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Abstract

Vibrio parahaemolyticus is an important pathogen causing food-borne disease worldwide. An 80-kb pathogenicity island
(Vp-PAI), which contains two tdh (thermostable direct hemolysin) genes and a set of genes for the type III secretion system
(T3SS2), is closely related to the pathogenicity of this bacterium. However, the regulatory mechanisms of Vp-PAI’s gene
expression are poorly understood. Here we report that two novel ToxR-like transcriptional regulatory proteins (VtrA and
VtrB) regulate the expression of the genes encoded within the Vp-PAI region, including those for TDH and T3SS2-related
proteins. Expression of vtrB was under control of the VtrA, as vector-expressed vtrB was able to recover a functional protein
secretory capacity for T3SS2, independent of VtrA. Moreover, these regulatory proteins were essential for T3SS2-dependent
biological activities, such as in vitro cytotoxicity and in vivo enterotoxicity. Enterotoxic activities of vtrA and/or vtrB deletion
strains derived from the wild-type strain were almost absent, showing fluid accumulation similar to non-infected control.
Whole genome transcriptional profiling of vtrA or vtrB deletion strains revealed that the expression levels of over 60 genes
were downregulated significantly in these deletion mutant strains and that such genes were almost exclusively located in
the Vp-PAI region. These results strongly suggest that VtrA and VtrB are master regulators for virulence gene expression in
the Vp-PAI and play critical roles in the pathogenicity of this bacterium.
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Introduction

Vibrio parahaemolyticus is a gram-negative marine bacterium that

causes acute gastroenteritis in humans associated with the

consumption of raw or undercooked seafood [1,2]. In some cases,

infection by this pathogen results in primary septicemia and

wound infections [3,4]. Most of the clinical isolates of V.

parahaemolyticus isolated from patients with diarrhea exhibit beta-

hemolysis on a special blood agar plate (Wagatsuma agar),

whereas environmental isolates barely do so [5]. This hemolysis is

called the Kanagawa phenomenon (KP), which has been

considered to be a useful marker to distinguish pathogenic from

non-pathogenic strains [6,7]. Thermostable direct hemolysin

(TDH) is responsible for KP and purified TDH shows a number

of biological effects, such as erythrocyte lysis, cytotoxicity and

induction of fluid accumulation in an ileal loop model

[6,8,9,10,11,12,13,14,15,16,17]. Thus, TDH has been considered

a major virulence factor of V. parahaemolyticus.

Whole genome sequencing of a KP-positive V. parahaemolyticus

strain RIMD2210633 revealed that this strain contains two sets

of gene clusters for Type III Secretion System (T3SS), one on

each of its two chromosomes (termed T3SS1 and T3SS2,

respectively) [18]. Recently, comparative genomic analysis using

microarray revealed that an 80-kb pathogenicity island (Vp-PAI)

on chromosome II is conserved exclusively in KP-positive

pathogenic strains and not in KP-negative strains [19,20]. Vp-

PAI contains not only two tdh genes (tdhA and tdhS) but also the

T3SS2 gene cluster. This is highly associated with KP-positive

strains and is also involved in the enterotoxicity of this bacterium

[19,21,22]. Therefore, Vp-PAI has been considered to be related

to the pathogenicity of V. parahaemolyticus in humans. Despite

having an important role in pathogenicity in humans, the

regulatory mechanism of genes expression from Vp-PAI is poorly

understood.

In this study, we show that two putative DNA-binding proteins

encoded within the Vp-PAI region, which have a winged-helix-

turn-helix (WHTH) DNA-binding domain of the OmpR family,

control the expression of Vp-PAI’s genes in a highly specific

manner. Accordingly, they must play a critical role in the

pathogenicity of V. parahaemolyticus.
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Results

VPA1332 (VtrA) and VPA1348 (VtrB) Have a Winged-
Helix-Turn-Helix (WHTH) DNA-Binding Domain of the
OmpR Family

In our functional analysis of T3SS2 in V. parahaemolyticus, we noted

that two open reading frames (ORFs) (VPA1332 and VPA1348),

which share a degree of identity with the N-terminal end of V. cholerae

and V. parahaemolyticus ToxR (32% and 34% identity with V. cholerae

ToxR, and 45% and 32% identity with V. parahaemolyticus ToxR,

respectively), were encoded in the Vp-PAI locus. ToxR is a

transcription factor found in V. cholerae that regulates expression of

the genes encoding cholera toxin (CT) and toxin-coregulated pilus

(TCP) [23]. The N-terminal domain of ToxR encodes a WHTH

DNA-binding domain, which is a typical characteristic of the OmpR

family of proteins and is necessary for transcriptional regulation of

ToxR regulons [24]. The WHTH domain consists of an amino-

terminal four-stranded beta sheet, a central three-helical bundle and

a carboxy-terminal two-stranded beta sheet. The predicted second-

ary structures of the N-terminal portions of VPA1332 and VPA1348

were also similar to the DNA-binding domains of OmpR and PhoB

of E. coli (Fig. 1). Multiple sequence alignments of these proteins

revealed that most of the amino acids forming hydrophobic cores

were conserved in VPA1332 and VPA1348 and that highly

conserved amino acids were identical to that of OmpR and PhoB.

Therefore, VPA1332 and VPA1348 were termed VtrA (V.

parahaemolyticus T3SS2 regulator A) and VtrB, respectively. Their

possible roles as transcriptional regulators were examined in the

following experiments.

VtrA and VtrB Regulate the Expression of the Genes for
T3SS2-Related Proteins and TDH

We first constructed vtrA and/or vtrB deletion strains from TDH-

producing V. parahaemolyticus RIMD2210633 and then examined

their effects on the production of T3SS1- and T3SS2-related

proteins and TDH by immunoblotting. As shown in Fig. 2A,

deletion of the vtrA or vtrB genes did not affect on the production of

T3SS1-related proteins (VscC1, T3SS1 apparatus protein; VopD1,

T3SS1 translocon protein and VepA, T3SS1 effector protein),

whereas either deletion mutant produced a marked decrease in

T3SS2-related proteins (VscC2, T3SS2 apparatus protein; VopD2,

T3SS2 translocon protein VopC, T3SS2 effector protein) and in

TDH both in bacterial pellets and supernatants. The amounts of

T3SS2-related proteins and TDH were recovered fully in both the

bacterial pellets and supernatants by complementation of each gene

(Fig. 2B). Interestingly, vector-expressed vtrB (pvtrB) could also

completely restore the production of T3SS2-related proteins and

TDH for the WTDvtrA strain in both the bacterial pellets and

supernatants. Although vector-expressed vtrA (pvtrA) could recover

the production of TDH in the supernatant and VopD2 and VopC

proteins of the bacterial pellet of the WTDvtrB strain, no VscC2

protein was found in the bacterial pellet, and neither of the VopD2

and VopC proteins could be detected in the supernatant. In a

similar fashion, in a double deletion mutant strain (WTDvtrADvtrB),

complementation with vtrB (pvtrB) led to recovery of all proteins in

both the bacterial pellet and the supernatant, whereas VopD2 and

VopC proteins in the supernatant and VscC2 protein in the

bacterial pellet were not detected by complementation with vtrA

(pvtrA). Unlike VopD2, VopC, and TDH, VscC2 protein

production seemed to be controlled strictly by vtrB. Hence, it was

next determined whether a gene located on the same operon as the

vscC2 gene was also regulated by VtrB. Production of the VP1343

protein, which was expected to be co-transcribed with vscC2

(Fig. 2C), was examined by immunoblotting. VP1343 protein was

not detected in bacterial pellets from vtrA and/or vtrB deletion

strains (Fig. 2D, upper panel). Similar to the VscC2 protein, vector-

expressed vtrB could overcome a defect in VPA1343 production in

vtrA deletion strains, such as WTDvtrA and WTDvtrADvtrB, whereas

Figure 1. VPA1332 (VtrA) and VPA1348 (VtrB) have a winged-helix-turn-helix DNA-binding domain of OmpR family. Multiple sequence
alignment and secondary structure assignments of DNA-binding and trans-activation domains of OmpR, PhoB, ToxR, VtrA, and VtrB proteins are shown.
The amino acids that form the hydrophobic cores are highlighted with boxes. Highly conserved amino acids are highlighted with gray boxes.
doi:10.1371/journal.pone.0008678.g001

Vp-PAI Gene Regulation

PLoS ONE | www.plosone.org 2 January 2010 | Volume 5 | Issue 1 | e8678



vector-expressed vtrA did not induce VPA1343 production in vtrB

deletion strains (WTDvtrB and WTDvtrADvtrB) (Fig. 2D, lower

panel). Together, these results suggest that vtrA and vtrB are

necessary for the expression of genes encoding T3SS2-related

proteins and TDH and that the operon containing vscC2 and

vpa1343 is strictly controlled by vtrB. As this operon contains some

genes homologous to the T3SS-apparatus (vscS2, vscN2, vscC2, vscT2

and vscR2) (Fig. 2C) that are essential for T3SS secretion, this could

explain why, in vector-expressed vtrA, only T3SS2 secreted proteins

(VopD2 and VopC proteins) in the bacterial pellets of the WTDvtrB

and WTDvtrADvtrB strains.

Expression of VtrB Is Controlled Directly by VtrA
Based on the above observations that vector-induced vtrB could

restore the production of TDH and T3SS2-related protein even

though both vtrB and vtrA are essential for the production of these

proteins (Fig. 2), we next examined the possibility that vtrA might

regulate vtrB expression. For this, we used vtrA-lacZ or vtrB-lacZ

transcriptional fusion reporters. Neither vtrA nor vtrB gene deletion

had any influence on vtrA-lacZ transcription in V. parahaemolyticus

(Fig. 3A). In contrast, vtrB-lacZ transcription decreased dramati-

cally in the vtrA deletion strains (Fig. 3B). Immunoblotting of VtrA

and VtrB proteins in the vtrA and/or vtrB deletion strains revealed

that VtrA protein production occurs regardless of the expression of

vtrB, whereas deletion of vtrA caused a decrease in production of

the VtrB protein (Fig. 3C). This transcriptional activation of VtrA

against vtrB gene transcription was also observed in E. coli, as vtrB-

lacZ transcription was significantly induced only when VtrA was

produced (Fig. 3D). Direct binding of the VtrA DNA binding

domain to vtrB promoter DNA was then examined by a gel shift

assay. A shift in electrophoretic mobility of vtrB promoter DNA

was observed at a low concentration of the VtrA DNA binding

domain (Fig. 3E, upper panel), whereas only a weak shift was seen

at the highest concentration of VtrB DNA binding domain

Figure 2. VtrA and VtrB regulate the expression levels of T3SS2-related proteins and TDH. A. Loss of vtrA and vtrB diminished the
expression of T3SS2-related proteins and TDH. Western blot analysis of bacterial pellets (ppt.) and secreted proteins (sup.) from isogenic mutants of
wild-type (WT) V. parahaemolyticus. Lane 1, wild-type V. parahaemolyticus (WT); lane 2, vtrA deletion strain (WTDvtrA); lane 3, vtrB deletion strain
(WTDvtrB); lane 4, vtrA and vtrB double deletion strain (WTDvtrADvtrB). Samples from indicated strains were loaded in lane 5 to confirm the specificity
of each antibody. Blots were probed with anti-VscC1, anti-VopD1, anti-VepA, anti-VscC2, anti-VopD2, anti-VopC, and anti-TDH polyclonal antibodies.
B. Vector-induced vtrB could restore the secretory capacity of T3SS2 independent of vtrA. Western blot analyses of bacterial pellets (ppt.) and secreted
proteins (sup.) from indicated strains are shown. Blots were probed with anti-VscC2, anti-VopD2, anti-VopC, and anti-TDH polyclonal antibodies. C.
Genetic organization of the DNA region containing vscC2 and vpa1343 of V. parahaemolyticus RIMD2210633. D. VPA1343 protein expression was
strictly regulated by VtrB. Western blot analysis of bacterial pellets (ppt.) from isogenic mutants of wild-type (WT) V. parahaemolyticus (upper panel)
and their complemented strains (lower panel). Blots were probed with anti-VPA1343 polyclonal antibodies.
doi:10.1371/journal.pone.0008678.g002
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(Fig. 3E, lower panel). These results indicate that VtrA activates

vtrB gene transcription by direct binding to its promoter.

VtrA and VtrB Play Critical Roles in T3SS2-Dependent
Cytotoxicity

One characteristic of T3SSs in V. parahaemolyticus is their ability

to cause cytotoxic effects on Caco-2 cells in vitro [25,26].

Therefore, we next examined the role of vtrA and vtrB in T3SS1-

and T3SS2-mediated cytotoxicity. Deletion of the vtrA or the vtrB

gene in the tdhAS- and T3SS2-deficient strain POR-3 (POR-

3DvtrA and POR-3DvtrB, respectively) had no effect on T3SS1-

dependent cytotoxicity (Fig. 4A). By contrast, deletion of the vtrA

and/or the vtrB from the tdhAS- and T3SS1-deficient strain POR-2

(POR-2DvtrA, POR-2DvtrB, and POR-2DvtrADvtrB, respectively)

caused a decrease in cytotoxicity similar to that of the

DvcrD1DvcrD2 strain, which is deficient in both T3SS1 and

T3SS2 (Fig. 4B). A vector-expressed vtrB was able to overcome the

defect in cytotoxicity of vtrA deletion strains (POR-2DvtrA and

POR-2DvtrADvtrB). This result is in accordance with the previous

results, showing that vector-expressed vtrB could recover the

diminished secretory capacity of T3SS2 in vtrA deletion strains as

shown in Fig. 2B and C. In contrast, complementation with vtrA

restored cytotoxic capacity in the POR-2DvtrA strain but not in

any of the POR-2DvtrB or POR-2DvtrADvtrB strains, which is also

in agreement with the results shown in Fig. 2. Finally, the effect of

vtrA and vtrB overexpression on T3SS2-dependent cytotoxicity was

determined (Fig. 4C). Overexpression either vtrA or vtrB resulted in

dramatic accelerations in cytotoxic activity from a tdhAS- and

T3SS1-deficient strain (POR-2), whereas no effect was observed

from overexpression in a tdhAS- and T3SS1/T3SS2-deficient

strain (DvcrD1DvcrD2). These results indicate that both vtrA and

vtrB are essential for T3SS2-dependent cytotoxicity.

Figure 3. VtrB expression is under the control of VtrA. A. Neither vtrA nor vtrB was involved in the transcription of vtrA. V. parahaemolyticus
strains carrying the vtrA-lacZ transcriptional fusion vector were assayed for b-galactosidase activity. The bars show the average of three separate
experiments, and the standard deviations are indicated by error bars. B. Transcription of vtrB was decreased in vtrA deletion strains. V.
parahaemolyticus strains carrying the vtrB-lacZ transcriptional fusion vector were assayed for b-galactosidase activity. The bars show the average of
three separate experiments, and the standard deviations are indicated by error bars. C. Deletion of vtrA caused a decrease in the production of VtrB.
Immunoblot analysis of VtrA and VtrB protein expression in vtrA and vtrB mutant strains are shown. Lane 1, wild-type V. parahaemolyticus (WT); lane
2, vtrA mutant strain (WTDvtrA); lane 3, vtrB mutant strain (WTDvtrB); lane 4, vtrA and vtrB double mutant strain (WTDvtrADvtrB). Blots were probed
with anti-VtrA (upper panel) and anti-VtrB (lower panel) polyclonal antibodies. D. Effects of vtrA and vtrB expression on vtrB transcription in E. coli. E.
coli MC4100 carrying vtrB-lacZ transcriptional fusion vector were assayed for b-galactosidase activity. The bars show the average of three separate
experiments, and the standard deviations are indicated by error bars. E. Binding of purified VtrA DNA binding domain to the upstream region of vtrB
is shown by an electrophoretic mobility shift assay. Each lane contains the same amount of upstream region of vtrB (30 nM) and various
concentrations (0, 1.5, 2.25, 3.0, 4 mM) of VtrA DNA binding domain (upper panel) or VtrB DNA binding domain (lower panel). The molecular ratios are
indicated in the top line.
doi:10.1371/journal.pone.0008678.g003
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VtrA and VtrB Play Critical Roles in V. parahaemolyticus-
Induced Enterotoxicity

To investigate the contribution of vtrA and vtrB to the

enterotoxicity of V. parahaemolyticus, we examined the T3SS2-

dependent enterotoxic activity of the vtrA and vtrB deletion strains

using the rabbit ileal loop model. As reported previously, POR-2,

which is a tdhAS- and T3SS1-deficient strain, caused a high level of

fluid accumulation [21,26]. This was dramatically decreased in vtrA

and/or vtrB deletion strains (POR-2DvtrA, POR-2DvtrB, and POR-2

DvtrA DvtrB) and was similar to that of the DvcrD1DvcrD2 strain and

non-infected (NI) control (Fig. 5A). The decrease in enterotoxicity

was restored by trans-complementation of each gene. As with

T3SS2-dependent cytotoxicity shown in Fig. 4B, a defect in

enterotoxicity of vtrA deletion strains (POR-2DvtrA and POR-

2DvtrADvtrB) was restored by vector-expressed vtrB (Fig. 5A). Similar

to T3SS2-dependent enterotoxicity, both vtrA and vtrB greatly

contributed to the wild-type V. parahaemolyticus-induced enterotoxi-

city, which has functional TDH and both T3SS1 and T3SS2

(Fig. 5B). The fluid accumulation that resulted after challenge with

vtrA and/or vtrB deletion strains (WTDvtrA, WTDvtrB, and

WTDvtrADvtrB) was almost none, very similar to the NI control.

Vector-expressed vtrB was able to restore the enterotoxicity to its full

potential not only in the vtrB deletion strain, but also in vtrA deletion

strains. These results indicate strongly that both vtrA and vtrB play

critical roles in V. parahaemolyticus-induced enterotoxicity.

VtrA and VtrB Specifically Regulate Genes Encoded in the
Vp-PAI Region

To identify transcriptional targets of VtrA and VtrB on the

complete chromosomes of V. parahaemolyticus, genome-wide

transcriptional profiles of vtrA or vtrB deletion strains were

compared with that of the wild-type strain (Fig. 6 and Table 1).

Overview of the transcriptome microarray analysis revealed that

most gene expressions were unaffected by deletion of the vtrA or

the vtrB genes respectively (Fig. 6A, B, respectively). However, it

was also obvious that genes located on a particular region of

chromosome 2 were remarkably down-regulated in both vtrA and

vtrB deletion strains (Fig. 6A, B; lined). Interestingly, this region is

included in the Vp-PAI region (vpa1309-vpa1396) [19,20] and the

transcription of both tdhAS genes and T3SS2-related genes were

also decreased significantly in each of the mutant strains (Fig. 6C,

D). The pattern of gene expression profile was almost similar

between these two mutant strains. Expression of vtrA was not

affected by vtrB gene deletion (–1.1 -fold change), which is in

accordance with our previous observations that vtrB gene deletion

did not have any effect on vtrA gene expression, as assessed by the

reporter gene assay of vtrA and immunoblotting of VtrA (Fig. 3A,

C). Only a few other genes encoded outside of the Vp-PAI region

were affected (Table 1). These results suggest that these two

proteins regulate gene expression in the Vp-PAI region in highly

specific manners.

Figure 4. VtrA and VtrB are not necessary for T3SS1-dependent cytotoxicity but necessary for T3SS2-dependent cytotoxicity. A. vtrA
and vtrB are not necessary for T3SS1-dependent cytotoxicity. Caco-2 cells were infected for 6 h with isogenic strains of POR-3 (DtdhASDvcrD2). Bar 1:
POR-3 (DtdhASDvcrD2); bar 2: POR-3DvtrA; bar 3: POR-3DvtrB; bar 4: DvcrD1DvcrD2 (DtdhASDvcrD1DvcrD2). Cytotoxicity was evaluated by the amount
of LDH released. Error bars represent standard deviations for results from triplicate experiments. B. vtrA and vtrB are essential for T3SS2-dependent
cytotoxicity. Caco-2 cells were infected for 6 h with isogenic mutant strains of POR-2 (DtdhASDvcrD1). Bar 1: POR-2 (DtdhASDvcrD1); bar 2: POR-2DvtrA
(DtdhASDvcrD1DvtrA); bar 3: POR-2DvtrA expressing vtrA (POR-2DvtrA+pvtrA); bar 4: POR-2DvtrA expressing vtrB (POR-2DvtrA+pvtrB); bar 5: POR-
2DvtrB (DtdhASDvcrD1DvtrB); bar 6; POR-2DvtrB expressing vtrA (POR-2DvtrB+pvtrA); bar 7: POR-2DvtrB expressing vtrB (POR-2DvtrB+pvtrB); bar 8:
POR-2DvtrADvtrB (DtdhASDvcrD1DvtrADvtrB); bar 9: POR-2DvtrADvtrB expressing vtrA (POR-2DvtrADvtrB+pvtrA); bar 10: POR-2DvtrADvtrB expressing
vtrB (POR-2DvtrADvtrB+pvtrB); bar 11: DvcrD1DvcrD2 (DtdhASDvcrD1DvcrD2). Cytotoxicity was evaluated by the amount of LDH released. Error bars
represent standard deviations for results from triplicate experiments. Asterisks indicate significant differences from the results obtained with the
parent strain (*P,0.05). C. Overexpressing of vtrA and vtrB promoted T3SS2-dependent cytotoxicity. Caco-2 cells were infected for 1.5–6 h with V.
parahaemolyticus. Cytotoxicity was evaluated by the amount of LDH released. POR-2 (DtdhASDvcrD1) with control vector (pSA19CP-MCS) (filled
squares, solid line), POR-2 expressing vtrA (filled circles, solid line), POR-2 expressing vtrB (filled triangles, solid line), DvcrD1DvcrD2
(DtdhASDvcrD1DvcrD2) with control vector (pSA19CP-MCS) (open squares, dashed line), DvcrD1DvcrD2 expressing vtrA (open circles, dashed line),
and DvcrD1DvcrD2 expressing vtrB (open triangles, dashed line). Error bars represent standard deviations for results from triplicate experiments.
Asterisks indicate significant differences from the results obtained with the parent strain (*P,0.05).
doi:10.1371/journal.pone.0008678.g004
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Discussion

Vibrio parahaemolyticus is a gram-negative marine bacterium that

causes acute gastroenteritis in humans [1,2]. TDH has been

considered a major virulence factor of gastroenteritis, because

TDH is responsible for KP (a marker of pathogenic strains) and

has cytotoxic and enterotoxic activities [8,15,27,28,29,30,31,32].

Whole genome sequencing of this KP-positive strain revealed the

presence of two sets of genes encoding for two separate type III

secretion systems (T3SS1 and T3SS2)[18]. The T3SS1 gene

cluster is found in both KP-negative and -positive strains, while the

T3SS2 gene cluster is highly associated with KP-positive strains

[21]. A functional characterization of T3SS2 has revealed that it is

associated with cytotoxic activity against Caco-2 cells in vitro

[25,26]. Furthermore, the enterotoxicity observed for a tdhAS

deletion mutant strain was not observed for a T3SS2-deficient

mutant strain [21,26,33]. Therefore, T3SS2 is also thought to be

related to the enterotoxicity of V. parahaemolyticus. Comparative

genomic analysis using microarrays to analyze both pathogenic

and non-pathogenic strains, revealed that only the genes in the 80-

kb pathogenicity island (Vp-PAI) on chromosome II, including two

tdh genes (tdhAS) and a set of type III secretion system (T3SS2),

were detected only in the KP-positive pathogenic strains [19,20].

Therefore, it has been considered that the genes encoded in the

80-kb pathogenicity island (Vp-PAI) play major roles in the

pathogenicity of this bacterium. However, the regulatory mech-

anisms for such genes are poorly understood. In this study, we

found that two novel ToxR-like transcriptional regulatory proteins

(VtrA; VPA1332 and VtrB; VPA1348), which are encoded in the

Vp-PAI region, played important roles in pathogenicity (enter-

otoxicity) of V. parahaemolyticus, controlling virulence genes in the

Vp-PAI region (including tdh and T3SS2-related genes) expression.

These findings strongly indicated that this pathogen equips refined

virulence gene expression system to cause gastroenteritis in

humans and that these regulators are key players in the virulence

of this bacterium.

Recently, a T3SS2-related T3SS gene cluster was found in trh

(TDH-related hemolysin)-positive (KP-negative) V. parahaemolyticus

strain TH3996, which is also pathogenic to humans. These T3SS-

related genes are highly associated among trh-positive strains [34].

The T3SS2-related T3SS gene cluster is also encoded in a flanking

region of the trh gene on chromosome II, which is called Vp-

PAITH3996, and not only TRH but also the T3SS-related genes in

Vp-PAITH3996 are involved in the enterotoxicity of trh-positive

strains [34]. Moreover, a T3SS2-related gene cluster was also

found in non-O1, non-O139 V. cholerae strains, and it was required

for colonization in the infant mouse model [35,36]. Therefore,

genes in the Vp-PAI region, especially those encoding for

hemolysins and T3SS2, have been considered to be related to

the pathogenicity of not only V. parahaemolyticus but also non-O1,

Figure 5. VtrA and VtrB have a critical role in V. parahaemolyticus-induced enterotoxicity. A. VtrA and VtrB are essential for T3SS2-
dependent enterotoxicity. The enterotoxic activity levels of isogenic mutants of POR-2 (DtdhASDvcrD1) and complemented strains in rabbit ileal loops
were examined. Bar 1, POR-2 (DtdhASDvcrD1); bar 2, POR-2DvtrA (DtdhASDvcrD1DvtrA); bar 3, POR-2DvtrA expressing vtrA (POR-2DvtrA+pvtrA); bar 4,
POR-2DvtrA expressing vtrB (POR-2DvtrA+pvtrB); bar 5, POR-2DvtrB (DtdhASDvcrD1DvtrB); bar 6, POR-2DvtrB expressing vtrA (POR-2DvtrB+pvtrA); bar
7, POR-2DvtrB expressing vtrB (POR-2DvtrB+pvtrB); bar 8, POR-2DvtrADvtrB (DtdhASDvcrD1DvtrADvtrB); bar 9, POR-2DvtrADvtrB expressing vtrA (POR-
2DvtrADvtrB+pvtrA); bar 10, POR-2DvtrADvtrB expressing vtrB (POR-2DvtrADvtrB+pvtrB); bar 11, DvcrD1DvcrD2 (DtdhASDvcrD1DvcrD2); bar 12, non-
infected (NI) control. Results were measured as the amount of accumulated fluid (in milliliters) per length (in centimeters) of ligated rabbit small
intestine. Error bars represent standard deviations for results from triplicate experiments. Asterisks indicate significant differences from the results
obtained with the parental strain (P,0.05). B. VtrA and VtrB are essential for V. parahaemolyticus-induced enterotoxicity. The enterotoxic activity of
isogenic mutants of wild-type V. parahaemolyticus (WT) and complemented strains in rabbit ileal loops were examined. Bar 1, wild-type (WT); bar 2,
WTDvtrA; bar 3, WTDvtrA expressing vtrA (WTDvtrA+pvtrA); bar 4, WTDvtrA expressing vtrB (WTDvtrA+pvtrB); bar 5, WTDvtrB; bar 6, WTDvtrB
expressing vtrA (WTDvtrB+pvtrA); bar 7, WTDvtrB expressing vtrB (WTDvtrB+pvtrB); bar 8, WTDvtrADvtrB; bar 9, WTDvtrADvtrB expressing vtrA
(WTDvtrADvtrB+pvtrA); bar 10, WTDvtrADvtrB expressing vtrB (WTDvtrADvtrB+pvtrB); bar 11, NI control. Error bars represent standard deviations for
results from triplicate experiments. Asterisks indicate significant differences from the results obtained with the parental strain (P,0.05).
doi:10.1371/journal.pone.0008678.g005
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Figure 6. Whole-genome transcriptional profiling of vtrA and vtrB deletion strain. Genome-wide transcript analysis of the VtrA and VtrB
regulons is shown. Gene expression was determined by comparing cDNA generated from WTDvtrA (A) or WTDvtrB (B) in exponential phase grown in
LB medium with 0.5% NaCl with that from the WT strain. The Vp-PAI region is indicated by a bold line. Effect of the vtrA (C) or vtrB (D) deletion on
expression of genes located within Vp-PAI (vpa1309-vpa1396). Representative gene functions are indicated at the top.
doi:10.1371/journal.pone.0008678.g006
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non-O139 V. cholerae to humans. The T3SS gene set found in these

strains contains a pair that is highly similar to the vtrA and vtrB

genes, suggesting that these regulators might contribute to the

virulence of these bacteria by controlling virulence gene expression

levels.

The transcriptional activator ToxR controls the expression of

the genes for CT, TCP, and outer membrane proteins in V. cholerae

[23]. ToxR is an integral membrane protein and consists of three

functional domains: cytoplasmic domain, transmembrane domain

and periplasmic domain [37]. The N-terminal cytoplasmic

domain of ToxR encodes an OmpR-like DNA-binding domain

that is essential for transcriptional regulation of ToxR-regulated

genes [37]. The transmembrane (TM) and periplasmic domains of

ToxR are believed to act as sensors of environmental signals [38].

The N-terminal portions of VtrA and VtrB share sequence

similarity with the DNA binding domain of ToxR. The TM-

PRED program (http://www.ch.embnet.org/cgi-bin/TMPRED

from parser; TM helix length between 17 and 33 residues; scores,

.1,000) predicted that VtrA and VtrB would contain one TM

region (VtrA, amino acids 134–153 and VtrB, amino acids 157–

182), indicating that VtrA and VtrB are transmembrane

transcriptional activators. The TM region of VtrB is located on

its C-terminal end, whereas that of VtrA is located on the middle

Table 1. Microarray analysis of VtrA and VtrB regulon in V.
parahaemolyticus.

Fold changea

Identification ORF Description vtrA vtrB

Downregulated genes (VtrA or VtrB-activated)

VP0047 peptide ABC transporter, ATP-binding
protein

21.6 22.0

VP1880 L-serine dehydratase 1 21.4 22.2

VP1904 methyl-accepting chemotaxis protein 23.6 23.6

VP2015 putative cytochrome c 22.1 23.4

VP2016 hypothetical protein 22.4 22.4

VP2362 outer membrane protein OmpK precursor 22.0 22.0

VP2679 ribosomal large subunit pseudouridine
synthase A

21.5 22.0

VPA1311 hypothetical protein 22.6 22.6

VPA1313 hypothetical protein 22.4 22.4

VPA1314 thermostable direct hemolysin A 25.8 211.3

VPA1315 hypothetical protein 23.3 23.3

VPA1321 cytotoxic necrotizing factor 23.1 23.1

VPA1322 putative zinc finger protein 22.4 23.5

VPA1323 hypothetical protein 22.5 23.2

VPA1324 hypothetical protein 211.2 217.8

VPA1326 hypothetical protein 23.0 23.3

VPA1327 putative exoenzyme T 26.5 28.4

VPA1328 hypothetical protein 27.0 211.9

VPA1329 putative traA protein 28.7 218.0

VPA1330 hypothetical protein 23.4 23.7

VPA1331 putative OspC2 26.5 29.6

VPA1332 VtrA protein 25.2 21.1

VPA1334 hypothetical protein 23.3 26.4

VPA1336 hypothetical protein 23.5 25.4

VPA1337 hypothetical protein 25.0 25.0

VPA1338 putative ATPase YscN 27.4 29.6

VPA1339 putative type III secretion system EscC protein 213.7 221.5

VPA1340 hypothetical protein 215.5 229.2

VPA1341 putative Spa29, component of the Mxi-Spa
secretion machinery

211.5 214.8

VPA1342 putative Type III secretion protein Spa24 212.3 217.3

VPA1343 hypothetical protein 239.7 2104.7

VPA1344 hypothetical protein 26.3 27.3

VPA1345 hypothetical protein 28.9 212.7

VPA1346 putative targeted effector protein YopP 213.5 218.5

VPA1347 hypothetical protein 25.9 25.2

VPA1348 VtrB protein 25.9 278.8

VPA1349 putative Type III secretion protein Spa33 210.4 211.4

VPA1350 hypothetical protein 210.7 216.0

VPA1351 hypothetical protein 211.3 221.0

VPA1352 hypothetical protein 29.6 217.0

VPA1353 putative outer membrane protein 215.7 223.7

VPA1354 putative type III secretion system EscU
protein

27.7 212.9

VPA1355 putative type III secretion system EscV protein 210.8 215.5

VPA1356 hypothetical protein 222.7 244.8

Fold changea

Identification ORF Description vtrA vtrB

VPA1357 hypothetical protein 28.6 27.3

VPA1358 putative dimethyladenosine transferase 213.0 215.4

VPA1359 hypothetical protein 210.6 213.3

VPA1360 hypothetical protein 211.2 215.2

VPA1361 hypothetical protein 221.2 246.1

VPA1362 putative secreted protein EspD 220.6 268.5

VPA1363 putative chaperone 216.7 222.5

VPA1364 hypothetical protein 212.6 230.0

VPA1365 putative two-component response regulator 214.2 218.2

VPA1366 hypothetical protein 215.3 224.3

VPA1367 putative type III secretion system lipoprotein
precursor EprK

213.8 222.4

VPA1368 hypothetical protein 216.2 234.5

VPA1369 hypothetical protein 25.8 26.6

VPA1370 hypothetical protein 214.4 240.3

VPA1371 hypothetical protein 26.0 26.5

VPA1373 hypothetical protein 213.2 237.8

VPA1376 conserved hypothetical protein 28.9 212.8

VPA1378 thermostable direct hemolysin S 27.2 28.5

VPA1380 putative OspB protein 217.3 239.5

Upregulated genes (VtrA or VtrB-repressed)

VP0368 mannitol operon repressor 1.9 2.1

VP0996 putative 54 kDa polar flagellar sheath
protein A

2.0 2.0

VPA0548 putative protein F-related protein 1.7 2.0

aFold change in gene transcripts between the wild-type and DvtrA or DvtrB
mutant as determined by microarray analysis. Statistically significant changes
($2-fold difference with P,0.05) are highlighted in bold as described in
Materials and Methods.

doi:10.1371/journal.pone.0008678.t001
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region as ToxR. Although the C-terminal region of VtrA did not

show significant sequence homology with ToxR, it is possible that

it might be involved in receiving and transmitting environmental

signals to elicit VtrA-mediated regulation. This signal transduction

could exert virulence in V. parahaemolyticus.

V. parahaemolyticus has a homolog of V. cholerae toxRS operon (Vp-

ToxRS), and Vp-ToxR is involved in the production of TDH

[39]. Recently, Nakano et al. reported that Hfq, which is conserved

in a wide range of bacteria and modulates the stability and

transcription of mRNAs, also regulates TDH expression in V.

parahaemolyticus [40]. In our investigation, expression levels of vp-

toxR and hfq were not significantly affected by deletion of vtrA and

vtrB genes under our experimental conditions (GSE17242),

suggesting that neither vp-toxR nor hfq is involved in TDH

expression mediated by VtrA and VtrB. It is not surprising that

VtrA and VtrB are regulons, because both Vp-ToxR and Hfq are

global regulators and their regulons comprise many genes,

including virulence-associated genes [23,41]. Because VtrA and

VtrB regulons were specifically clustered in the Vp-PAI region

(Fig. 6 and Table 1), it is possible that they are more directly

related to the control of pathogenicity than Vp-ToxR and Hfq.

Genome-wide transcriptional profiling of vtrA or vtrB deletion

strains revealed that VtrA and VtrB regulons were specifically

encoded in the Vp-PAI region (Fig. 6 and Table 1). Given our

findings that the expression of vtrB is under control of VtrA (Fig. 3)

and that vector-expressed vtrB could restore the defect in

enterotoxicity of the WTDvtrADvtrB strain (Fig. 5B), VtrB might

determine this specific gene expression. The G+C content of the

Vp-PAI region of V. parahaemolyticus is lower than the average G+C

content of the small chromosome (ChrII) [18,19]. Although a

consensus sequence recognized by VtrB is unknown, it is possible

that this characteristic of low G+C content in Vp-PAI might be

one of the factors deciding the specificity of VtrB regulons. Given

that the Vp-PAI sequence is unique to KP-positive pathogenic

strains, plays an important role in the pathogenicity of V.

parahaemolyticus and that VtrB has a critical role in the expression

of genes from this region, VtrB may be considered a key player in

the virulence of this bacterium. Therefore, it could be an ‘‘Achilles’

heel’’ of this pathogen. It is possible that VtrB-specific drugs would

perform well in the prevention and treatment of V. parahaemolyticus-

induced illness.

Materials and Methods

Bacterial Strains and Plasmids
V. parahaemolyticus strain RIMD2210633 (KP positive, serotype

O3:K6) [18] was used for constructing deletion mutants and in

functional analysis. E. coli DH5a and SM10lpir were used for

general manipulation of plasmids and mobilization of plasmids

into V. parahaemolyticus. E. coli MC4100 was used for reporter gene

assay. The strains and plasmids used in this study are listed in

Table 2.

RNA Isolation
Bacterial strains were grown at 37uC in LB broth containing

0.5% NaCl to an OD600 of 1.0. Bacteria were harvested by

centrifugation and the bacterial pellet was suspended with TRIzol

Reagent (Invitrogen). After 1 h incubation at 4uC, one-fifth

volume of chloroform was added to the suspension followed by

recentrifugation. The aqueous layer was removed and a one-tenth

volume of 3 M sodium acetate (pH 5.9) was added. Nucleic acids

were precipitated with isopropanol and pelleted by centrifugation.

The pellet was washed with 80% ethanol. Contaminating genomic

DNA was removed from the RNA samples using Turbo DNA-free

kits (Ambion). RNA was purified by acid phenol-chloroform

extraction and ethanol precipitation. Finally, highly pure total

RNA was further isolated using QIAGEN RNeasy Mini kits,

according to the manufacturer’s protocol.

DNA Microarray
A total of 20 mg of RNA was transcribed to DNA and labeled

with aminoallyl dUTP using reverse transcriptase (Superscript III;

Invitrogen) and random hexamers (TAKARA Bio) as primers.

The aminoallyl-labeled DNA was purified by phenol chloroform

extraction and ethanol precipitation. Precipitated DNA was

resolved in 50 mM NaHCO3 (pH 9.0) and Cy3 or Cy5

monofunctional dye (GE Healthcare) was added to the solution.

After 1 h incubation, unincorporated dye was removed using

CentriSep spin columns (Princeton Separations, Inc.). Hybridiza-

tion and detection of microarray signals was performed as

described [19]. Equal volumes of Cy3- or Cy5-labeled probes

from wild type and WT DvtrA or WT DvtrB V. parahaemolyticus

strain were mixed with in hybridization solution (56SSC buffer,

0.5% SDS, 0.1 mg/ml human Cot-1 DNA). Mixtures were heated

for 5 min at 95uC, followed by ice incubation. The probe mixtures

were applied to a microarray slides and covered with MAUI AO

lids (BioMicro Systems). Microarray slides were incubated for 16 h

at 55uC in a MAUI hybridization chamber. After hybridization,

the microarray slides were washed and scanned using a Scan

Array Express Lite (Perkin Elmer Life and Analytical Sciences).

Each experiment was repeated in triplicates. Microarray data were

analyzed using ScanArray Express software (Perkin Elmer Life and

Analytical Sciences). The genes regulated by vtrA or vtrB were

defined as genes that exhibited at least 2-fold difference on

WTDvtrA or WTDvtrB in three experiments. All data were filtered

for statistical significance (P,0.05) using t-tests in MultiExperi-

ment Viewer (http://www.tm4.org/mev.html). Array results are

available at the NCBI Gene Expression Omnibus database (GEO;

http://www.ncbi.nlm.nih.gov/geo/) under the accession number

GSE17242.

Immunoblot Analysis
V. parahaemolyticus strains were grown overnight in LB broth with

0.5% NaCl. Cultures were then diluted 1:100 into LB broth with

0.5% NaCl and grown with shaking at 37uC for 5 h. After

incubation, bacterial cultures were centrifuged and bacterial

pellets solubilized with Laemmli buffer. Secreted proteins were

harvested by precipitation with cold trichloroacetic acid to a final

concentration of 10% (v/v) on ice for 60 min, followed by

centrifugation at 48,000 g for 60 min. The pellets were rinsed in

cold acetone and then solubilized in Laemmli buffer.

Samples for western blot analysis were separated by SDS–

PAGE (10%, 10–20%, or 15–25% gradients of polyacrylamide;

COSMO BIO). The transferred membrane was probed with anti-

VscC1, anti-VopD1, anti-VepA, anti-VscC2, anti-VopD2, anti-

VopC, anti-TDH, anti-VPA1342, anti-VtrA, or anti-VtrB rabbit

polyclonal antibodies and then probed with horseradish peroxi-

dase-conjugated goat anti-rabbit antibody (ZYMED). The blots

were developed using enhanced chemiluminescence (ECL)

western blotting kits (GE healthcare).

Reporter Gene Assays
E. coli MC4100 or V. parahaemolyticus strains, each harboring a

reporter plasmid were grown for 1 h at 37uC in LB broth

containing 1.0 or 0.5% NaCl. b-galactosidase activity was assayed

in cell lysates by Miller’s method using o-nitrophenyl-b-D-

galactopyranoside (ONPG) as a substrate [42].
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Electrophoretic Mobility Shift Assay (EMSA)
The promoter region of vtrB, containing a 284 bp upstream

sequence of the start codon, was amplified by polymerase chain

reaction (PCR). PCR products purified from agarose gels were

then mixed with increasing concentrations of the purified DNA

binding domains of VtrA (amino acids 1–133) and VtrB (amino

acids 1–158) in a reaction buffer containing 10 mg/ml of bovine

serum albumin (BSA). After 30 min incubation at room

temperature, samples were separated by 5% polyacrylamide

nondenatureing gels in TAE buffer at room temperature. DNA

was stained with SYBR Green I Nucleic Acid Gel Stain (Lonza)

and visualized with a LAS-4000 mini EPUV (Fujifilm) at 460 nm

emission wevelength.

Cytotoxicity Assays
T3SS1 and T3SS2-dependent cytotoxicity assays were per-

formed as described [25]. Briefly, Caco-2 cells were seeded at

36104 cells per well in 96-well plates and cultured for 48 h to

confluency. The cells were co-cultured for 1.5–6 h with phosphate

buffered saline (PBS)-washed bacteria at a multiplicity of infection

(MOI) of 10. The release of lactate dehydrogenase (LDH) into the

medium was quantified using CytoTox96 (Promega). The LDH

release (percent cytotoxicity) was calculated using the following

equation: (optical density at 490 nm [OD490] of experimental

release – OD490 of spontaneous release)/(OD490 of maximum

release – OD490 of spontaneous release)6100. Spontaneous release

was taken to be the amount of LDH released from the cytoplasm

Table 2. Strains and plasmids used in this study.

Strain or plasmid Description Source or reference

Vibrio parahaemolyticus

WT RIMD2210633 (KP positive, serotype O3:K6) [18]

POR-1 DtdhAS derivative of WT [21]

POR-2 POR-1 knockout of vcrD1 (vp1696) gene [21]

POR-3 POR-1 knockout of vcrD2 (vpa1355) gene [21]

DvcrD1DvcrD2 POR-1 knockout of vcrD1 and vcrD2 gene [25]

WTDvtrA KXV237 knockout of vtrA (vp1332) gene This study

WTDvtrB KXV237 knockout of vtrB (vp1348) gene This study

WTDvtrA DvtrB KXV237 knockout of vtrA and vtrB gene This study

POR-2DvtrA POR-2 knockout of vtrA (vp1332) gene This study

POR-2DvtrB POR-2 knockout of vtrB (vp1348) gene This study

POR-2DvtrA DvtrB POR-2 knockout of vtrA and vtrB gene This study

POR-3DvtrA POR-3 knockout of vtrA (vp1332) gene This study

POR-3DvtrB POR-3 knockout of vtrB (vp1348) gene This study

DvscC1 POR-1 knockout of vscC1 (vp1696) gene [21]

POR-4 POR-1 knockout of vopD1 (vp1656) gene [43]

POR-10 POR-1 knockout of vepA (vp1680) gene [43]

DvscC2 POR-1 knockout of vscC2 (vpa1339) gene [21]

POR-2DvopD2 POR-2 knockout of vopD2 (vp1361) gene [26]

POR-2DvopC POR-2 knockout of vopC (vpa1321) gene [25]

POR-2Dvpa1343 POR-2 knockout of vpa1343 gene This study

Escherichia coli

DH5a F2 W80DlacZM15 D (lacZYA argF)U169 deoP recA1 endA1 hsdR17 (rK
2 mK

2) Laboratory collection

SM10lpir thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu lpir R6K [24]

MC4100 F– araD139 D (argF-lac) U169 rpsL150 (Strr) relA1 flbB5301 deoC1 ptsF25 rbsR [44]

Plasmid

pHRP309 lacZ transcriptional fusion vector, Gmr [45]

p309-Pro-vtrA Derivative of pHRP309, containing vtrA promoter This study

p309-Pro-vtrB Derivative of pHRP309, containing vtrB promoter This study

pYAK1 R6K-ori suicide vector containing sacB gene [46]

pYAK1-DvtrA Derivative of suicide vector pYAK1 for generating the vtrA deletion mutants This study

pYAK1-DvtrB Derivative of suicide vector pYAK1 for generating the vtrB deletion mutants This study

pYAK1-Dvpa1343 Derivative of suicide vector pYAK1 for generating the vpa1343 deletion mutants This study

pSA19CP-MCS Complement vector for V. parahaemolyticus, Cmr [47]

pvtrA Derivative of pSA19CP-MCS, containing vtrA gene This study

pvtrB Derivative of pSA19CP-MCS, containing vtrB gene This study

doi:10.1371/journal.pone.0008678.t002
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of uninfected cells, whereas the maximum release was the amount

released by total lysis of uninfected cells.

Rabbit Ileal Loop Test
V. parahaemolyticus strains were grown overnight in LB broth with

3% NaCl. Cultures were then diluted 1:100 into LB broth with 3%

NaCl and grown with shaking for 5.5 h. After incubation, bacteria

were harvested by centrifugation and suspended in LB broth with

0.5% NaCl. The bacterial suspensions (109 CFU) were injected

into the ligated ileal loops of rabbits, and fluid accumulation in

each loop was measured at 16 h after challenge. The result was

expressed as the amount of accumulated fluid (in milliliters) per

length (in centimeters) of ligated rabbit small intestine. All animal

experiments were performed according to an experimental

protocol approved by the Ethics Review Committee for Animal

Experimentation of Research Institute for Microbial Diseases

(Osaka University, Osaka, Japan).

Statistical Analysis
All data are presented as the mean and standard deviation of

three determinations per experimental condition. The statistical

significance was determined by one-way ANOVA followed by

Dunnett’s multiple comparison test, and P,0.05 was considered

statistically significant.
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