
Received: August 23, 2021. Revised: January 27, 2022. Accepted: January 31, 2022
© The Author(s) 2022. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please
e-mail: journals.permissions@oup.com
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

Biology of Reproduction, 2022, 106(5), 854–864
https://doi.org/10.1093/biolre/ioac031
Advance access publication date 7 February 2022
Review

The future of assessing bull fertility: Can the ‘omics fields

identify usable biomarkers?†

Erin K. Klein1,*, Aleona Swegen1,2, Allan J. Gunn3,4, Cyril P. Stephen3,4, Robert John Aitken1 and

Zamira Gibb1

1Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia
2Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK
3School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
4Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, New South Wales, Australia
*Correspondence: Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
E-mail: erin.klein@uon.edu.au
†Grant Support: The writing of this review was supported by Meat & Livestock Australia Project no. B.GBP.0030.

Abstract

Breeding soundness examinations for bulls rely heavily on the subjective, visual assessment of sperm motility and morphology. Although these
criteria have the potential to identify infertile males, they cannot be used to guarantee fertility or provide information about varying degrees of
bull fertility. Male factor fertility is complex, and the success of the male gamete is not necessarily realized until well after the spermatozoon
enters the oocyte. This paper reviews our existing knowledge of the bull’s contribution from a standpoint of the sperm’s cargo and the impact
that this can have on fertilization and the development of the embryo. There has been a plethora of recent research characterizing the many
molecular attributes that can affect the functional competence of a spermatozoon. A better understanding of the molecular factors influencing
fertilization and embryo development in cattle will lead to the identification of biomarkers for the selection of bulls of superior fertility, which
will have major implications for livestock production. To see this improvement in reproductive performance, we believe incorporation of modern
technology into breeding soundness examinations will be necessary—although many of the discussed technologies are not ready for large-scale
field application. Each of the ‘omics fields discussed in this review have shown promise for the identification of biomarkers of fertility, with
certain families of biomarkers appearing to be better suited to different evaluations throughout a bull’s lifetime. Further research is needed for
the proposed biomarkers to be of diagnostic or predictive value.

Summary Sentence
A review of proteins, transcripts, and metabolites identified in spermatozoa and seminal plasma, with a focus on molecular factors correlated
with high or low fertility bulls to evaluate if they could be used as predictive biomarkers in the future.
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Introduction

When the spermatozoon penetrates the oocyte, whether it
arrived there naturally or with the aid of assisted reproductive
technology, it brings with it all of the baggage of its life up
until that point. This baggage includes molecular factors, such
as proteins [1], RNA species [2, 3], and metabolites [4], and
the intrinsic damage to these factors caused by environmental
stressors during cell development [5] and/or storage [6].

The mammalian spermatozoon is a highly specialized cell
with the sole purpose of fertilizing an oocyte. At its most basic,
it consists of a head, where the cell’s haploid genetic cargo
is tightly compacted in the nucleus, a midpiece harboring
mitochondria, and a tail that facilitates propulsion [7]. Also
located in the midpiece is the centriole, which is essential
for normal embryonic development as the sperm-contributed
centriole orchestrates all cell division in the progeny [8].
Along with DNA, the spermatozoon contains coding and
non-coding RNA (ncRNA), as well as an array of proteins,
lipids, carbohydrates, and small-molecular-mass metabolites
associated with cell function [9]. At the conclusion of

spermatogenesis, spermatozoa appear to be structurally
complete but are not yet capable of natural fertilization,
gaining this ability following epididymal transit [10]. Upon
ejaculation, spermatozoa are transported in seminal plasma;
a mixture of secretions from the testes, epididymis, and
accessory sex glands.

During natural copulation, bull spermatozoa are deposited
in the vagina of the cow. As this is a considerable distance from
the site of fertilization, it is a requirement that spermatozoa
be sufficiently motile to travel to the oviduct and locate the
oocyte for fertilization to occur [2]. Because of this, low sperm
motility is one of the major reasons for male subfertility or
infertility [11]. Along with a physical examination and scrotal
circumference measurement, assessments of sperm motility
and morphology are key parts of the bull breeding soundness
examination (BSE) [12].

The Society for Theriogenology in the USA has had pro-
tocols for conducting BSEs since at least 1956 when they
were known as the Society for the Study of Breeding Sound-
ness of Bulls. These procedures have been updated multiple
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times in the more than half a century that has followed,
but changes have largely been to the forms and terminol-
ogy used or to requirements to pass with relatively minor
changes to the examination process itself [12–14]. Similar pre-
breeding examinations are recommended by the Australian
Association of Cattle Veterinarians [15], the British Cattle
Veterinary Association [16], the Western Canadian Associ-
ation of Cattle Practitioners [17], and the South African
Veterinary Association [18]. It has been estimated that one
in five bulls has inadequate semen quality and/or physical
soundness to pass these BSEs [19]. Certainly, BSEs are useful
in identifying more obvious cases of infertility or subfertility;
however, sperm fertility is a complex multifactorial faculty
which cannot be accurately assessed solely by visual exam-
ination [20]. High motility and normal morphology scores
do not guarantee fertilizing ability and bulls that pass these
requirements can fail to produce offspring [21, 22]. There-
fore, it is evident that other factors must also contribute to
fertilization and normal embryo development. It is difficult
to estimate the percentage of breeding bulls with subfertility,
as many go unidentified, but unidentified subfertile bulls can
cause substantial economic loss with poor conception rates
resulting in late season pregnancies and/or producers wrongly
culling cows over bull fertility issues. With a half a century’s
worth of new technology and advancements in knowledge
available, BSEs will need to incorporate emerging molecular
tools if we are to see further improvements in reproductive
efficiency.

True reproductive efficiency is determined not only by
fertilizing capabilities but also the ability to support embryo
development. While considerable research has been done on
assessing fertilization potential based on sperm characteris-
tics, including motility [23], plasma membrane and acrosome
integrity [24, 25], and DNA structural integrity [26], less
is known about paternal influence on the development of
a healthy, viable embryo. As early embryo mortality (prior
to day 24) likely accounts for 75–80% of all embryo and
fetal mortalities in cattle [27, 28], this is a key area for
improving the number of healthy offspring. Much of embryo
development is reliant on the competence of the oocyte [29,
30]; in the human, we know that the male gamete can also be
responsible for numerous developmental abnormalities [31],
and it is reasonable to assume that the same would be true for
all mammalian species, including cattle.

In recent years, high-throughput technologies have emerged
as a way to investigate molecular components, including
proteins by proteomics [32], RNA by transcriptomics [33],
and metabolites by metabolomics [34]. Through the analyses
of these factors, in both spermatozoa and seminal plasma,
correlations have been made between high and low fertility
males and the presence, absence, over- or underexpression
of certain components, which will be discussed within this
review. With these discoveries comes the potential for deter-
mining a male’s fertility status prior to breeding, whereas
historically, fertility has had to be proven through the siring of
offspring.

This paper reviews recent research characterizing the molec-
ular attributes of bull semen, with particular attention to
research correlating these molecular attributes to fertility sta-
tus. The identification of biomarkers and their use to predict
male fertility would have a powerful impact on production
animal industries where higher conception rates and suc-
cessful pregnancies translate directly into increased profits.

Maintenance costs would also be reduced as infertile or
subfertile bulls could be removed from the herd much earlier,
and genomic selection may be able to shorten generation
intervals, as it has done in the dairy industry [35].

Proteins

Proteins are the workhorses of biology, being largely
responsible for the phenotypes encoded by the genetic
script, the structure and function of cellular machinery,
and the interactions between receptors and other cellular
components. The advent of proteomics—the study of large
protein populations representative of an entire biological
component, fluid or physiological state—has provided insight
into male fertility across multiple species [36–38]. The
seminal proteome comprises proteins from the sperm cells
themselves and from accessory sex gland secretions. When
spermatozoa leave the testes they are not yet fertile, acquiring
fertilizing ability in part from proteins in the epididymal
fluid [39].

In the mid-1990s, three studies by Bellin et al. found a
positive correlation between the presence of heparin-binding
proteins (HBP) and bull fertility potential. The first study
identified the heparin-binding complex HBP-B5 in sperm
membranes and seminal plasma [40]; the second examined
the HBP-B5 proteins (HBP-30, HBP-24, and HBP-21.5) indi-
vidually in sperm membranes and seminal plasma [41]; and
the third focused specifically on HBP-30, also called fertility-
associated antigen (FAA), in sperm membranes [42]. In the
third study, selecting FAA-positive bulls for breeding resulted
in an increased number of pregnancies, with pregnancies
occurring earlier in the breeding season [42]. In characterizing
these proteins, they found the HBPs to be similar to the DNase
I-like protein family [43].

Early gel-based studies also linked lipocalin-type prostaglan
din D synthase (PTGDS) [44], phospholipase A2 [45], osteo-
pontin (SPP1) [45], and P25b [46] to higher fertility in the bull.
To date, the majority of the proteomic research has been done
using human spermatozoa, where thousands of proteins have
been identified and characterized [47]. Often assumptions are
made on the role of a protein in one species using analogous
proteins from other species. The analogs of P25b in human
and hamster, P34H and P26h, respectively, are involved in
recognition of the zona pellucida [48, 49], suggesting that
P25b may have the same role in bovine spermatozoa and that
it would be logical for a lower abundance of this protein to
have a negative effect on fertilization.

The binder of sperm proteins (BSPs), previously known as
bovine seminal plasma proteins, are another protein family
worth noting. BSPs account for nearly 70% of the protein
content of bovine seminal plasma [50], although mixed
reviews exist on their benefit or detriment to fertility. The
BSP proteins, BSP3 [51] and BSP5 [45], were found in higher
concentrations in subfertile bulls, which may be explained
by increased concentrations of BSPs inducing cholesterol
efflux, resulting in damage to sperm membrane and premature
capacitation-like changes [52]. Proteins from the BSP family
were found to be upregulated following scrotal insulation
[53], suggesting that this is one of many ways in which bull
fertility is affected by heat stress [5]. While an overabundance
of BSPs can be detrimental, they are an important component
of seminal plasma and aid in fertilization by facilitating
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binding of spermatozoa to the oviduct epithelium and main-
tenance of motility during storage in the oviduct [54] and may
aid in sperm membrane protection during cryopreservation
[55].

In the first comprehensive proteomic analysis of bovine
spermatozoa, 2051 proteins were reported to be unique to
highly fertile bulls, 2281 proteins unique to low fertility bulls,
and 125 differentially expressed between the two groups [1].
Of these, only about 15% had been previously described,
and the identification of most of those were predicted based
on similarities to proteins identified in other species. As the
popularity of bovine sperm proteomics continues to grow,
more studies using high-throughput methods have found cor-
relations between protein abundance in spermatozoa [56–59]
and seminal plasma [59–61] of high and low fertility groups;
the more abundant proteins identified in spermatozoa, semi-
nal plasma, or both are shown in Figure 1A. These proteins
have known or assumed roles in many aspects of fertility,
from spermatogenesis to embryo development, as depicted in
Figure 1B. Supplemental Table S1 provides additional details
on the identified proteins and their likely roles related to fertil-
ity as well as the method of identification. While the identified
proteins correlated to fertility found in seminal plasma were
split evenly between high and low fertility, virtually all of the
upregulated proteins from spermatozoa alone were higher in
high fertility bulls (Figure 1). The vast majority of proteins
found in spermatozoa have roles in the earliest stages of
the sperm’s journey: spermatogenesis, maturation, and energy
production (Figure 1). Of the previously mentioned proteins,
all three BSPs, SPP1, and PTGDS were again identified in
association with fertility status, though here PTGDS was
significantly correlated to low fertility [61].

Earlier studies into the bull sperm proteome were per-
formed using cryopreserved straws of semen [56, 57], while
more recent studies tend to separate seminal plasma from sper-
matozoa prior to snap freezing [58, 59, 61] or lyophilization
[60]. Significant changes in abundance of proteins in both
spermatozoa and seminal plasma can occur during cryopreser-
vation, interestingly increasing the abundance of some pro-
teins [62]. More expectedly, cryopreservation has been shown
to decrease the amount of sperm-bound proteins, specifically
BSPs [50], which could be explained by BSP proteins binding
to a lipoprotein component of egg-yolk extenders [52]. While
this may be beneficial for protecting the sperm membrane
during storage, the use of protein-containing extenders likely
interferes with proteomic analysis. It will be necessary to
confirm that these same markers can be identified as dif-
ferentially expressed in fresh samples for them to be usable
biomarkers.

Proteins in spermatozoa and seminal plasma show great
potential as predictive biomarkers of fertility, but as with
so many factors involved in fertility, these biomarkers may
be better suited to identifying and removing infertile and
subfertile bulls from the breeding herd, leaving bulls with a
likelihood of higher fertility. Some proteins, such as PEBP4,
have been found to be absent in infertile bulls and low or
absent in low fertility bulls [58]. For proteins to be a reliable
indicator of fertility, a combination of markers will need to
be investigated. A combination of four proteomic markers
previously identified [63] was used to predict bull fertility
[64]. Although they found no meaningful change in the overall
accuracy of the prediction between the combined assay and
use of the single protein marker enolase 1, sensitivity and

negative predictive value reached 100% when all four markers
were used.

RNA

In addition to proteins, spermatozoa also deliver both cod-
ing messenger RNAs (mRNAs) and ncRNAs to the oocyte
[65]. As spermatozoa are transcriptionally and translationally
silent, sperm RNAs were previously believed to be inert rem-
nants of spermatogenesis but may be vital to the conveyance
of the paternal genome [66]. The importance of sperm-derived
mRNAs in the process of embryo development has been
demonstrated using mouse models. Sperm-derived mRNAs
have been found within embryos, remaining intact through
the first cleavages [67], thereby suggesting a role in post-
fertilization embryo development, and the removal of the
sperm mRNAs leads to a significant reduction in blastocyst
development and live birth rates [68].

In the bull sperm transcriptome, correlations have been
found between certain mRNAs and motility [69] and have
been shown to be distinctly different between bulls of high and
low fertility [2, 3]. Some RNAs may indeed be remnants from
spermatogenesis, but their presence or absence could still be an
indication of the success or failure of necessary spermatogenic
events [70].

Usually categorized as long non-coding RNAs and small
RNAs (sRNAs), ncRNAs help regulate post-transcriptional
gene expression. Studies using mouse models have discovered
that the sperm sRNA profile is remodeled during epididymal
transit and maturation, with a loss of piwi-interacting RNA
and a gain of tRNA fragments; this remodeling and acqui-
sition of sRNAs is essential for proper embryo development
[71, 72].

Recent investigations into the differential expression of
micro RNAs (miRNAs) in bulls have explored variations in
fertility [73] and sperm motility [74]. In one study, seven
miRNAs were found to be differentially expressed between
bulls of moderate and high fertility, with a greater expression
of these miRNAs in the moderate fertility bulls and two of the
miRNAs undetectable in the high fertility group [73]. Another
study identified differentially expressed miRNA of high and
low motility sperm populations obtained from single ejacu-
lates, separated post-thaw by density gradient centrifugation
[74]. Although there was no significant difference between
the expression of the five most highly abundant miRNAs of
moderate and high fertility bulls [73], four of these miRNAs
were significantly differentially expressed based on motility
[74], with bta-miR-20a, bta-miR-15b, and bta-miR-93 higher
in the high motility fractions and bta-miR-100 higher in
the low motility fractions. Of the seven miRNAs that were
significantly differentially expressed between moderate and
high fertility groups [73], only two (bta-miR-34c and bta-miR-
19b) were found to be more abundant in the high motility
fractions [74].

Both of these studies used frozen–thawed semen which
could confound the results, as cryopreservation has been
shown to affect the transcriptomic profile of spermatozoa
[75]. Shangguan et al. found that 55 miRNAs were differen-
tially expressed between fresh and frozen spermatozoa, with
31 downregulated and 24 upregulated in fresh spermatozoa
[75]. The GO and KEGG pathway analysis of the genes
targeted by miRNAs and mRNAs differentially expressed
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Figure 1. Proteins identified in spermatozoa and seminal plasma of bulls correlated with fertility status have many different roles in the series of events
leading up to fertilization and embryo development. (A) Proteins found in spermatozoa [56–59] and seminal plasma [59–61] of bulls have been linked to
high or low fertility status. (B) These identified proteins are shown where they are most likely to impact fertility. ∗Abbreviation used by reference is not a
gene name (for more details, see Supplemental Table S1).

between fresh and frozen spermatozoa in the study revealed
genes with functions related to apoptosis as well as fertil-
ization processes and ATP generation [75]. The alteration
of miRNA expression of sperm cells by cryopreservation,
including the enrichment of functions related to apoptosis or
cell death, could result in the low fertility of the spermatozoa
or even influence epigenetic reprogramming or apoptosis in
the embryo [76]. Sperm-borne miRNAs have also been found

to be differentially expressed between different breeds of bulls
[77], though as semen quality parameters also vary across
breeds [78], this should be expected.

Sperm RNAs are believed to serve as a mode of epigenetic
inheritance, i.e., the inheritance of acquired traits. Research
in mice has demonstrated that stress and diet can affect RNA
expression transgenerationally. In recent studies, behavioral
traits related to depression [79] and chronic stress [80] were
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conveyed through the microinjection of sRNAs purified from
spermatozoa of traumatized males into fertilized oocytes,
providing evidence that sperm sRNAs are capable of passing
on acquired traits to offspring. Paternal high-fat diets and
paternal exercise have also been linked to changes in sperm
RNA expression [81]. Many questions still exist as to how
embryonic development is influenced by sperm sRNAs and
how traits caused by sRNAs in spermatozoa are then transmit-
ted to subsequent generations, but it has been suggested that
spermatozoa may be receiving these sRNAs from somatic cells
during development via epididymosomes—small extracellular
vesicles in the epididymis [82–85].

As transcriptomics is a relatively new field of study, RNA
biomarker tests still appear to be a long way from predictive
application. One of the major obstacles to identifying RNA
biomarkers is in the low quantity [86] and quality [69] of
RNA extracted from spermatozoa. The RNAs are unstable
and need specialized equipment for analysis and sequencing,
meaning there may never be an easy field application of
RNA biomarkers available to producers. Still, there may be
a future for RNA biomarker use with in vitro fertilization
(IVF) [87] or diagnostic tests of individuals with idiopathic
infertility.

Genome

As it has been shown that RNA and proteins in spermato-
zoa and seminal plasma can be correlated with successful
fertilization events and embryo development, it is likely the
genome itself could aid in earlier prediction of higher fertil-
ity males. High-throughput genotyping with comparison to
fertility records may be able to establish predictive fertility
models. The current method for this is genome-wide asso-
ciation studies (GWAS), which are used to identify specific
genomic regions associated with a trait. These studies scan
single nucleotide polymorphism (SNP) markers for genetic
variations, locating regions on chromosomes that harbor asso-
ciated genes. Functional candidate genes are then identified by
using the closest genes mapped around the candidate marker.

Specific phenotypic traits, related to the testes (scrotal cir-
cumference) and spermatozoa (percent normal sperm), have
been targeted as indicative of reproductive efficiency [88, 89].
Ideally, identification of genetic markers linked to phenotypic
traits will allow for the selection of these traits. Multiple
regions on the X chromosome have been associated with
testis development and sperm morphology [90], where two
regions linked to scrotal circumference were located at 69–
77 and 81–92 Mb, and polymorphisms that were associated
with percent normal sperm were located between 40 and
55 Mb. On Bovine Chromosome 9 (BTA9), candidate regions
identified through GWAS in relation to scrotal circumference
and sperm motility have known genetic correlations to other
valuable production traits, including conformation, daughter
pregnancy rate, interval to first estrus after calving, and body
weight gain [91]. With some fertility traits, such as sperm
motility [92] and sperm production [93], the distribution of
SNP effects indicates that they likely come from polygenic
rather than simple inheritance. A comprehensive genomic
analysis using dairy bulls identified eight genomic regions
on six chromosomes associated with sire fertility, many of
these harboring genes with known roles in sperm maturation,
motility, and fertilization [94].

The use of genome-guided selection by the dairy industry
has led to increased daughter pregnancy rate, productive
life, and decreased milk somatic cell score, all of which are
considered to have relatively low heritability [35]. In dairy
bulls, SNP markers linked to sire conception rate have shown
promise in predicting bull fertility [95–97]. Largely, GWAS
have focused on testicular traits for beef breeds and spermatic
traits for dairy breeds, though this appears to be more industry
preference than breed relevance.

The GWAS may be able to help identify specific causes
of idiopathic subfertility when genomic variation leads to a
clear phenotypic effect. The discovery of a genomic region
on BTA19 related to male reproductive performance revealed
a common segment in 40 bulls with idiopathic subfertility
[98]. A causative loss-of-function mutation had occurred in
TMEM95, which encodes a protein found on the acrosomal
membrane of the sperm head that is lost after acrosome
reaction [99]. In mice, spermatozoa lacking the TMEM95
protein were morphologically normal with normal motility
and are capable of both penetrating the zona pellucida and
binding to the oolemma but were unable to fuse with the
egg membrane and could not achieve fertilization without
intracytoplasmic sperm injection to bypass the requirement
of gamete fusion [100].

Along with identifying genes and associated traits, the
genome may serve as a way to evaluate inbreeding levels [101],
which have been shown to have a negative impact on sperm
quality and field fertility [102]. Whole-genome homozygosity
mapping, identifying runs of homozygosity, found eight seg-
ments to be significantly associated with sire conception rate
[103]; most of these segments containing genes are thought to
have important roles in testis development, spermatogenesis,
or sperm function.

Metabolites

Another “omics” field showing potential for use in predicting
male fertility is metabolomics; metabolites being the small
molecules that result from metabolic reactions. As they are
the products of important biochemical pathways, metabolites
have the potential to give major insight into cellular function.

Many of the most abundant metabolites in bovine seminal
plasma are involved in energy metabolism, but only a few
studies correlating metabolites with bull fertility have been
reported [104–108]. In the first study to identify fertility-
associated metabolites in the bull, four metabolites in sem-
inal plasma and four metabolites in blood serum showed
significant differences between high and low fertility bulls
[104]. In another study, seven metabolites were discovered
with statistically significant differences between high and low
fertility males [105]. Of these, fructose, 4-ketoglucose, and
erythronic acid were more abundant in seminal plasma from
high fertility bulls, while 2-oxoglutaric acid, phosphoric acid,
D-mannitol, and dulcitol were more abundant in the seminal
plasma of low fertility bulls.

Likewise in the spermatozoa of bulls, 22 distinct metabo-
lites were identified, with 5 showing statistically significant
differential expression between high and low fertility bulls
[106]. The GABA, carabamate, benzoic acid, and lactic acid
were found to be more abundant in the sperm of high fertility
bulls, while palmitic acid was more abundant in low fertility
bulls. The increased amount of lactic acid in the spermatozoa
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of more fertile bulls could suggest that high fertility bulls
are utilizing glycolysis more efficiently. Bull spermatozoa are
able to utilize both glycolysis and oxidative phosphorylation
(OXPHOS) as energy production pathways [109], and if
glycolysis is utilized preferentially by the spermatozoa of high
fertility males, metabolites associated with this pathway, such
as lactic acid, may be able to be used to evaluate which
energy production method is being favored and therefore
fertility.

Figure 2A depicts the classes of 53 metabolites, more abun-
dant in high or low fertility bulls, identified in spermatozoa
[106–108], seminal plasma [104, 105, 107], and blood serum
[104]. In Figure 2B, the classes of these same 53 metabolites
are shown as they relate to fertility status. This suggests that
certain types of metabolites will be more easily detected in
spermatozoa or seminal plasma than in blood serum. From
these identified metabolites, “nucleosides, nucleotides, and
analogs” were only found in spermatozoa and were mostly
associated with low fertility (Figure 2). The high percentage
of “carbohydrates and carbohydrate conjugates” identified in
seminal plasma as opposed to spermatozoa can be explained
as providing necessary extracellular support for the energy
production pathways of spermatozoa [110]. While the large
percentage of fertility-associated “carbohydrates and carbo-
hydrate conjugates” identified in low fertility bulls would
seem to imply more support for energy production, it is
mostly due to the small number of “amino acids, peptides, and
analogs” and “other organic acids and derivatives” correlated
to low fertility in these samples (see Supplemental Table S2
for a full list of metabolites). Many more fertility-associated
“amino acids, peptides, and analogs” and “organic acids
and derivatives” were identified in high fertility bulls than
low fertility bulls (Figure 2B), which may simply show the
more active energy metabolism of spermatozoa from high
fertility bulls, as amino acids are involved in the regulation
of metabolic activity and organic acids are produced by the
breakdown of amino acids.

Some of the most noted metabolites in sperm biology are the
reactive oxygen species (ROS). A by-product of the OXPHOS-
mediated ATP production pathway, ROS play a role in the
physiological maturation of spermatozoa, driving the tyrosine
phosphorylation events necessary for capacitation [111]. The
paradox of ROS is that while a certain level is necessary for
proper function, the continued, unchecked generation of ROS
eventually overwhelms the cells, triggering apoptosis [112]. In
that respect, ROS are more often mentioned for their negative
effects, including reduced motility and membrane integrity
and increased DNA fragmentation [25]. Furthermore, nonvi-
able or poor-quality sperm generate the most ROS [113]; so
whether it is high levels of ROS contributing to poor sperm
quality or poor-quality sperm producing more ROS, this may
be a way to choose better samples for use.

Metabolomic biomarkers show the potential for future
application in fertility assessments of bulls. This is undoubt-
edly the most promising biomarker family for use in a field
setting. Metabolites are chemically reactive, which could in
theory allow for the development of a relatively simple assay.
However, metabolite biomarkers will be less a test of bull
fertility and instead be more of a reflection of sample fertility.
While other “omics” fields may be more specific in identifying
the molecular factors responsible for low or high fertility,
metabolites can be used to assess the endpoint of sperm
function itself, which is perhaps more valuable, as fertility

status is not a fixed attribute and may change with animal
age or season.

Other potential biomarkers

Though the methods already discussed in this paper appear
to be the leading areas for developing biomarkers of fertility,
others have shown potential as well. DNA methylation, a
known mode of epigenetic inheritance, can be correlated
with infertility. In a study comparing the DNA methylation
levels of spermatozoa from bulls of differing fertility status,
differentially methylated regions were identified on genes
with functional roles in spermatogenesis, fertilization, and
embryo development [114]. A recent human study concluded
there was sufficient separation between fertile versus infertile
patients, in a genome-wide analysis of DNA methylation,
for diagnostic use [115]. Findings such as these create an
important link between ‘omics studies and actual diagnostic
application, which opens up exciting possibilities should this
same principle be true for DNA methylation in bulls.

Though technically a subset of metabolomics, the study
of cellular lipids is emerging as its own ‘omics field. The
lipidomic profile of spermatozoa and seminal plasma may
also provide insight into the fertility status of males. A
recent human study has shown four fatty acids (palmitic
acid, behenic acid, oleic acid, and DHA) to be biomarkers
of semen quality, with stearic acid and DHA correlated
to sperm motility [116]. While the lipidomic profile of
human spermatozoa differs from that of the bull, with bull
spermatozoa lower in cholesterol [117] and having a higher
ratio of polyunsaturated fatty acids to saturated fatty acids
[118], lipids could give insight into the quality of bull semen
as well. Fatty acid composition has also been suggested as
a possible explanation for the variability observed among
individuals to withstand cryopreservation, with differences
being detected in ‘good’ and ‘poor’ freezers [119]. Variations
in the fatty acid and cholesterol compositions of spermatozoa
and seminal plasma have also been reported in relation to
the seasonal effect on semen quality [120]. These studies
suggest that lipid composition may be more useful as a quality
assessment, or for determining the freezability of a bull at a
particular point in time, than as predictive biomarkers. Lipid
profiles are perhaps one of the most encouraging areas of
assessing fertility as it is the only one that could be supported
or altered either through additives in conventional semen
extenders [121] or through feed supplementation [122].

Future directions

It is highly unlikely that a single biomarker will ever be able
to perfectly predict fertility, as fertility is too complex and
multifactorial to be so easily defined. A multifaceted approach
using many identified biomarkers would be better suited to
assessing male fertility. While it may seem that there is a sur-
plus of emerging technologies attempting to answer the same
fertility question, there are potential uses (and limitations) for
all of them in the future of livestock breeding.

Different families of biomarkers lend themselves to differ-
ent applications. Genomic screening of immature bulls will
allow for the early removal of bulls with a high likelihood
of infertility. This would be beneficial to producers as it
reduces financial loss both from raising an infertile bull and
from low herd productivity. While the genome is fixed and

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioac031#supplementary-data
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Figure 2. Metabolite biomarkers of fertility could come from a variety of different classes. (A) A breakdown of the classes of 53 metabolites correlated
with fertility status that were identified in spermatozoa [106–108], seminal plasma [104, 105, 107], or blood serum [104]. (B) The identified metabolite
classes shown as more abundant in high or low fertility bulls (for more details, see Supplemental Table S2).

can be evaluated in immature bulls, a bull would need to
reach maturity before sperm and seminal plasma biomarkers
are applicable. Proteomic markers could be used to evaluate
certain sperm traits, such as the ability of spermatozoa to
capacitate and bind to the zona pellucida, while transcrip-
tomic markers could give insight into the spermatozoon’s
capability to support embryo development. These biomarkers
may always need to be evaluated in a laboratory setting, which
would not be practical nor cost-effective for all producers, but
their identification creates new possibilities for use in certain
circumstances, such as with IVF or diagnosing idiopathic
infertility. The metabolome of bull sperm and seminal plasma

can be more variable in the individual than other biomarker
families; however, assays developed for metabolic markers of
fertility have the potential to be quicker and easier to use
in the field. Such assays could be used to identify periods of
subfertility due to environmental factors, such as heat stress,
or in conjuncture with yearly BSEs for re-evaluating fertility
status with aging.

As various methods of sperm processing and storage can
cause damage to the spermatozoa, and/or leave spermatozoa
exposed to undiluted seminal plasma for longer, different
molecular components may be found to be beneficial or
detrimental in different situations. Protein composition could

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioac031#supplementary-data
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be useful as an indicator of freezability, which is known to
vary independently of fertility status, as some proteins have
been found to be more abundant in the seminal plasma of bulls
with high freezability [55]. Similarly, certain seminal plasma
metabolites have been shown to be associated with pregnancy
rates following insemination with sex-sorted spermatozoa
[123], suggesting metabolomics may be capable of identifying
samples that are more tolerant of the sex-sorting process.
Importantly, different species may require the development of
different biomarker assays as the highly abundant transcripts
found in Bos indicus spermatozoa appear to be different from
those most common in Bos taurus spermatozoa [124], all
further proving that there is no simple answer to the question
of fertility and that no single biomarker is applicable to all
situations.

While many molecular factors have shown potential as
biomarkers of fertility, there is always a lag between the
discovery of new knowledge and industry adoption. Further
research needs to be done to determine the expression profiles
that define fertile or subfertile males and to confirm the use
of those biomarkers for diagnostic and predictive purposes
before they can become clinically applicable.

Conclusion

Genetic material is unarguably the most important contri-
bution of the spermatozoon to the embryo, but it is not its
only contribution of value. Molecular components of sperma-
tozoa, such as proteins, RNAs, and metabolites, likely have
more of a role in fertilization and embryo development than
previously thought. These promising molecular components
have reported correlations with fertility, with the potential
to create new methods of evaluating bull fertility. Due to
the complexity of fertilizing events and the vast number of
factors involved, usable biomarkers will most likely come in
the form of identifiers of poor fertility, as with an absence of
PEPB4 [58] or TMEM95 [98] proteins. Such markers could
be used to speed up subfertility diagnosis—allowing for faster
intervention in breeding programs with low pregnancy rates,
or screening to select individuals with a higher likelihood
of fertility—improving both management and economic out-
comes for producers.
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