pathway.

Dieckol and PFF extracted from E. cava were found 
to improve learning and memory in ICR mice [53]. This 
is likely due to their inhibitory actions on AChE, which 
resulted in higher levels of the neurotransmitter ACh in 
the striatum, hippocampus, and frontal cortex of ICR 
mice and improved cholinergic signaling [53]. Likewise, 
PFF-A and dieckol isolated from E. cava were identified 
as the most potent inhibitors of butyrylcholinesterase 
(BuChE) with IC50 values of 0.95 and 2.7 μM respective-
ly, compared to other isolated algal polyphenols including 
eckol, 6,6’-Bieckol, and 8,8’-Bieckol (IC50 values rang-
ing from 3.8 to 29.0 μM) [50]. Notably, all the isolated 
polyphenols also modestly inhibited AChE and GSK3β 
[50], indicating their potential to relieve AD pathology 
and progression. Phlorotannin-rich extract from E. cava 
(PEEC) was also shown to inhibit both AChE and BuChE 
in a dose-dependent manner [54]. These findings imply 
that phlorotannins may enhance cognitive functions in 
older, healthy subjects as well as provide symptomatic 
relief for AD patients by boosting cholinergic neurotrans-
mission.

However, clinical trials on phlorotannins have pri-
marily focused on anti-obesity, metabolic syndrome 
management, anti-inflammatory and antioxidant effects 
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stress, and AChE activity [79-81]. Intriguingly, astaxan-
thin was found to decrease Insulin receptor Substrate-1 
(IRS-1) phosphorylation in the hippocampus of AD rats, 
indicating its significance in preventing Aβ-induced neu-
ronal insulin resistance [79]. Furthermore, it was shown 
to improve learning and memory deficits in APP/PS1 
transgenic mice by activating mTOR signaling, which is 
essential for synaptic plasticity [82].

Astaxanthin at a dose of 1 mg/kg orally has previ-
ously been shown to significantly inhibit AChE activity 
in AD mice as compared to the group treated with Aβ1-42 
alone [79]. Hafez et al. [83] showed that astaxanthin could 
suppress the accumulation of Aβ1-42 and malondialdehyde, 
expression of BACE1, and activities of AChE and MAO. 
These results are consistent with those of a recent study 
in which astaxanthin showed potent reversible inhibition 
of AChE (IC50 = 8.64 μmol/L) and increased antioxidant 
capacities by upregulating the expressions of SOD and 
catalase in Aβ25-35-induced PC12 cells [84]. In an AD-like 
mouse model induced by hydrated aluminum chloride 
(AlCl3.6H2O) solution, oral administration of astax-
anthin also increased the levels of ACh, serotonin, and 
expressions of Nrf2 and miRNA-124 [83]. In aggregate, 
these findings suggest that astaxanthin may be useful in 
ameliorating cholinergic dysfunction throughout the 
progression of neurodegenerative diseases. In a 12-week 
long randomized double-anonymous placebo-controlled 
study in 96 healthy elderly subjects with forgetfulness, 
daily supplementation of astaxanthin-rich Haematococ-
cus pluvialis extract (6 or 12 mg/day) has also displayed 
promising clinical benefits in improving cognitive func-
tion [85]. In the study, high-dosage astaxanthin (12 mg/
day) improved CogHealth battery (a set of tasks to assess 
working memory, reaction time, and executive function) 
scores after 12 weeks, while Groton Maze Learning Test 
(a neuropsychological test used to assess spatial learning 
and memory) scores improved in astaxanthin-treated 
groups compared to the placebo group. However, the dif-
ferences between treated and placebo groups did not reach 
significance due to small sample size, warranting future 
clinical trials to include greater sample sizes to get more 
conclusive results. Similar findings have been observed 
in another study [86], where the subgroup with subjects 
aged 45-54 years but not the group ≥ 55 years old sup-
plemented with astaxanthin-rich extract from Paracoccus 
carotinifaciens displayed significant increase in the num-
ber of recalled words after 5 min in the Word memory test 
compared to the placebo group after 8 weeks.

In cyclophosphamide-treated adult male albino 
rats, a high dose (100 mg/kg) of microalga lutein ad-
ministered once daily for 10 consecutive days lowered 
the brain levels of IL‑18, IL‑1β, cytokine-induced-neu-
trophil chemoattractant (CINC), and NLRP3 to their 
normal values [87]. Besides, compared to the cyclophos-

Nrf2 and the downstream Phase-II antioxidant enzymes, 
including NADPH: quinone oxidoreductase-1 (NQO-1), 
glutamate cysteine ligase (GCL), and thioredoxin reduc-
tase 1 (TrxR1) [68]. Besides, they found that fucoxanthin 
upregulated the Akt/GSK-3β/Fyn signaling, which acti-
vated the Nrf2-mediated antioxidant system [68]. In the 
study, the expression of Kelch-like ECH-associated pro-
tein 1 (Keap1), a Nrf2 repressor protein, paralleled with 
the upregulation of Nrf2 expression [68]. An earlier study 
revealed that fucoxanthin may alter the conformation of 
Keap1 and encourage the dissociation of the Nrf2-Keap1 
complex, which leads to Nrf2’s nuclear translocation and 
subsequent gene transcription, eventually protecting neu-
ronal cells against 6-OHDA-induced cytotoxicity [69].

Fucoxanthin isolated from the microalga P. tricor-
nutum exerted strong inhibitory activity against BuChE 
(IC50 = 1.97 mM) in a dose-dependent manner and a 
relatively weaker inhibition on AChE [70] by interacting 
with the enzyme’s peripheral anionic site (PAS) [71]. In 
scopolamine-treated mice, fucoxanthin treatment also 
elevated the expression of hippocampal and cortical 
(BDNF), which reversed the effects of scopolamine on 
their cognitive function [71]. Scopolamine is a muscarin-
ic acetylcholine receptor antagonist that inhibits cholin-
ergic neurotransmission, leading to memory impairment 
in animal models [71]. It impairs cognitive function by 
causing cholinergic dysfunction, increasing oxidative 
stress and neuroinflammation in the brain [72,73]. This 
makes it a valuable experimental model for AD, useful 
for testing potential drugs that can reverse the cognitive 
deficits by enhancing cholinergic transmission or mit-
igate oxidative stress and inflammation to counteract 
these deficits. Fucoxanthin (and fucosterol) extracted 
from Ecklonia stolonifera and Undaria pinnatifida also 
showed mixed-type inhibition against BACE1 enzyme 
with an IC50 of 5.31 mM, indicating its potential function 
in delaying the onset of AD [74]. Xiang et al. [75] showed 
that fucoxanthin can directly bind to and inhibit the ag-
gregation of Aβ1-42, which protects SH-SY5Y neuronal 
cells against Aβ-induced neurotoxicity. In line with this, 
both fucoxanthin and astaxanthin were shown to exhibit 
neuroprotective activities by inhibiting the aggregation of 
Aβ, attenuating Aβ1-42 and H2O2-induced cytotoxicity, and 
increasing neurite outgrowth activity in PC-12 neuronal 
cells [76]. These results suggest that the xanthophyll ca-
rotenoids from marine algae also have positive effects on 
amyloid pathology in the pathogenesis of AD.

Astaxanthin is a marine source xanthophyll carot-
enoid with potent antioxidant activity that is superior to 
other carotenoids including, β-carotene, zeaxanthin, and 
lutein, and to vitamin E [77,78]. According to in vivo 
research, astaxanthin has neuroprotective effects against 
AD by reducing Aβ1-42 level, tau hyperphosphorylation 
(inhibition of GSK-3β activity), TNF-α level, oxidative 
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memory impairment, suggesting that this combination of 
nutrients may have beneficial effects on tau pathology in 
AD [94].

In a study, 2.05 mg/kg of β-carotene treatment ame-
liorated streptozotocin-induced memory impairment 
in AD mice due to its antioxidant properties, inhibitory 
effects on AChE, and ability to prevent the formation 
of Aβ aggregates [95]. Earlier in vitro research has 
shown that β-carotene has anti-amyloidogenic and fibril-
destabilizing activity, which may have contributed to its 
antioxidant effects [96]. In a subsequent investigation, 
the precise mechanism by which β-carotene regulates 
Aβ aggregation was unveiled, which does not relate to 
the direct inhibition of Aβ fibrillation or alteration of the 
morphology of Aβ42 aggregates. Instead, they discovered 
that β-carotene modulates Aβ aggregation by promot-
ing fibrillar polymorphs devoid of the structural order 
required for the formation of fibrillar aggregates [97]. 
β-carotene has also been identified as an effective com-
petitive inhibitor for AChE with a binding mode similar 
to that of rivastigmine and galantamine, suggesting that 
it may be employed as a natural pharmaceutical for the 
management of AD [98].

Polysaccharides
Sodium Oligomannate: Sodium oligomannate, also 

known as oligomannate 971 or GV-971, is an orally ad-
ministered acidic oligosaccharide derived from the ma-
rine alga E. kurome, showing promising neuroprotective 
effects in AD [99]. Although its mechanisms are not fully 
understood, it is believed to modulate the gut microbi-
ome [99,100] and inhibit Aβ fibrillation [101]. GV-971 
developed by Shanghai Green Valley Pharmaceuticals, 
was first approved in China on November 2, 2019, for 
treating mild-to-moderate AD [102]. Emerging evidence 
links gut microbiome dysbiosis with neurodegenerative 
diseases, including AD [99,100]. Modulating the gut 
microbiome could potentially impact neuroinflammation, 
synaptic function, and amyloid deposition in the brain 
[99,103,104]. In AD mice, sodium oligomannate recon-
ditioned the gut microbiota, which regulated the amino 
acid metabolism, particularly by lowering phenylalanine 
and isoleucine levels [99]. This reduced T helper (Th1) 
cell infiltration and microglial activation in the brain, 
suppressing AD-associated neuroinflammation [99]. 
Furthermore, sodium oligomannate can cross the BBB 
via carrier transporters like the glucose transporter 1 
(GLUT1), where it targets Aβ subregions and prevents 
Aβ fibrillation. Evidently, treatment with sodium oligo-
mannate significantly reduced Aβ plaque aggregation 
and tau phosphorylation, and enhanced spatial learning 
and memory in AD mice [99]. Interestingly, a very recent 
study revealed a sex difference in the reduction of Aβ am-
yloidosis and reactive microglia of GV-971 in APPPS1-21 

phamide group, it substantially decreased the levels of 
MMP1, MIP2, and caspase-1 by 51%, 83%, and 79%, 
respectively, and attenuated neurodegeneration in histo-
morphometric analysis [87]. In DPPH and hydroxyl 
radical scavenging experiments, acetone extracts of the 
green microalga Botryococcus braunii at 10 ppm levels 
of carotenoid displayed potent antioxidant activity [88]. 
The extract inhibited lipid peroxidation by about 70% 
in the liver, brain, and kidney of rats as well as in the 
liposome system (78%) at 10 ppm levels of carotenoid. 
It is believed that the high concentration of carotenoids 
in B. braunii, particularly lutein (which makes up 75% of 
total carotenoids), is responsible for the observed antiox-
idant activity [88]. Fucoxanthinol, which is also a marine 
microalgae-derived xanthophyll carotenoid, was shown 
to remarkably downregulate LPS-induced expressions of 
proinflammatory iNOS and COX-2 and to suppress the 
production of inflammatory cytokines through a mecha-
nism involving NF-κB, Akt, MAPK, and Nrf2 signaling 
pathways in BV2 microglia [89]. In summary, microal-
ga-derived xanthophyll carotenoids, such as fucoxanthin, 
astaxanthin, and lutein hold promise as potential neu-
roprotective agents against neurodegenerative diseases 
due to their antioxidant, anti-inflammatory properties, 
and cholinesterase inhibitory action. Fucoxanthinol, on 
the other hand, is relatively less studied compared to its 
parent compound, fucoxanthin, and there remains a gap 
in understanding its neuroprotective mechanisms beyond 
anti-inflammation. Future research endeavors should aim 
to explore the neuroprotective effects of fucoxanthinol in 
animal models of AD. This exploration should encom-
pass investigating their mechanisms of action in lowering 
oxidative stress and alleviating AD-associated pathology, 
as well as their potential influence on cholinergic func-
tion, shedding light on their comprehensive neuroprotec-
tive effects.

Carotenes: Lycopene exerted anti-neuroinflam-
mation effects in AD by inhibiting the accumulation of 
Aβ, reducing the levels of APP, and suppressing BACE1 
expression while upregulating the expressions of α-secre-
tase ADAM10 [90]. Importantly, the restoration in learn-
ing and memory abilities may be attributed to lycopene’s 
ability to downregulate the inflammatory response by 
suppressing the expressions of proinflammatory cyto-
kines and inhibiting the activation of relevant inflamma-
tory signaling pathways such as MAPKs, NF-κB, and 
Nrf2 [90-92]. In male albino rats, lycopene treatments 
have been shown to alleviate acrylamide-induced neuro-
toxicity by re-establishing the concentrations of serotonin 
and dopamine as well as the activity of AChE in the brain 
[93]. In a transgenic mouse model of tauopathy, the com-
bination of lycopene and vitamin E also had synergistic 
antioxidant effects that significantly reduced tau phos-
phorylation, increased antioxidant defense, and improved 
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therapeutic agent for symptomatic relief in AD patients. 
However, more rigorous clinical trials involving larger 
sample sizes and longer durations should be carried out 
to determine whether there is a meaningful difference 
between the drug and placebo groups in the secondary 
outcomes.

Sulphated Polysaccharides: Marine algae Rhodo-
phyceae, Phaeophyceae, and Chlorophyceae contain 
sulphated polysaccharides such as carrageenan, fucoidan, 
and ulvan, respectively [109]. These compounds, partic-
ularly carrageenan and fucoidan have been extensively 
researched for their antioxidant, antitumor, anti-inflam-
matory, and antimicrobial properties [110].

Fucoidan is a class of sulphated polysaccharides 
found exclusively in brown algae. The most discussed 
possible anti-inflammatory mechanism of action of 
fucoidan in rat microglial cells is the inhibition of NF-
κB [111], ERK, and p38 MAPK signaling pathways 
[111,112]. Downregulation of these inflammatory path-
ways is brought upon by suppression of NO production 
and iNOS expression [111,112]. NO production is regu-
lated by components of the signal transduction pathways 
(eg, tyrosine kinases, protein kinase C) and the MAPK 
pathways [112]. On the other hand, transcription factors 
such as NF-κB, CREB, STAT, and activator protein (AP)-
1 directly influence the gene expression of iNOS and 
subsequently the production of NO [113]. Fucoidan has 
been shown to suppress the activation of p38 MAPK, 
JAK/STAT, IRF-1, and AP-1 while upregulating the ex-
pression of scavenger receptor B1 (SR-B1) [113]. All this 
results in decreased NO production in the TNF-α- and 
IFN-γ-stimulated C6 glioma cells [113].

In vitro, fucoidan treatment prevented the release of 
cytochrome c to the cytoplasm and upregulated the ex-
pression of apoptosis inhibitor proteins (IAPs), which in 
turn rescued PC12 cells from apoptosis induced by Aβ25-35 
and D-galactose (D-Gal) [114]. Fucoidan treatment im-
proved cholinergic deficiency and antioxidant activity in 
vivo, which reversed the learning and memory deficits 
in D-gal-induced AD mice [114]. These studies showed 
that fucoidan could enhance cognitive functions partly 
due to its ability to inhibit apoptosis and alleviate cho-
linergic deficiency. A fucoidan isolated from Sargassum 
fusiforme, SFPS65A, was shown to reverse cognitive 
impairments in ethanol and sodium nitrite-induced mice. 
Structural analysis revealed that SFP65A has a higher 
degree of sulphation compared to its homogenous coun-
terpart SFPS65B, which may have largely contributed to 
its bioactivities for improving cognitive ability [115].

Previously, it was demonstrated that pretreatment 
of κ-carrageenan and its desulphated derivatives in 
LPS-induced microglial cells can inhibit microglial cell 
activation and migration [116], suggesting a possible 
application in attenuating neuroinflammation in neuro-

mice and 5XFAD mice [100]. In comparison to control 
male APPPS1-21 mice, treated male mice showed specif-
ic reductions in brain Aβ deposition, Clec7a+ plaque-as-
sociated microglia activation, neuroinflammation, and 
alterations in microbiota profiles after receiving GV-971 
treatment. Notably, similar effects were not observed in 
female mice treated with sodium oligomannate. These 
findings provide insights into interventions targeting the 
gut-brain axis to influence AD pathology, and underscores 
the importance of considering sex-specific differences in 
microbiota composition and treatment responses in AD.

A recent study has shed light on the mechanism by 
which GV-971 exerts its inhibitory effects on Aβ aggre-
gation [101]. Biochemical and biophysical experiments 
revealed that GV-971 disrupts Aβ aggregation primarily 
through electrostatic interactions between its carboxylic 
groups and histidine residues within Aβ40/Aβ42. This 
disruption prevents the formation of toxic Aβ aggregates 
and reduces the flexibility of the histidine-containing 
fragment of Aβ, further contributing to its inhibitory 
effects. Synthetic compounds derived from GV-971, in-
cluding β-(1,4)-D-mannobiose, β-(1,4)-D-mannotriose, 
and β-(1,4)-D-mannotetraose, likewise showed neu-
roprotective properties against Aβ peptide toxicity on 
SH-SY5Y human blastoma cells [105]. Together, these 
findings show that it is possible to modify the structure 
of GV-971 without losing its function, which justifies 
further research into the development of novel neuropro-
tective compounds.

A randomized, double-anonymous, placebo-con-
trolled phase II clinical trial found that AD patients 
receiving 600 or 900 mg/day of GV-971 for 24 weeks 
did not significantly improve on the Alzheimer’s Disease 
Assessment Scale-Cognitive Subscale (ADAS-cog12) 
scores, but that there was a significant improvement on the 
Clinician’s Interview-Based Impression of Change-Plus 
(CIBIC+) scores in the 900-mg group compared to the 
placebo group (92.77% vs. 79.52%) [106]. The CIBIC+ 
test is an interview-based clinical global assessment tool 
used in clinical trials for AD conducted by experienced 
clinicians to assess overall changes in cognitive, func-
tional, and behavioral impairment over time through an 
interview with the patient and caregivers, providing an 
impression of treatment’s clinical benefits [107]. Subse-
quently, in a phase III, double-anonymous, placebo-con-
trolled trial with mild-to-moderate AD patients, GV-971 
significantly improved cognitive functions compared to 
the placebo group after 4 weeks of treatment, as assessed 
by ADAS-cog12, and also benefited secondary end-
points like CIBIC+ scores and activities of daily living 
(ADCS-ADL) scores [108]. The incidence of adverse 
events was also not statistically different between oligo-
mannate-treated and placebo groups [108], suggesting 
GV-971 is a potentially effective, safe, and well-tolerated 
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pathways via β-amyloid precursor protein (APP) and 
BACE1, inhibiting Aβ1-42 aggregation. Notably, Se-PM 
was also more effective than PM in that regard, demon-
strating the vital role of the selenium element for its anti-
oxidant and anti-inflammatory activities [129].

Phycobiliprotein
C-Phycocyanin and Phycocyanobilin: C-Phycocy-

anin (C-PC), is composed of polypeptide subunits and 
three covalently bound, open-chain tetrapyrrole units 
called Phycocyanobilin (PCB) [130]. C-PC is the prima-
ry phycobiliprotein present in the marine cyanobacteria 
Spirulina spp., which has antioxidant, anti-inflammatory, 
and neurotrophic properties. In H2O2-stimulated astro-
cytes, C-PC upregulated antioxidant enzymes (SOD and 
catalase) and neurotrophic factors (NGF and BDNF), 
while decreasing inflammatory markers (IL-6 and IL-1β) 
[131]. In the Experimental Autoimmune Encephalitis 
(EAE) model of multiple sclerosis (MS), C-PC promoted 
remyelination, induced regulatory T cell (Treg) response, 
enhanced antioxidant status, and modulated genes associ-
ated with remyelination [132,133]. They also postulated 
that part of C-PC’s remyelinating activity is caused by 
its inhibitory actions on COX-2, highlighting its potential 
therapeutic applications to aid MS patients in recovery 
[134]. On top of that, C-PC showed neuroprotective 
properties by sparing SH-SY5Y cells from tert-butylhy-
droperoxide (t-BOOH)-induced apoptosis in vitro and rat 
retinas from ischemia-reperfusion injury in vivo [135], 
and hippocampal neurons from global cerebral isch-
emia-reperfusion injury in gerbils [136]. Overall, these 
investigations amply showed that C-PC can facilitate 
CNS repair following an ischemic insult and is a viable 
pharmacological approach to enhance functional recov-
ery following an ischemic stroke.

Generally, the anti-inflammatory activities of C-PC 
entail the suppression of proinflammatory cytokines pro-
duction [137,138], inhibition of apoptosis [137,138] and 
modulation of PI3K/AKT signaling [138]. Importantly, 
C-PC also attenuated Aβ-induced neuroinflammation by 
targeting HDAC3 and miR-335, revealing its beneficial 
effects in preventing neuronal apoptosis by preventing 
epigenetic dysfunction [137]. In particular, Agrawal et al. 
[138] found that C-PC effectively reduced AChE activity, 
which may aid in attenuating the cholinergic deficit in AD 
patients as a symptomatic treatment. In PC12 neuronal 
cells, C-PC from Spirulina maxima suppressed the Aβ1-

42-induced neurotoxicity and increases in APP, BACE1, 
and poly-ADP ribose polymerase-1 (PARP-1) cleavage, 
and raised the levels of antioxidant defenses [139]. In 
support of this, C-PC and the red phycobiliprotein phy-
coerythrin were both identified as potent β-secretase in-
hibitors [140,141] with great antioxidant activity [142]. 
These findings uncovered the potential benefits of phy-

generative diseases. Importantly, they discovered that the 
desulphated derivatives of carrageenan had weaker inhib-
itory effects on microglial activation, indicating that the 
sulphate group content in κ-carrageenan is the primary 
factor affecting its inhibitory function [116]. Similarly, 
pretreatment of the κ-, ι-, and λ-carrageenan in LPS-stim-
ulated BV2 microglial cells markedly reduced the levels 
of inflammatory cytokines in a dose-dependent manner 
[117]. According to the literature, the potential mecha-
nisms of action of k-carrageenan’s anti-inflammatory 
activity are by inhibiting the inflammatory NF-κB, JNK, 
and MAPK pathways [118,119], as well as the AMPK/
ULK1 autophagy pathway [120,121]. In Aβ-induced AD 
rats, hippocampal infusions of 1% low-MW fucoidan 
(AD-F-L) and 1% low-MW λ-carrageenan (AD-C-L) 
substantially improved memory function and increased 
the expressions of ciliary neurotrophic factor (CNTF) 
and BDNF. Both AD-F-L and AD-C-L also effectively 
augmented insulin signaling by enhancing the phosphor-
ylation of AKT, STAT3, and GSK-3β, which may reduce 
Aβ deposition in the hippocampal region and contribute 
to improved memory [122].

Alginate-derived Oligosaccharides: After acid hy-
drolysis, the naturally occurring acidic polysaccharide, 
alginate, found in brown seaweed, is converted to poly-
mannuronate (PM) [123]. The resulting PM blocks are 
then degraded by hydrogen peroxide in a process called 
oxidative degradation, to produce oligomannuronates 
of various sizes which are then subjected to chromato-
graphic separation and characterization. The purified al-
ginate-derived oligosaccharide (AdO) has shown anti-in-
flammatory activity in cell culture models by suppressing 
proinflammatory mediators (iNOS, COX-2, TLR4, and 
NF-κB) [124,125] and enhancing microglia-mediated Aβ 
clearance, suggesting its putative role as an anti-inflam-
matory agent in AD [125].

Seleno-polymannuronate (Se-PM), a seleno-de-
rivative of PM, is synthesized through sulphation and 
selenylation replacement reactions and has demonstrated 
antioxidant and anti-inflammatory properties [126-128]. 
In LPS-stimulated RAW264.7 macrophages, it mitigated 
the production of ROS, NO, PGE2, and other proinflam-
matory mediators, and downregulated the inflammatory 
NF-κB and MAPK signaling [126]. Similar effects were 
observed in LPS-activated primary microglia and as-
trocytes, suggesting its neuroprotective potential [127]. 
Se-PM has also shown antioxidative effects in the N2a-
APP695-sw cell culture model of AD [128]. It decreased 
ROS production by increasing antioxidant enzymes like 
superoxide dismutase (SOD) and glutathione peroxidase 
(GPx) [128]. Importantly, Se-PM prevented apoptosis by 
restoring mitochondrial membrane potential, upregulat-
ing the anti-apoptotic protein Bcl-2, and downregulating 
cytochrome c [128,129]. It also regulated relevant Aβ 
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who received 1g/day of SM70EE for 12 weeks showed 
a substantial improvement in vocabulary, visual learning 
and visual working memory tests compared to the place-
bo group, with no significant adverse side effects [150]. 
Although the result did not reach a significant level, the 
increase in total antioxidant capacity in the treatment 
group compared to the placebo group in the trial indicated 
that further investigations are necessary [150].

In LPS-induced microglial cells, pretreatment with 
S. platensis mitigated upregulation of iNOS expression 
and generation of IL-1β and TNF-α [151]. Furthermore, 
it also inhibited NF-κB translocation and upregulated 
the gene expressions of Nrf2 and HO-1 [151]. In an in 
vivo rat model of AlCl3-induced dementia, S. platensis 
reinstated the antioxidant status to normal and decreased 
brain TNF-α level [152]. Histopathological observation 
revealed a reduction in the number of neurodegenerative 
features and amyloid aggregates in the spirulina-treat-
ment group compared to controls [152].

Polyunsaturated Fatty Acids
Omega-3 and Omega-6 PUFAs for Brain Health: 

Omega-6 (AA, LA, and dihomo-γ-linolenic acid; DGLA) 
and omega-3 (ALA, EPA, and DHA) are the primary 
PUFAs in cell membrane phospholipids [153]. AA, a 
precursor for inflammatory eicosanoid mediators such 
as prostaglandins (PGs), leukotrienes (LTs), and throm-
boxanes, is abundant in human inflammatory cells [153]. 
Omega-3 supplements, especially EPA, can reduce AA 
levels in these cells, decreasing the synthesis of inflam-
matory eicosanoids [154,155]. Reduced substrate avail-
ability thereby reduces the synthesis of inflammatory 
eicosanoids. A study of 13 young adults showed that 30-
day supplementation with EPA and docosahexaenoic acid 
(DHA) reduced plasma AA levels, with EPA enhancing 
neurocognitive performance more effectively, as indicat-
ed by reduced reaction times in the color-word Stroop task 
[156]. Notably, this improvement was linked to decreased 
activation in the left anterior cingulate cortex (attention 
allocation and conflict monitoring) and increased activa-
tion in the right precentral gyrus (voluntary movement 
control), suggesting enhanced neural efficiency. EPA also 
competes with AA for COX and 5-lipoxygenase (5-LOX) 
enzymes to produce less inflammatory eicosanoids, such 
as 3-series prostaglandins and 5-series leukotrienes [157]. 
Omega-3 fatty acids have also been shown to suppress 
the COX-2 [158] and 5-LOX [159] pathways in AA me-
tabolism in earlier research. As a result, this reduces the 
synthesis of potent inflammatory mediators like the 2-se-
ries prostaglandins and 4-series leukotrienes [153,157].

Observational studies have consistently revealed 
that consuming more omega-3 PUFAs regularly through 
fatty fish and fish oil was linked to a decreased risk of 
AD [160-163]. Clinical studies on the effects of omega-3 

cobiliproteins in alleviating AD pathology by interfering 
with amyloidogenic processing, suppressing Aβ-induced 
neuroinflammation and oxidative stress, and ultimately 
averting cell death.

PCB is a covalently attached chromophore to C-PC. 
A previous study used the oxygen radical absorbance 
capacity (ORAC) assay to quantify the peroxyl radical 
scavenging capacity of PC and PCB [143]. They found 
that both PC and PCB are more potent scavengers of per-
oxyl radicals compared to a few well-known antioxidant 
molecules including Trolox, ascorbic acid, and reduced 
glutathione. Importantly, PCB had the highest ORAC 
value (22.18 Trolox equivalents), compared to that of 
PC, GSH, and AA (20.33, 0.57, and 0.75 Trolox equiv-
alents, respectively), suggesting that PCB is the primary 
compound responsible for the antioxidant activity of PC 
[143]. Marín-Prida et al. [144]. showed that PCB-mod-
ulated genes related to cerebroprotection (Mal, NADH 
dehydrogenase, Bcl-2a1, Gadd45g, Baiap2 and VEGFA), 
remyelination/demyelination processes (Foxp3, TGF-β, 
TNF-α, IL-17A, IL-1β), and inflammatory processes in 
a rat cerebral hypoperfusion model. Similar outcomes 
were also observed in rodent models of EAE [145,146], 
where PCB suppressed proinflammatory cytokines, and 
decreased demyelination by modulating myelination-as-
sociated genes and stimulating OPC and OD [146]. No-
tably, when PCB and IFN-β were given prophylactically 
together, superior outcomes were observed in terms of 
lowering proinflammatory cytokines and enhancing Treg 
induction [146].

Neuroprotective Effects of Spirulina spp. on AD: Spi-
rulina spp. are rich sources of proteins, which account for 
approximately 60-70% of dry weight. They have power-
ful antioxidant, anti-inflammatory, antimicrobial, antitu-
mor and neuroprotective effects on human health because 
they are also rich in essential fatty acids, phytopigments 
(phycobiliproteins, chlorophylls, carotenoids), minerals, 
and vitamins [147]. At concentrations of 50 and 100 g/
ml, S. maxima extract inhibited Trimethyltin chloride-in-
duced neurotoxicity in HT-22 hippocampal neuronal cells 
[148]. It also inhibited PARP cleavage, which prevented 
neuronal cell apoptosis, and suppressed ROS production 
and AChE activity, while upregulating the neurotrophic 
BDNF/CREB signaling [148]. In a relevant study, Koh et 
al. [149] reported that 70% ethanol extract of S. maxima 
(SM70EE) reduced Aβ1-42 levels in the hippocampus and 
increased the expressions of antioxidant enzymes. Note-
worthily, it potentiated the BDNF/PI3K/Akt signaling 
pathway which suppressed GSK-3β phosphorylation, 
consequently downregulating BACE1 and APP [149]. 
Subsequently, a randomized, double-anonymous, place-
bo-controlled clinical trial was conducted to evaluate the 
clinical benefits of SM70EE in patients with mild cogni-
tive impairment [150]. According to the study, patients 
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marine animals are therefore rich in PUFAs [169]. Hence, 
it stands to reason that consuming marine algae rich in 
PUFAs could possibly be just as beneficial as consuming 
fish oils or fatty fish in attaining the health-promoting 
effects. Indeed, although both fish oil and DHA-rich mi-
croalgal oil (DMO) supplementation restored the brain 
DHA levels to normal levels in mildly omega-3-defi-
cient rat pups, DMO was marginally more effective in 
this regard due to its higher total omega-3 PUFA content 
(about 1.3-fold) than fish oil [174]. Balakrishnan et al. 
[175] reported that oral supplementation of Isochrysis sp. 
biomass markedly improved serum lipid profiles, brain 
DHA level, and antioxidant status while diminishing the 
proinflammatory status in Wistar rats. In their subsequent 
study, they showed that long-term supplementation of 
this microalgal-derived PUFA in pregnant female Wistar 
rats can protect the offspring rats against MSG-induced 
neurotoxicity [176]. The microalgal-derived PUFA en-
hanced the accumulation of DHA and AA in the brain, 
while upregulating CREB/BDNF signaling and inhib-
iting the NMDAR activation [176]. On the other hand, 
the DGLA omega-6 derived from the green microalga 
Lobosphaera incisa P127 had an anti-inflammatory effect 
on the LPS-stimulated RAW264.7 macrophages t dras-
tically reduced the levels of intracellular NO, IL-6, and 
ROS as well as iNOS expression. It also increased PGE1 
secretion in a dose-dependent manner [177]. Based on 
the data, as microalgae are a superior source of omega-3 
PUFAs, particularly EPA and DHA, they may be able to 
generate favorable outcomes comparable to fish oil sup-
plementation in the management of neurodegenerative 
diseases including AD and PD.

CONCLUSION

Recent research highlights that macroalgae and 
microalgae contain natural compounds that could be 
promising treatments for neurodegenerative diseases like 
AD. These bioactive compounds show promise in mit-
igating Aβ (suppression of β- and γ-secretase activity), 
tau pathologies, and alleviating symptoms by enhancing 
cholinergic functions and preventing glutamate excito-
toxicity. Nevertheless, despite the encouraging results 
observed in in vitro and in vivo studies, the underpin-
ning mechanisms of action remain elusive, and there is 
insufficient clinical evidence to adequately support their 
application in humans. Currently, sodium oligomannate 
is the only marine algae-derived compound which has 
been approved for AD treatment in China. Even though 
the beneficial biological effects of other algal bioactive 
compounds have been amply demonstrated, the results 
of preclinical studies may not necessarily translate to 
humans and are limited by research evidence to support 
their advancement into clinical studies. Hence, future re-

fatty acids in AD, however, revealed that there were only 
modest benefits on cognitive function and memory, with 
no significant improvement in the mini-mental state ex-
amination (MMSE), ADAS-cog, ADCS-ADL, Hamilton 
Depression Scale (HDRS), Clinical Dementia Rating 
(CDR), and Neuropsychiatric Inventory (NPI) scores 
[164-166]. Instead, omega-3 supplementation mainly 
improved mood and psychiatric symptoms (improvement 
in CIBIC-plus score) in mild-to-moderate AD patients 
[165]. However, when fish oil, carotenoids, and vitamin 
E are combined, it appears to be more effective at allevi-
ating the symptoms and progression of mild-to-moderate 
AD, as evidenced by improvements in serum levels of 
carotenoids, omega-3 fatty acids, and vitamin E, MMSE 
category results, and clinical collateral memory and mood 
scores when compared to a placebo group [167]. Similar 
findings were also observed in a 24-month, double-anon-
ymous, placebo-controlled, randomized clinical trial 
where adults with healthy brain aging showed improved 
working memory after supplementing with the three nu-
trients together, underscoring the potential advantages 
of this combined micronutrient supplementation for the 
management of AD [168].

Neuroprotective Effects of Microalgae-derived PU-
FAs: The market demand for omega-3 PUFA-rich oils has 
been steadily rising over the past 10 years, particularly 
EPA and DHA [169]. There is a growing need for alter-
nate sources of omega-3 PUFA-rich oils as the increased 
demand was unmet by the supply from wild fisheries’ 
catches and aquaculture [169]. Other than environmental 
impact, regular consumption of fatty fish and fish oil sup-
plements may cause health complications in consumers as 
some fish species may be contaminated by environmental 
toxicants including methylmercury, organochlorine pes-
ticides, and polychlorinated biphenyls [170,171]. More-
over, some people may find fish and supplements derived 
from marine creatures to be unappealing to the taste; they 
are also not an option for vegetarians and vegans [172]. 
In view of this, microalgal oils have been extensively 
explored in the scientific and industrial domains as a 
sustainable fish oil substitute with a high concentration 
of omega-3 fatty acids and excellent productivity [169]. 
According to literature, a variety of species and strains 
of heterotrophic microalgae, including Crypthecodinium 
cohnii, Schizochytrium sp., Thraustochytrium spp., and 
P. tricornutum have high omega-3 PUFAs content [172]. 
Among the three major groups of macroalgae, brown al-
gae are the richest source of PUFAs, followed by red, and 
green algae [173]. Generally, these algal phyla contain 
higher levels of EPA and relatively low levels of DHA 
[173].

Since marine creatures obtain and accumulate PU-
FAs from seaweed and phytoplankton, which are at the 
base of the marine food chain, fish oils obtained from 
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search in the field of algae-derived compounds and their 
potential therapeutic applications in AD should prioritize 
several key directions. Firstly, thorough mechanistic in-
vestigations are required to uncover the neuroprotective 
effects of these compounds. This includes exploring their 
interactions with key proteins and pathways associated 
with AD and investigating alternative pathways, such as 
gut-brain axis modulation. Examining how these com-
pounds affect pathogenic protein aggregation and their 
interactions with enzymes and receptors involved in 
AD is also crucial for identifying potential side effects 
and unintended consequences. Once robust preclinical 
evidence is established, the translation of findings to 
human studies becomes paramount. This involves con-
ducting clinical trials with large, diverse patient cohorts 
and stringent outcome measures to evaluate the efficacy 
of algae-derived compounds. Longitudinal studies should 
assess long-term effects and safety, monitoring disease 
progression, cognitive function, and quality of life. 
Pharmacokinetic studies are also essential to understand 
bioavailability and optimal dosing regimens required for 
effective treatment. Importantly, these studies should take 
into consideration variations in disease stages, adaptive 
mechanisms, dose-dependent effects, as well as genetic 
factors affecting individual responses to treatment. An-
other interesting area of research is exploring the syn-
ergistic effects of combining algae-derived compounds 
with existing treatments for AD. This could entail study-
ing combination therapies with conventional medications 
or other nutraceuticals with complementary mechanisms 
of action, potentially targeting multiple pathogenic path-
ways of the diseases. As aforementioned, identifying and 
studying individual bioactive compounds responsible for 
observed effects enable specific therapeutic targeting, 
accurate dose optimization, and synergistic combination 
therapies. This approach can maximize therapeutic ef-
ficacy while minimizing adverse effects. Efforts should 
also focus on optimizing extraction methods to improve 
the yield and purity of bioactive compounds from marine 
algae. Standardizing formulations ensures consistent dos-
ing and comparability across studies, which is essential 
for enhancing therapeutic potential and gaining regulato-
ry approval for clinical use.
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