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The transmembrane ionic currents that underlie changes in a cell’s membrane potential

give rise to electric fields in the extracellular space. In the context of brain activity, these

electric fields form the basis for extracellularly recorded signals, such as multiunit activity,

local field potentials and electroencephalograms. Understanding the underlying neuronal

dynamics and localizing current sources using these signals is often challenging, and

therefore effective computational modeling approaches are critical. Typically, the electric

fields from neural activity are modeled in a post-hoc form, i.e., a traditional neuronal

model is used to first generate the membrane currents, which in turn are then used

to calculate the electric fields. When the conductivity of the extracellular space is high,

the electric fields are weak, and therefore treating membrane currents and electric

fields separately is justified. However, in brain regions of lower conductivity, extracellular

fields can feed back and significantly influence the underlying transmembrane currents

and dynamics of nearby neurons—this is often referred to as ephaptic coupling.

The closed-loop nature of ephaptic coupling cannot be modeled using the post-hoc

approaches implemented by existing software tools; instead, electric fields and neuronal

dynamics must be solved simultaneously. To this end, we have developed a generalized

modeling toolbox for studying ephaptic coupling in compartmental neuron models:

ELFENN (ELectric Field Effects in Neural Networks). In open loop conditions, we validate

the separate components of ELFENN for modeling membrane dynamics and associated

field potentials against standard approaches (NEURON and LFPy). Unlike standard

approaches however, ELFENN enables the closed-loop condition to be modeled as

well, in that the field potentials can feed back and influence membrane dynamics. As an

example closed-loop case, we use ELFENN to study phase-locking of action potentials

generated by a population of axons running parallel in a bundle. Being able to efficiently

explore ephaptic coupling from a computational perspective using tools, such as ELFENN

will allow us to better understand the physical basis of electric fields in the brain, as well

as the conditions in which these fields may influence neuronal dynamics in general.
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INTRODUCTION

Electrical signaling in nervous systems involves large
transmembrane ionic currents that lead to the formation
of electric fields. These electric fields can be recorded in
a variety of ways at different spatiotemporal resolution,
from single unit activity to local field potentials (LFPs) and
electroencephalograms (EEG) (Buzsáki et al., 2012; Einevoll
et al., 2013; Pesaran et al., 2018). In recent years, interest in the
biophysical basis of these signals has increased, in part because of
their importance in many brain-machine interface applications
(Moran, 2010; Flint et al., 2013; Waldert, 2016). LFPs are
generally characterized by the low-frequency (below ∼100Hz)
components of extracellular signals thought to be dominated by
synaptic processes (Buzsáki et al., 2012; Einevoll et al., 2013). To
better understand these signals, many modeling approaches have
been developed, often in the form of software packages, such
as LFPy (Lindén et al., 2014), LFPsim (Parasuram et al., 2016),
or VERTEX (Tomsett et al., 2014). Many of these packages are
based on the NEURON simulation environment (Carnevale and
Hines, 2006), but regardless of the underlying equation solver,
the membrane potential and ionic currents are calculated first,
and then subsequently (post-hoc), the extracellular potentials
are calculated. Because the underlying neural dynamics are
considered independent of the extracellular fields in this case,
we refer to this post-hoc LFP computation as the open-loop
condition (Figures 1A,C). In other words, the neural dynamics
generate the LFP but the associated fields do not influence the
neural dynamics. This scheme will be valid when the resulting
fields are sufficiently weak, and the relevant timescales are short
(Tveito et al., 2017).

However, when extracellular fields are sufficiently strong, they
can affect membrane potentials, and in a sense, “feed back”
and influence neuronal dynamics (Figures 1B,D); in such cases,
the open-loop assumption is no longer valid. This closed-loop
condition of the LFP is commonly referred to as ephaptic
coupling (Arvanitaki, 1942; Jefferys, 1995; Holt and Koch, 1999;
Anastassiou et al., 2010; Anastassiou and Koch, 2015). While the
existence of ephaptic coupling is often acknowledged, it is not
usually included in neuronal models. Indeed, this has been the
subject of much debate (Weiss and Faber, 2010; Anastassiou and
Koch, 2015). The common justification for omitting ephaptic
coupling is that its influence is weak and insignificant. Recently
however, weak ephaptic effects due to low-frequency oscillations
(producing changes in membrane potential <0.5mV) have
been shown to strongly entrain neuronal activity (Fröhlich and
McCormick, 2010; Anastassiou et al., 2011). And given that
spiking probability can be dependent on the LFP phase (Gupta
et al., 2016) and greatly influenced by noise transients (Kuhn
et al., 2004; Destexhe and Contreras, 2006), the extracellular
effects of local and population-level spiking activity could have
a significant impact on neural computation.

In some contexts, weak electric field effects have been
shown to play significant functional roles. For example, ephaptic
coupling can modulate cardiac conduction velocity with respect
to gap junctional connections, increasing conduction velocity
when connectivity is weak and vice versa (Lin and Keener, 2010).

FIGURE 1 | Intuition for ephaptic coupling. (A) Time series of membrane

potentials in two adjacent neurons (comprising soma and axon compartments;

see panel (C) in an open-loop condition. (B) Similar to panel (A), except in

closed-loop condition involving ephaptic coupling see panel (D). The electric

field generated by an action potential in the upper axon depolarizes the

membrane potential of its neighbor. (C) Snap shots in time of open-loop

condition representing a typical LFP simulation; time of snap shot is indicated

by an arrow in panel (A). (D) Similar to panel (C), except in closed-loop

condition involving ephaptic coupling; time of snap shot is indicated by an

arrow in panel (B). In all panels, a constant DC current is injected in the soma

of the upper neuron (I) to produce propagating action potentials. In panels

(C,D), neuron color indicates membrane potential: in upper neuron, black

denotes the resting potential (−80mV), and yellow is the spike peak (+40mV);

the color scale for lower neuron is inflated by a factor of 16 for illustrative

purposes. The transmembrane currents involved generate an electric field in

the extracellular space (blue negative, orange positive); low extracellular

conductivities were used for illustrative purposes, resulting in extracellular

potentials ranging from −15 to 8mV.

Ephaptic coupling has also been implicated in the Mauthner
cell system involved in the C-start escape response in fish,
to enhance selectivity in response direction (Furukawa and
Furshpan, 1963; Korn and Axelrad, 1980). Another interesting
example has been described in some motor units, where ephaptic
effects from muscle activity feeds back onto motor neuron
axons, resulting in reverberating loops that enhance repetitive
firing (Roth, 1994). Ephaptic coupling may also play a role in
neuropathic pain through crosstalk between damaged nerves and
adjacent fibers (Bridges et al., 2001; Cohen and Mao, 2014).
And most recently, ephaptic coupling was shown to synchronize
firing of cerebellar Purkinje cells (Han et al., 2018). In other
systems, ephaptic coupling may be difficult to avoid. Weakly
electric fish generate an oscillating field for electric sensing that
permeates their entire body. The potential ephaptic effects which
this relatively strong electric field has on neuronal processing is
not known.

Although it is clear that ephaptic effects can be important in
at least some conditions, the added complexity of extracellular
influences on neurons in this closed-loop condition can lead
to challenges from a modeling perspective; indeed, the tools
required to compute ephaptic effects have not yet been packaged
in any easy-to-use format. To this end, we have developed a
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general-purpose modeling toolbox to study ephaptic coupling
that includes documentation and tutorials for various use cases.

EXISTING MODELING TOOLS

From a neural dynamics perspective, there are a multitude
of feature-rich compartmental model solvers: for example
NEURON (Carnevale and Hines, 2006), GENESIS (Bower and
Beeman, 1998), and BRIAN (Goodman and Brette, 2009). These
solvers, as well as more specialized solvers (Tomsett et al., 2014),
typically form the basis for post-hoc calculation of the LFP (or
other bioelectric field measures). For example, LFPy (Lindén
et al., 2014) is a popular tool that calculates LFPs [and now ECoG,
EEG, and MEG signals (Hagen et al., 2018)] for neurons with
geometries that can be as complex as the underlying NEURON
environment can handle. In addition, BioNet is a recently
developed tool which on top of enabling large simulations is also
able to compute LFPs during NEURON simulations (Gratiy et al.,
2018). None of these tools however are currently capable of easily
integrating ephaptic coupling.

For ephaptic coupling (and extracellular stimulation in
general), there are no software packages per se, but common
methods involve the use of a resistive grid to describe the
coupling of neurons in the extracellular space (Traub et al., 1985;
Park et al., 2005), or in some cases the extracellular potentials
are computed during the simulation and coupled directly to
the neural dynamics (Holt and Koch, 1999; Stacey et al., 2015;
Goldwyn and Rinzel, 2016). In the context of extracellular
stimulation, finite element models implemented using COMSOL
or equivalent tools are common (McIntyre and Grill, 2002;
Elia and Lamberti, 2013; Joucla et al., 2014; Pelot et al., 2018).
This set of techniques spans a broad spectrum of biological
realism. On one side of this spectrum are one dimensional
linear cable models (Goldwyn and Rinzel, 2016), which are the
easiest computationally to evaluate. On the other side of the
spectrum are finite element models (Joucla and Yvert, 2012),
which even after standard approximations (Elia and Lamberti,
2013; Pelot et al., 2018) are computationally expensive, often
making a detailed exploration of parameter spaces prohibitive.
In addition, these model implementations are not always freely
available and accessible to the general user; and in cases where
models are published, they are often application specific. To
this end, we have developed ELFENN (ELectric Field Effects
in Neural Networks), a MATLAB (Mathworks.com) toolbox
which provides an accessible interface to the Holt and Koch
(1999) method of modeling ephaptic coupling. By using standard
compartmental methods, notation and terminology (i.e., similar
to that used in the NEURON environment), our goal is to make
modeling ephaptic coupling accessible to the community at large.

MODELING EPHAPTIC COUPLING:
THEORY

In recent years, both ephaptic coupling (Holt and Koch,
1999; Stacey et al., 2015; Goldwyn and Rinzel, 2016) and
extracellular stimulation (McIntyre and Grill, 2002; Joucla and

Yvert, 2012) have been modeled computationally. Depending on
the particular question, the methods vary from highly abstracted,
but simple-to-evaluate linear cable models (Goldwyn and
Rinzel, 2016) to highly detailed realistic neuronal morphologies
implemented using computationally expensive finite element
models (McIntyre and Grill, 2002) It is clear that neuron
morphology plays a strong role in shaping the LFP (Lindén
et al., 2010) and thus will influence ephaptic coupling dynamics.
Here, we strike a balance between anatomical realism and
computational expense and provide, based on previous work
(Holt and Koch, 1999), a simple modeling interface to directly
couple neuronal membrane potential dynamics and the LFP.

We begin with the Hodgkin-Huxley formalism for the
transmembrane potential of a spatially-extended neuron
(Hodgkin and Huxley, 1952; Dayan and Abbott, 2005). For a
given neuronal compartment i, there is a membrane potential
(V i

m), a set of voltage-dependent ion channel conductances
(giion, determined by their respective dynamical gating variables
e.g., m, h, and n, not shown here) and equilibrium potentials
(Eion); in addition, there is a current between any adjacent
compartment j, through an intracellular resistance Ri, j. The
membrane dynamics for compartment i coupled to an adjacent
compartment j are summarized in Equation (1). While it is true
in general that a typical compartment would have at least two
neighbors, we omit the second compartment here for simplicity:

Cm
dV i

m

dt
+
∑

ion

giion
(

V i
m − Eion

)

=
1

Ri, j

(

V
j
m − V i

m

)

(1)

For any given compartment, the transmembrane potential
(Vm), can be expressed as the difference between the
intracellular potential (Vin), and the extracellular potential
(Vout) (Equation 2):

Vm ≡ Vin − Vout (2)

If the extracellular potential Vout is 0 (more accurately, if the
gradient in the extracellular potential is 0), then Equation 1 holds.
In this situation, the axial current term is more appropriately
described by the intracellular potential, leading to a modification
of Equation (1):

Cm
dV i

m

dt
+
∑

ion

giion
(

V i
m − Eion

)

=
1

Ri, j

(

V
j
in − V i

in

)

(3)

Following previous methods (Holt and Koch, 1999; Goldwyn and
Rinzel, 2016), we can rewrite Equations (2, 3) to incorporate
non-zero extracellular potentials (Equation 4):

Cm
dV i

m

dt
+
∑

ion

giion
(

V i
m − Eion

)

=
1

Ri, j

(

V
j
m − V i

m

)

+
1

Ri, j

(

V
j
out − V i

out

)

(4)

This extra term is referred to as the ephaptic current (Equation 5;
(Holt and Koch, 1999)):

ieph =
1

Ri, j

(

V
j
out − V i

out

)

(5)
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FIGURE 2 | Illustration of variables for electric field calculations (see Equations

7 and 8). (A) Cylindrical current source: r is the radius of the cylinder, l is the

distance from the beginning of the cylinder, h is the distance from the end. (B)

Spherical current source: R is the distance from the center of the sphere, and r

is the radius of the sphere.

Finally, we use a common formalism in both ephaptic and
LFP literature to define Vout (Holt and Koch, 1999; Lindén
et al., 2014). Under a quasi-electrostatic approximation, the
extracellular potential will be the solution to the Poisson equation
(Equation 6) where V is the potential over the extracellular
domain, σ is the conductivity of the medium and CCSD is the
current source density arising from neural sources (Gratiy et al.,
2017; Tveito et al., 2017).

∇ · σ∇V = −CCSD (6)

While this equation can be solved using a finite element
approach, as previously noted, this can be computationally
expensive in practice. However, for certain boundary conditions
these equations have explicit solutions. This is the case
for standard compartmental neuronal geometries that use
combinations of spherical and cylindrical compartments to
model somata, axons, and dendrites. The solution for a
cylindrical current source (Equation 7) comes from the line
source approximation (Holt and Koch, 1999), and that for a
spherical current source (Equation 8) comes from the point
(spherical) source (see Figure 2 and legend for definitions).

Vout =
Imr

2σ
log

(∣

∣

∣

∣

∣

√
h2 + r2 − h

√
l2 + r2 − l

∣

∣

∣

∣

∣

)

(7)

Vout =
Imr

σR
(8)

MODELING EPHAPTIC COUPLING:
IMPLEMENTATION USING ELFENN

We have implemented the approach described in the previous
section as a software toolbox called ELFENN (ELectric Field
Effects in Neural Networks). ELFENN can be downloaded
(see availability section) and installed from within MATLAB.
ELFENN comprises two parts, a geometry toolchain and a
solver toolchain.

To construct neuronal geometries, we use standard
compartmental neuron modeling approaches, and for ease
of use and comparison, standard terminology has been adopted
where possible. As in the NEURON environment, model
neurons are defined by a combination of spherical (somata) and
cylindrical (axons and dendrites) geometries called sections,

which are then discretized into nodes (where the equations are
solved) called Segments.

To solve models with ephaptic coupling, we provide a
wrapping solver which wraps commonly-used neural dynamics
models with the extracellular dynamics. The resulting dynamics,
as described above (Equations 3–7), form a system of differential
algebraic equations (DAE). Extracellular potentials for each
segment are given by Equations (7) or (8) (for cylindrical and
spherical sections, respectively). Because the Poisson equation
(Equation 6) is a linear PDE, linear superposition holds, i.e., the
solution to the sum of several compartments (i.e., Segments) can
be calculated as the sum of contributions from each individual
compartment (Lindén et al., 2014; Parasuram et al., 2016). To
calculate a single extracellular potential for each compartment,
Vout is averaged over the boundary of the segment, which will be
valid when the radius and length of the segment is small relative
to the characteristic length of the field (at that point). Note that
in some previous work, the cable equation is not discretized,
leaving a partial DAE (PDAE), which is solved as a boundary
value problem (Goldwyn and Rinzel, 2016).

The membrane dynamics depend on the extracellular
potential (Vout) (Equations 7 and 8), which in turn depend on
the membrane current defined (Equation 4). Unlike traditional
ODEs which when solved explicitly take the form of a function
applied to the previous time step to compute the future time step,
the circularity in this system requires the future time step to be
solved self-consistently (similar to implicit methods). The DAE
solver used here (MATLAB’s ode15s) solves systems of the form:

Mẋ = f (x, t) (9)

where M is the identity matrix of equal dimension to that of
the DAE with the exception that 0’s on the diagonal specify
the algebraic components. Given that all equations in the DAE
are solved simultaneously, the time step is adjusted (shortened)
until the numerical approximation of the DAE is satisfied to
within tolerance, i.e., a self-consistent solution. The solver we
have implemented here allows ephaptic dynamics to be included
automatically without any extra work from the end user (see
section Scope, Capabilities, and Limitations).

VALIDATING THE COMPONENTS
OF ELFENN

Given that ELFENN implements a combination of common
algorithms, we can validate each component separately in
open-loop conditions (i.e., no ephaptic coupling) against
existing LFP and compartmental neuron model solvers. In the
interest of brevity, we present only two comparisons here:
action potential propagation using NEURON (to validate the
membrane potential dynamics in open loop) and LFPy (to
validate the LFP in open-loop); additional examples are included
with ELFENN.

Validating Neural Dynamics
In our first example (Figure 3), we consider action potential
propagation in the classic Hodgkin-Huxley model included
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FIGURE 3 | Validation of neural dynamics. Panels (A–D) show membrane potential over time for a different neuron morphology (indicated by schematics on right).

Colored traces are ELFENN simulations at the recording locations denoted in schematic with appropriate color. Dashed traces are the corresponding NEURON

solutions in each case. Current is injected at location denoted by I. Orange trace in panel (B) is occluded by purple trace; the solutions are identical due to symmetry.

in NEURON (Carnevale and Hines, 2006). To validate the
cable equation solver used in ELFENN, we implemented these
dynamics using four basic neuronal morphologies with both
ELFENN and NEURON (CVODE) solvers (in the ELFENN
solver ephaptic coupling is turned off). Figures 3A–D shows a
30ms simulation for each geometry, with membrane potential
recordings at three representative locations (color-coded as
green, orange, purple by location). A schematic of each neuron
is presented on the right of each panel showing the recording
locations along with the site of a constant current injection (I)
used to initiate the repetitive action potentials. The solutions
from ELFENN are color-code by location, and the solutions from
NEURON are overlaid as a dashed black line in each case. The
different solutions essentially overlap, with average RMS errors
well below 0.5mV, and the majority of error arising from slight
discrepancies in spike timing (10–20 µs).

Validating Generated LFPs
In our second example (Figure 4), we consider the same

Hodgkin-Huxley model but limited to a single axon and calculate

the LFP using LFPy (Lindén et al., 2014) to validate the LFP

computed by ELFENN (in open loop). While only one geometry
is presented here, all of the geometries considered in Figure 3

show similar results, and are included as additional comparisons

with ELFENN software.

In Figure 4, a schematic of the setup shows a straight axon

with DC current injected (I) at one end. LFPs are measured along

a line parallel to the axon at lateral distances (dlat) of 1, 5, and

10µm (note that we focus on the accuracy close to the axon

boundary where Vout is determined). The upper (A) and lower
plots (B) show the spatiotemporal LFP at these three locations,

for ELFENN and LFPy, respectively. Contrary to many LFP plots

which are in two spatial dimensions, only the vertical axis here

represents space, with time represented on the horizontal axis.
Wavelike behavior is apparent due to the periodicity of action
potential firing caused by the DC current injection. Overall, the
results of the two methods are quite similar with the RMS error
of all results <1.7 µV (1.1%), and again the majority of the error
arises from slight spike timing differences (∼10 µs).

SCOPE, CAPABILITIES AND LIMITATIONS

In this section we will describe the main components of the
ELFENN toolbox. Further explanation and examples can be
found in our documentation which can be accessed by running
the MATLAB ‘doc’ command and clicking the ELFENN toolbox
link once ELFENN has been installed.

Using ELFENN: Geometry
The first step in the modeling process is to create a cell
geometry. Using NEURON-like terminology, cells are composed
of sections: cylindrical chunks for axons and dendrites, and
spheres for somata. Cells in ELFENN are created section by
section as seen in the following code snippet, where a spherical
soma and a cylindrical axon are connected together to create a
cell named ball_and_stick. Several additional functions for
setting angles, orientations, and other morphological properties
are explained in our documentation with examples.

soma = ELFENN.Section('soma' , 'radius' , 15,...
'sectionLength' , 30, 'sectionGeometry' , 'S' , 'nseg' , 1);

axon = ELFENN.Section('axon' , 'radius' , 2, 'sectionLength' , 1000);
cell = ELFENN.Cell('ball_and_stick' );
cell.connectsection(soma, axon);

Alternatively, ELFENN is also able to import SWC files, of
which a large database can be accessed from neuromorpho.org
(Ascoli, 2006; Ascoli et al., 2007). The parser outputs an ELFENN
compatible cell object (see section on realistic neuron example)
which can then be tied to dynamics and simulated.
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FIGURE 4 | Validation of LFP calculation. Spatiotemporal LFPs from an axon firing repetitive action potentials calculated using LFPy or ELFENN (schematic shows DC

current injection at “I,” and length of axon is scaled to plot). (A) LFP computed using ELFENN at lateral distances, dlat, of 1, 5, and 10µm, respectively, from the axon.

(B) LFP computed using LFPy at lateral distances, dlat, of 1, 5, and 10µm, respectively, from the axon.

Once a cell, or multiple cells have been created they
can be added to a network; for our purposes the word
“network” refers to the whole system, i.e., whether the
network is a single compartment or ten cells, the network
label applies. In the following code, cell1 is added to
the origin and a copy is added with a 100µm offset in
the z-dimension.

network = ELFENN.Network();
network.addcell(cell1);
network.addcell(cell1, [0, 0, 100]);

Much like cells, there are tools for setting orientation and position
of networks that are described in our documentation.

Using ELFENN: Dynamics
Action potential dynamics are typically modeled using
two classes of models: continuous models, i.e., Hodgkin-
Huxley-like where the dynamics are described by a set
of differential equations and so-called hybrid models,
such as the Izhikevich model (Izhikevich, 2003) or leaky
integrate-and fire (LIF) models (Gerstner et al., 2014) which
rely on discontinuities to generate spikes. ELFENN can
only solve models of the continuous type. Any specific
continuous model can be solved, as long as the dynamics
can be set up as a function involving time, state, and
parameters as inputs, and the right-hand side of the
differential equations as a column vector of outputs. As an
example, the source code for the Hodgkin-Huxley model is
presented below.

function dY = ode(t, y, p)
am = @(v) 0.1 * (v + 40) ./ (1 - exp(-0.1*(v + 40)));
bm = @(v) 4 * exp(-0.0555556*(v + 65));
ah = @(v) 0.07 * exp(-0.05*(v +65));
bh = @(v) 1 ./ (1 + exp(0.1*(-v -35)));
an = @(v) 0.01 * (v + 55) ./ (1 - exp(-0.1*(v +55)));
bn = @(v) 0.125 * exp(-0.0125*(v + 65));
dY = zeros(size(y));

Vm = y(1:4:end);
m = y(2:4:end);
h = y(3:4:end);

n = y(4:4:end);
membraneCurrent = -m.^3 .* h .* p.gNa .* (Vm - p.ENa) -...

n.^4 .* p.gK .* (Vm - p.EK) - p.gL .* (Vm -p.EL);
dY(1:4:end) = membraneCurrent / p.C;
dY(2:4:end) = am(Vm) .* (1 - m) - bm(Vm) .* m;
dY(3:4:end) = ah(Vm) .* (1 - h) - bh(Vm) .* h;
dY(4:4:end) = an(Vm) .* (1 - n) - bn(Vm) .* n;

end

ELFENN includes three example dynamics with accompanying
parameters: Hodgkin-Huxley, fast-spiking interneurons
(Mancilla et al., 2007), and passive dynamics which require no
custom code. However, any dynamics following the format of
the above code snippet can be implemented.

Using ELFENN: Synaptic Inputs and
External Stimuli
ELFENN also includes a variety of features that allow synaptic
interactions between neurons as well as external inputs (both
synaptic and electrode-based, which can be applied to both
the intracellular and extracellular space). For intracellular
and extracellular stimuli, we include DC, and sinusoidal
functions, however arbitrary stimulus functions can also
be used, both autonomous (state dependent) and non-
autonomous (time dependent). Extracellular stimuli can
be either point current sources or parallel plate electric
fields. Synaptic coupling between cells can involve gap
junctions (electrical synapses) and/or chemical synapses.
Lastly, ELFENN also provides functionality for external
synaptic inputs with pre-set spike times (e.g., from a Poisson
spike train).

Using ELFENN: Limitations and Cost
Traditional compartmental models have an associated
computational cost, and this will be true for any solver,
including NEURON. Solving these models in the absence
of ephaptic coupling will be primarily an order n operation
[O(n)] since the axial current can be represented by a dot
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product of a sparse (almost) tridiagonal matrix (Hines, 1984).
However, when incorporating ephaptic coupling, all currents
will affect all compartments, and thus all pairwise interactions
must be evaluated, i.e., an O(n2) operation. While any LFP
solver (for example LFPy, LFPsim, or BioNet) will have the
same O(n2) complexity they are not tied to the dynamical
solution and therefore only need to be computed for successful
time steps and can be down-sampled if required. These
advantages are not available to ELFENN as the extracellular
potentials are intrinsic to the dynamical system. Additionally,
solving stiff DAEs (implicit methods), for which the Jacobian
must be frequently estimated, and Newton iterations must
be run to compute self-consistent values, can lead to high
computational costs not typically seen when solving models
without ephaptic coupling.

In terms of scalability, the aforementioned O(n2) complexity
limits the size of the network (in terms of number of
compartments) to whatever speed the user is willing to
accept given their processor. Furthermore, because these
algorithms in MATLAB are locked to a single processor,
memory limitations are also a factor (e.g., with 8GB of
RAM, 2,000–3,000 compartments might cause MATLAB to
run out of memory). That said, much can still be learned
about ephaptic coupling through the investigation of relatively
small networks, for which the cost will be comparable to
that of a standard model without ephaptic coupling solved
using NEURON.

EPHAPTIC COUPLING IN REALISTIC
GEOMETRIES

As a simple example case, we present amodel of two neurons with
previously described stellate-like geometry (neuromorpho.org
NMO_66468) (Ascoli, 2006; Ascoli et al., 2007; Morelli et al.,
2017) and neural dynamics (Mancilla et al., 2007). The two
cells are positioned in close-proximity, in an extracellular
space with conductivity 0.01 S/m. The left (active) neuron
has its soma at the origin ([0,0,0]), and the right neuron is
mirror image and offset 140µm to the right (Figure 5A). The
soma of the left neuron receives a supra-threshold external
synaptic input at 5ms (location denoted by red marker).
The red, purple and blue markers indicate compartments
where membrane potential is recorded and displayed
in Figure 5B.

In Figure 5B, the red traces are from the active
(left) neuron (with synaptic conductance: upper trace)
showing a full action potential; the blue and magenta
traces are from the inactive (right) neuron and show
the ephaptic coupling potentials (∼500 µV deviation in
membrane potential). To show the spatial heterogeneity
of the extracellular potential (LFP), snapshots of
the LFP (Figure 5C) are taken at 10ms (vertical
arrow in Figure 5B) and displayed as slices taken at
z= 20, 0, and−20 µm.

The source code below highlights the simplicity of
implementing this model using ELFENN:

FIGURE 5 | Ephaptic coupling between model neurons with realistic

geometries. (A) Representation of two cortical interneuron models placed with

somata 140µm apart. Markers represent recording locations (red: active

neuron, magenta and blue: inactive neuron). Red marker also represents

location of a suprathreshold chemical synapse. (B) Synaptic conductance of

synapse (Gsyn) at red point in panel (A) as well as membrane potential at red,

blue, magenta points in panel (A). (C) LFP at slices at z = 20, 0, −20µm

through the network at the time indicated by arrows in panel (B).

cell = ELFENN.Geometry.load_swc('P7i_WT3.CNG.swc.txt' );
cell.name = 'cell1' ;
network = ELFENN.Network();
network.addcell(cell);
cell.name = 'cell2' ;
cell.rotatecell([0, pi, 0], [0, 0, 0]);
network.addcell(cell, [140, 0, 0]);
network.complete();
network.assignsolutionindex('Vm' ,'m' ,'h' ,'n' ,'q' );
synapse_params = ELFENN.Mechanisms.Synapse.Alpha.default_parameters;
synapse_params.tau = 3;
synapse_params.gSyn = 5;
synapse_params.t0 = 5;
network.addexternalsynapse(network.getcellbyname('cell1' ).soma,...

@ELFENN.Mechanisms.Synapse.Alpha.s, synapse_params, 'unscaled' );
sigma = 0.01;
IC = [-69.7548 0.05, 0.59 0.31 0.0002];
p = ELFENN.Mechanisms.Cellular.FS.default_parameters;

network.setdynamics(p);
solver = ELFENN.Supervisor(@ELFENN.Mechanisms.Cellular.FS.ode,...

network, IC, sigma);
solver.ephapticStatus = 'on' ;
solver.tmax = 15;
solver.rtol = 1e-3;
solver.transientLength = 2;
[t,y] = solver.run();

%%Plots
[∼, soma] = network.segmentclosestto([0, 0, 0]);
[∼, bottom_seg] = network.segmentclosestto([69, 23.7, -2]);
[∼, edge_seg] = network.segmentclosestto([55, 47, -2 ]);
make_fig_1(soma, bottom_seg, edge_seg, network)
make_fig_2(soma, bottom_seg, edge_seg, t, y, synapse_params)
make_fig_3(soma, bottom_seg, edge_seg, t,y, network, solver, sigma)

Note that the code for the plots do not relate to ELFENN
specifically and as such are not displayed other than as function
calls (see ELFENN documentation for full implementation).
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FIGURE 6 | Action potential phase locking in an axon bundle through

ephaptic coupling. (A) Schematic of 7 axons aligned in a bundle; base

frequency for each is indicated in white text. All parameter values for all

examples are provided with ELFENN software. (B) Cross correlation functions

for strong ephaptic (red), weak ephaptic (blue) and no ephaptic conditions

(gray). Data is presented as mean (solid line) ± standard deviation (shaded)

over axon pair and initial conditions. (C) Effect of conductivity on phase

locking. Peak cross correlation value (mean ± standard deviation) is plotted as

a function of conductivity; red and blue symbols correspond to red and blue

conditions in panel (B); horizontal lines (solid and dashed) represent the

“ephaptic off” case (mean and standard deviation, respectively).

EPHAPTIC COUPLING BETWEEN
ADJACENT AXONS

We now present a simple use case for the novel closed-loop
functionality of ELFENN: the ephaptic coupling among axons
aligned in parallel (Ramón andMoore, 1978; Jefferys, 1995; Bokil
et al., 2001; Goldwyn and Rinzel, 2016). In particular, we describe
how the phase-locking effects of ephaptic coupling are influenced
by extracellular conductivity in this situation. Although the range
of conductivities we consider may exceed physiological values,
we are interested in identifying the conditions for which ephaptic
coupling could be functionally relevant. Conductivities can vary

across brain region (Gabriel et al., 1996; Miceli et al., 2017)
and may even be regulated, for example through the control of
extracellular potassium by oligodendrocytes (Larson et al., 2018).

We consider a simplified scenario involving an axon bundle,
in which a central axon is surrounded by six others, hexagonally
tiled (see Figure 6A). All axons have standard Hodgkin-Huxley
dynamics (as in section Validating the Components of ELFENN;
Figures 3, 4) and are set in an oscillatory firing regime, each
with different baseline frequencies, by slightly different levels
of DC current injection in the first segment (frequencies are
annotated in Figure 6A). The initial condition for each axon
is a random point on its own limit cycle to minimize effects
of individual transients; the simulation time was 2 s. We use
the spike train cross correlation function to characterize phase
locking. In open-loop conditions (no ephaptic coupling), or when
conductivity (σ) is very high, one would expect the spike trains
to precess and thus cross-correlation functions would have a low
uniform value on average across all phase lags. On the other
hand, when firing is tightly coupled, there would be structure
in the cross correlation e.g., dominant peaks at multiples of the
locking period, potentially shifted by a phase lag. To measure
the cross correlation, spikes in the last second of the simulation
were binned into 1ms windows (average oscillator period is
12.5ms) and the cross correlation was computed and presented
for ± 1 oscillator period. We vary conductivities (σ) from 10
S/m (well above typical CNS conductivities) to 0.05 S/m which
is the lowest estimate of conductivity in the CNS across multiple
studies (Gabriel et al., 1996; Miceli et al., 2017). We then extend
the analysis to a value of 5× 10−4 S/m as an upper bound on the
effect size.

Figure 6B shows cross correlation functions for open-loop
(ephaptic off; gray), intermediate conductivity (σ = 0.0025 S/m;
blue) and low conductivity (σ = 5 × 10−4 S/m; red). Cross
correlations are computed for each neuron pair (7 neurons
yielding 21 unique pairs) over 15 sets of initial conditions;
the data are presented as the mean correlation with shaded
region showing standard deviation. For increasing ephaptic effect
(decreasing conductivity), we see larger peaks at 0 and 6ms
(synchronous and anti-synchronous locking). To summarize
these effects, the peak cross-correlation is presented in Figure 6C

as mean and standard deviation across initial conditions and
axon pair (all conductivities used the same sets of initial
conditions). The red and blue symbols in Figure 6C show peak
measures for the same data shown by the red and blue traces
in Figure 6B, and horizontal line represents the mean cross-
correlation value where ephaptic coupling is removed (standard
deviation indicated by dashed lines); note that the peaks of the
mean cross-correlations shown in Figure 6B will be in general
much smaller than the peak correlations (Figure 6C) as they are
averaged over different locking regimes for which peaks occur at
different phase lags.

Overall, these results show that with increasing ephaptic
strength (decreasing conductivity) there is an emergence of
phase locking over the time scales tested (within 2 s). As in
previous studies (Jefferys et al., 2012; Han et al., 2018), this
demonstrates the potential for crosstalk between neurons that
can lead to phase-locking. It is interesting to note that in
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some cases, cells can actually inhibit each other through electric
field effects (Blot and Barbour, 2014); this tendency may be
related to the anti-synchronous locking we observe here. More
generally, this example demonstrates the relative simplicity by
which a simulation can be conceived, implemented and analyzed
using ELFENN while avoiding the technical challenges involved
in implementing a cable equation solver along with electric
field effects.

DISCUSSION

Here, we have presented ELFENN, a MATLAB toolbox for
modeling ephaptic coupling. We have modeled ephaptic
coupling in a standard way: by modeling the membrane
potential and LFP and then closing the loop by feeding
the extracellular potential back to the membrane potential
dynamics through an ephaptic current (Holt and Koch, 1999).
We have validated each component of our implementation
against NEURON (Carnevale and Hines, 2006) and LFPy
(Lindén et al., 2014). Finally, we have presented two simple
use cases from the literature (Ramón and Moore, 1978;
Jefferys, 1995; Goldwyn and Rinzel, 2016) to illustrate
how ephaptic coupling can be modeled in realistic neuron
models and how it can lead to phase-locked firing between
adjacent axons.

There is of course room for improvement. Currently ELFENN
is restricted to an isotropic (conductivity is as scalar) and
homogeneous (at every point in space the conductivity is the
same) extracellular space. There already exist formalisms for
removing these simplifications (Nicholson and Freeman, 1975;
Ness et al., 2015), which are planned for future development.
Already without these features, ELFENN can be used to
study a wide range of problems involving ephaptic coupling

and explore the conditions in which electric field effects can
influence on-going brain dynamics. In addition, ELFENN can
also be used to model extracellular stimulation (where the
electrode is another current source), as long as electrodes obey
simple geometries.

Furthermore, the primary limitation of ELFENN is
being locked to a single processor in MATLAB. Moving
to compiled code with standard numerical libraries
(e.g., SUNDIALs) may have a large developmental cost
but would have large payouts as code parallelization
would be possible and thus high-performance computing
resources could greatly reduce the present limitations
of ELFENN.
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