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Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In the past decades, HCC treatment
has achieved great progress; however, the overall prognosis remains poor. Therefore, it is the need of the hour to identify new
prognostic biomarkers which can advance our understanding related to the underlying molecular mechanism of adverse
prognosis and apply them to clinical work in prognosis prediction. In the present study, data of 576 HCC patients and 292
normal control cases from TCGA and ICGC databases were enrolled to our bioinformatic analysis. SNHG1 and SNHG3 were
identified as overlapping genes in TCGA and ICGC databases using Pearson correlation analysis and univariate Cox regression
analysis. Further, we used the median of the SNHG1 and SNHG3 expression values as the cutoff values to define the HCC
patient groups with high or low expression level. The subsequent analysis revealed that abnormal high expression of SNHG1
or SNHG3 affected the immune infiltration patterns and the crosstalk among immune cells. Moreover, high expression of
SNHG1 or SNHG3 resulted in drug resistant to AKT inhibitor VII, bexarotene, bicalutamide, dasatinib, erlotinib, and gefitinib.
In addition, lower tumor neoantigen burden was observed in high SNHG1 or SNHG3 group. Further, we found significant
relation between the aberrant upregulation of SNHG1 and SNHG3 in tumor grade and stage. We established a nomogram to
systematically predict the 5- and 8-year overall survival of liver cancer patients with good accuracy. Finally, the in vitro assays
suggest that SNHG1 and SNHG3 promote the proliferative, migratory, and invasive abilities of HCC cells.

1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common
tumor and the fourth leading cause of cancer death through-
out the world [1]. HCC accounts for >80% of primary liver
cancer with rapidly increasing incidence [2]. The tumorigen-
esis of HCC is complicated, and the major risk factor is
related to chronic hepatitis viral infections such as hepatitis
B or hepatitis virus [3, 4]. Moreover, additional cases are
observed from alcohol abuse, afatoxin B1 intoxication, and

genetic diseases. With the recognition of the severity and
high mortality, great progress has been achieved in the
HCC treatment in recent years. The survival rate for HCC
has been improved. However, the overall prognosis remains
far from satisfactory. The prognosis for HCC is poor due to
the high recurrence, distant metastasis, and limited treat-
ment options. This makes it imperative to advance our
understanding related to underlying molecular mechanism
of tumorigenesis and progression of HCC, which can
enhance the overall prognosis of HCC patients.
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N6-methyladenosine (m6A) is the methylation at the
nitrogen-6 position of the adenosine base. It is the most
abundant internal modification of mRNA and long noncod-
ing RNA (lncRNA) in eukaryotes with the feature of dynamic
and reversibility [5–7]. The m6A modification of RNA is
highly conserved and prevalent in eukaryotes [7, 8]. Accu-
mulating evidences have revealed that m6A methylation
could regulate RNA stability, splicing, export, and translation
[9]. Moreover, m6A methylation participates in diverse bio-
logical processes and also has been observed to regulate gene
expression.

m6A modification is regulated by the dynamic interac-
tion of methyltransferases (also known as “writers”), binding
proteins (also known as “readers”), and demethylases (also
known as “erasers”). Recent studies have shown that m6A
modification and m6A regulators played critical role in
tumor oncogenesis and progression in multiple cancers
including HCC [10–12]. m6A modification has been
observed to decrease in HCC tissues compared to the adja-
cent normal tissues and is involved in HCC metastasis
[10]. METTL3 is the core member of classical complex of

“writers,” promotes HCC progression in m6A dependent
manner [13], and acts as potential prognostic biomarkers
in HCC [13]. WTAP is another member of the classical
complexes of “writers,” guides m6A modification, and facil-
itates the progression of HCC HuR-ETS1-p21/p27 axis [14].
Whereas YTHDF2 is the first identified m6A “reader”
involved in suppressing HCC cell proliferation and tumor
growth and metastasis [15, 16]. FTO, which is the earliest
discovered m6A demethylase, plays oncogenic role in HCC
via demethylation of PKM2 [17]. Moreover, emerging evi-
dences indicated that m6A modification was associated with
the therapeutic resistance of tumors. For instance, m6A
modification is related to antichemotherapy and radiother-
apy sensitivity of cancer cells [18, 19]. HNF3γ reduction
mediated by m6A methylation renders HCC resistant to
sorafenib therapy [20]. Similarly, METTL3-mediated m6A
modification of FOXO3 was reported to regulate sorafenib
resistance.

According to previous studies, lncRNAs are aberrantly
expressed in multiple types of cancers including HCC
[21–25]. Further, numerous evidences have shown
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Figure 1: m6A-related differentially expressed lncRNAs in HCC. (a) Study flow chart. (b, c) Volcano plots show the differentially expressed
m6A-related lncRNA in TCGA (b) and ICGC (c). Red dot indicates upregulated and green dot indicates downregulated.
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involvement of lncRNAs in oncogenesis and progression of
HCC. Additionally, lncRNAs are closely linked to prognosis.
lncRNA MCM3AP-AS1 acts as an oncogenic lncRNA and is
positively associated with advanced tumor stage, high tumor
grade, and poor prognosis of HCC patients [13]. lncRNA-
PDPK2P plays a key role in HCC development and progres-
sion. Moreover, it can serve as a molecular target to predict
the prognosis of HCC patients [26]. Further, previous stud-
ies reported a decreased level of lncRNA-D16366 in tissues
and serum of HCC patients and can be an independent diag-
nostic and potential prognostic indicator of HCC [27].
Whereas lncRNA ROR1-AS1 was observed with significant
increment in HCC patients and may act as a biomarker for
the prognosis [28].

In the present study, data from a large cohort of HCC
patients and the normal control cases from TCGA and
ICGC databases were enrolled to screen m6A-related prog-
nostic lncRNA. In the present study, we identified 2 m6A-
related prognostic lncRNAs, small nucleolar RNA host gene
1 (SNHG1), and small nucleolar RNA host gene 3 (SNHG3),
in both TCGA and ICGC databases as the candidate key
lncRNAs for subsequent analysis. Furthermore, we explored
the relationship between key lncRNAs and the immune infil-

tration patterns, tumor microenvironment signature, che-
mosensitivity, tumor neoantigen burden, and
clinicopathological characteristics. Finally, the in vitro assays
were used to assess the effect of key lncRNAs on HCC cells.
The results contribute to clarify the mechanism of how key
lncRNAs to affect progression and the prognosis of HCC
patients. Notably, we established an accurate prognostic
nomogram based on SNHG1 and SNHG3 along with the
clinical data to predict OS in patients with HCC.

2. Materials and Methods

2.1. Acquisition of the Gene Expression Data and the Clinical
Information. All the gene expression data and the clinical
annotation of the patients with HCC were obtained from
The Cancer Genome Atlas (TCGA)-LIHC (https://portal
.gdc.cancer.gov/) and International Cancer Genome Consor-
tium (ICGC)-LIHC (https://dcc.icgc.org/) databases [29].
Ultimately, we downloaded data related to 424 samples
including 50 normal and 374 HCC samples from TCGA.
Whereas data of 444 samples including 242 normal and
202 HCC samples were downloaded from ICGC. The data
downloaded from TCGA includes gene expression profile
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Figure 2: Prognostic values of m6A-related differentially expressed lncRNAs. (a) Heatmap shows m6A-related prognostic lncRNAs from
TCGA and ICGC databases. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:0001. (b, c) Forest plot shows the hazard ratios of m6A-related differentially
expressed lncRNAs from TCGA (b) and ICGC (c). The red box indicates risk factors, and the green box indicates protective factors.
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and the clinical data such as survival time, survival status,
gender, age, tumor grade, and TMN stage. While the data
downloaded from ICGC includes gene expression profile
and the clinical data such as survival time and survival
status.

2.2. Screening of Prognosis-Related Genes. lncRNAs and m6A
expression matrixes were obtained from TCGA and ICGC as
mentioned above. Pearson correlation analysis was imple-
mented to screen m6A-related lncRNAs (jrj > 0:5 and p <
0:001). Then, we filtered differentially expressed m6A-
related lncRNAs in HCC group in contrast to the normal
control group using R package “limma” based on the criteria
of jlog 2Fold Changej > 1 and p < 0:05 [30]. Finally, univari-

ate Cox regression analysis was conducted to identify
prognosis-related genes.

2.3. Analysis of Immune Cell Infiltration. CIBERSORT is a
method to characterize cell composition from gene expres-
sion profile [31]. It is also the most commonly used tool to
estimate and analyze immune cell infiltration. The relative
proportion of 22 immune cells of HCC patients was inferred
by using CIBERSORT algorithm base on RNA-seq. The sum
of all estimated immune cell scores in each sample is equal to
1. The correlation between the abundance of 22 infiltrative
immune cells and the expression level of SNHG1 or SNHG3
was analyzed using spearman analysis, and p < 0:05 was con-
sidered as statistically significant value.
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Figure 3: Immune infiltration of landscape and the crosstalk of immune cells. (a, b) Correlation between tumor-infiltrating immune cells
and SNHG1 (a) or SNHG3 (b). The size of the dot represents correlation between tumor-infiltrating immune cells and SNHG1/SNHG3. The
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Figure 4: Tumor microenvironment signature. “TMEclusters” was defined according to the expression level of SNHG1/SNHG3. Tumor
microenvironment signature was analyzed between high- and low- SNHG1 (a) or SNHG3 (b) expression groups. ns: no significant
difference, ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:0001.
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2.4. Evaluation of the Sensitivity of Chemotherapeutic Agents.
The sensitivity of chemotherapeutic agents was analyzed
based on the data obtained from the largest pharmacoge-
nomics database, i.e., Genomics of Drug Sensitivity in Can-
cer (GDSC) (https://www.cancerrxgene.org/). The R
package “pRRophetic” was used to predict the half-
maximal inhibitory concentration (IC50) of samples by
ridge regression [32]. The prediction accuracy was evaluated
through 10-fold cross-validation based on the GDSC train-
ing dataset. To remove the batch effect of “combat,” we
applied the default values of all parameters. Then, the
expression of the duplicate genes was summarized as mean
value.

2.5. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was performed to find out different signal

pathways between high- and low-expression groups using
“clusterProfiler” and “ggraph” package [33]. Groups were
divided according to the median expression of SNHG1 or
SNHG3. p value of < 0.05 was considered statistically
significant.

2.6. RNA Extraction and qRT-PCR. Total RNA was isolated
by Trizol Reagent (Invitrogen). mRNA was reverse tran-
scribed to cDNA by M-MLV reverse transcriptase (Takara,
Japan). qRT-PCR was performed using SYBR Green PCR
kit (Takara, Japan). GAPDH was used as endogenous con-
trols. The relative expression of genes was calculated using
2-ΔΔCt method [34]. The sequences of the primers were as
follows. GAPDH-F: 5′-TGAGTACGTCGTGGAGTCCAC-
3′, GAPDH-R: 5′-GTGCTAAGCAGTTGGTGGTG-3′,
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Figure 5: Chemosensitivity analysis of in HCC patients with high- or low- expression of SNHG1 or SNHG3. The estimated IC50 for AKT
inhibitor VII, bexarotene, bicalutamide, dasatinib, erlotinib, and gefitinib in high- and low- SNHG1 (a) or SNHG3 (b) expression groups.
LExp: low-expression; HExp: high-expression. The statistical difference between two groups was compared through the Wilcoxon test. p
values were shown in the figure.
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SHNG1-F: 5′-ACACTGGGAGCCAATGAAACA-3′,
SHNG1-R: 5′-ACACGAAGTGGAGTTATGGGAAG-3′.

2.7. Colony Formation Assay. Colony formation assay was
performed to measure cell proliferation ability. 300 Huh 7
or HepG2 cells were seeded in 6-well plates and cultured
in complete DMEM medium. Fresh culture medium was
replaced every 3 days. After 14 days, the colonies were
stained with gentian violet. The colony numbers were
counted, and each treatment was performed in triplicate [35].

2.8. The Wound Healing and Transwell Invasion Assay. Cells
were seeded in 6-well plates until the confluence reached
100%. The wound was scratched with a sterile pipette tip.
Then, cells were rinsed with DMEM medium without FBS
for twice and cultured in complete DMEM medium. The
distance that cells had migrated was photographed at the

same position and measured at 0 and 48 hours under an
inverted optical microscope (Olympus, Japan) [36].

2 × 105 cells were seeded in the upper chamber of
Matrigel-coated 24 well transwell chamber. DMEM with
20% FBS was added to the lower chamber of transwell. After
48 hours incubation, the invaded cells at the lower surface of
the filter were counted after crystal violet staining [37].

2.9. Apoptosis Assay by Flow Cytometry. Cell apoptosis was
detected using Annexin V-FITC Apoptosis Detection Kit
(LiankeBio, China) according to the manufacturer’s protocol
[38]. 1 × 106 ~ 3 × 106 cells were harvested and washed with
cold PBS. Subsequently, the cells were incubated with 5μl of
Annexin V-FITC and 10μl of propidium iodide at room
temperature for 5min. Samples were measured using flow
cytometry immediately.

2.10. Competing Endogenous RNA (ceRNA) Network
Construction. Construction of ceRNA network was based
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on the interaction of key lncRNAs, microRNAs (miRNAs),
and m6A genes [39]. First, the mircode (http://www
.mircode.org/) database was used to predict the interaction
between lncRNA and miRNA. Second, miRDB (http://
mirdb.org/) was employed to predict miRNAs which inter-
act with lncRNA related m6A genes. The interaction pairs
of lncRNA-miRNA were then integrated with miRNA-
mRNA pairs to establish lncRNA-miRNA-mRNA ceRNA
network using Cytoscape version 3.8.2.

2.11. Statistical Analysis. All statistical analyses were con-
ducted using the R programming language (version 3.6).

All statistical tests were bilateral and a p value of < 0.05
was considered to be statistically significant. The statistical
significance was ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:0001.

3. Results and Discussion

3.1. Results

3.1.1. Screening of m6A-related differentially expressed
lncRNAs in HCC. In order to identify m6A-related lncRNAs
in HCC, we conducted Pearson correlation analysis using
lncRNAs and m6A expression matrixes which were
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downloaded from TCGA and ICGC databases. From TCGA
database, we obtained 8777 m6A-related lncRNAs. Whereas,
from ICGC database, we obtained 118 m6A-related
lncRNAs. Subsequently, we calculated the statistically differ-
ence of lncRNA expression level between the normal and
HCC groups. In total, 132 (56 upregulated and 76 downreg-
ulated) lncRNAs from TCGA (Figure 1(b), supplementary
file 1) and 17 (3 upregulated and 14 downregulated)
lncRNAs (Figure 1(c), supplementary file 2) from ICGC
were identified as differentially expressed m6A-related
lncRNAs in HCC.

3.1.2. Prognostic Analysis of the m6A-Related lncRNAs. 149
differentially expressed m6A-related lncRNAs (132 from
TCGA and 17 from ICGC) in HCC were included in univar-
iate Cox regression analysis to evaluate their prognostic
roles. Among them, 15 lncRNAs from TCGA and 6 from
ICGC were preliminary selected as prognostic genes. The
correlation of m6A-related genes and prognostic lncRNAs
from both databases is shown in Figure 2(a). As shown in
the forest plot (Figure 2(b)), we identified 11 risk factors
and 4 protective factors in TCGA geneset. Whereas, from

ICGC geneset, we identified 4 risk factors and 2 protective
factors (Figure 2(c)). The overlapping geneset among TCGA
and ICGC was identified as SNHG1 and SNHG3, which
were further recognized as the risk factors along with HR ð
hazard ratioÞ > 1 in both genesets (Figures 2(a) and 2(b)).

3.1.3. Association between Key lncRNAs and Tumor Immune
Landscape. Tumor-infiltrating immune cells play a key role
in tumor microenvironment. By assessing the infiltration
pattern of tumor-infiltrating immune cells, how key
lncRNAs affect tumor progression could be further under-
stood. Therefore, we applied CIBERSORT algorithm to
RNA-seq data to assess the relative proportions of 22
tumor-infiltrating immune cells. As shown in Figure 3(a),
the expression of SNHG1 was positively correlated with T
cell follicular helper, macrophages M0, T cell regulatory
(Tregs), B cell memory, T cell CD4 memory activated, and
plasma cells. Whereas the expression of SNHG1 was nega-
tively correlated with mast cells resting, NK cells resting,
and macrophages M2. Further, the expression of SNHG3
was positively correlated with T cell follicular helper, T cell
CD4 memory activated, macrophage M0, plasma cells, and
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B cell memory. Whereas the expression of SNHG3 was neg-
atively correlated with NK cell resting, T cell CD4 memory
resting, mast cell resting, and macrophage M2
(Figure 3(b)). Subsequently, according to the correlation
with SNHG1 and SNHG3, we divided the immune cells into
four clusters: cell cluster A, cell cluster B, cell cluster C, and
cell cluster D (Figure 3(c)). Meanwhile, the comprehensive
landscape of immune cells interactions and their prognostic
significance for liver cancer was analyzed. Results obtained
from this analysis identified 12 immune cells (cells memory,
T cell CD4 naïve, T cell follicular helper, T cell gamma delta,
NK cell activated, monocytes, macrophage M0, macro-
phages M2, dendritic cell resting, dendritic cell activated,
eosinophils, and neutrophils) as risk factors. Whereas we
identified 10 (B cells naïve, plasma cells, T cell CD8, T cell
CD4 memory resting, T cell CD4 memory activated, T cell
regulatory Tregs, NK cell resting, macrophage M1, mast cell
resting, and mast cell activated) as favorable factors.

Then, we analyzed the difference of tumor microenvi-
ronment signature between high- and low-expression of
key lncRNAs groups. “TMEclusters” was identified based
on the expression level of SNHG1 or SNHG3. As shown in
Figure 4, we identified 12 tumor microenvironment signa-
tures with significant difference between high- and low-
expression groups, including base excision repair, CD8 T
effector, DNA damage response, DNA replication, EMT1,
EMT3, immune checkpoint, mismatch repair, nucleotide
excision repair, pan F TBRs, TMEscore, TMEscoreA, and
TMEscoreB.

These results suggested that SNHG1 and SNHG3
expression affected immune infiltration and the crosstalk
among immune cells probably played an important role in
the formation of immune infiltration characterization of
tumor microenvironment.

3.1.4. Chemosensitivity Associated with Key lncRNAs. Con-
sidering the fact that chemotherapy is commonly used in
the comprehensive treatment for liver cancer, we assessed
the relationship between key lncRNAs expression and the
sensitivity of six chemotherapeutic agents: AKT inhibitor
VII, bexarotene, bicalutamide, dasatinib, erlotinib, and gefi-
tinib (Figures 5(a) and 5(b)). According to the median
expression level of SNHG1 or SNHG3, all the tumor samples
were divided into two groups: high-expression and low-
expression groups. Samples with expression level higher
than the median were divided into high-expression groups
and lower than the median were divided into low-
expression groups. We used R package “pRRophetic” to esti-
mate the IC50 of each sample. As observed in the result, sig-
nificant difference in the IC50 existed between high- and
low-expression groups for all the 6 chemotherapeutic agents.
Samples with low expression of SNHG1 or SNHG3 were
probably more sensitive to AKT inhibitor VII, bexarotene,
bicalutamide, dasatinib, erlotinib, and gefitinib.

3.1.5. Tumor Neoantigen Burden in High- and Low-SNHG1/
SNHG3 Groups. Immunotherapy has been considered as a
major breakthrough in cancer therapy, and tumor neoanti-
gen burden is closely associated with the efficacy of immu-

notherapy. As shown in our results, the expression of key
lncRNAs was correlated with tumor neoantigen burden.
Tumor neoantigen burden was higher in the low-
expression of SNHG1 or SNHG3 group than that in high
group (Figures 6(a) and 6(b)).

3.1.6. Function Annotation of Key lncRNAs. To investigate
the potential mechanism of prognostic genes affecting the
tumor progression, we carried out GSEA using data from
TCGA and ICGC. As indicated in Figure 7(a), the high-
expression of SNHG1group was significantly associated with
pathways including base excision repair, DNA replication,
and mismatch repair. Meanwhile, pathways including basal
transcription factors, DNA replication, and proteasome were
significantly enriched in high-expression of SNHG3 group
(Figure 7(b)). Molecules involved in the enriched pathways
were shown in Figures 7(c) and 7(d), respectively. These
results indicated that the alteration of SNHG1 or SNHG3
expression may affect the tumor progression through the
pathways mentioned above.

3.1.7. Association between Key lncRNAs and the
Clinicopathological Characteristics. Subsequently, we ana-
lyzed the expression level of key lncRNAs in different histo-
logical grade and pathological stage tumor samples. As
observed in the results, the expression of SNHG1/SNHG3
was higher in advanced high tumor grade (Figures 8(a)
and 8(b)). Additionally, no significant difference was
observed between the clinical stages for the expression level
of SNHG1 (Figure 8(c)). However, we observed significantly
upregulated expression of SNHG3 in stage II compare with
stage I (Figure 8(d)). These results suggest that aberrant
upregulation of SNHG1 and SNHG3 is closely related to
clinicopathological characteristics of HCC.

3.1.8. Establishment of a Prognostic Nomogram for HCC
Patients. In order to create a clinically applicable quantita-
tive tool to predict the OS of liver cancer patients, a prognos-
tic nomogram was established based on the age, histological
grade, pathological stage, gender, and key lncRNAs
(Figure 9(a)). The results suggested that the expression of
SNHG1 had a prominent contribution to the overall survival
score while SNHG3 contributed less. Similarly, the analysis
of Cox proportional-hazard model (coxph) showed the
results in accordance with that of the nomogram
(Figure 9(c)). Additionally, the nomogram systematically
predicted the 5- and 8-year overall survival of liver cancer
patients. Furthermore, the calibration curve revealed a rea-
sonable concordance between observed and predicted OS
(Figure 9(b)). These results suggested that the nomogram
could predict the 5- or 8-year OS of liver cancer patients
with good accuracy.

3.1.9. Construction of the ceRNA Network. lncRNAs can act
as miRNAs sponges to sequester miRNAs away and further
regulate mRNAs. To better elucidate the regulatory mecha-
nisms of key lncRNAs in HCC, we constructed the ceRNA
network. Mircode database was used to predict the targets
of the key lncRNAs, and 149 lncRNA-miRNA pairs were
obtained. miRDB database was used to predict miRNAs
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Figure 11: Continued.
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which interact with the key lncRNAs related m6A genes, and
2731 miRNA-mRNA pairs were obtained. After separately
identifying the lncRNA-miRNA and miRNA-mRNA pairs,
the overlapped interaction pairs were used to construct the
ceRNA network. Finally, 11 lncRNA-related m6A genes
and 13 miRNAs were included in the ceRNA network
(Figure 10).

3.1.10. Effects of Key lncRNAs on Behaviors of HCC Cells. To
further confirm the expression pattern of key lncRNAs in
HCC cell lines, we measured the relative expression level of
SNHG1 in LO2, HepG2, Hep3B, and Huh7 cell lines by
qRT-PCR. As shown in Figure 11(a), SNHG1 was signifi-
cantly upregulated in HCC cell lines compared with that of
human immortalized hepatocyte cell line LO2. In addition,
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Figure 11: SHNG1 and SHNG3 inhibit apoptosis and promote proliferation of HCC cells. (a) Expression of SHNG1 in LO2, HepG2,
Hep3B, and Huh7 cell lines was measured by qRT-PCR. (b) siRNA knockdown efficiency was confirmed by qRT-PCR in Hun7 cells.
Huh7: Huh7 cells without transfection; Huh7-NC: Huh7 cells transfected with negative control (NC); Huh7-si-SHNG1: Huh7 cells
transfected with si-SHNG1. (c) siRNA knockdown efficiency was confirmed by qRT-PCR in HepG2 cells. HepG2: HepG2 cells without
transfection; HepG2-NC: HepG2 cells transfected with negative control; HepG2-si-SHNG3: Huh7 cells transfected with si-SHNG3. (d, e)
Colony formation assay was used to assess the effect of siSHNG1 in Huh7 cells and the effect of siSHNG3 in HepG2 cells. (f, g) Flow
cytometry analysis of Annexin V-FITC/PI staining was used to assess the number of apoptotic cells in each treatment in Huh7 and
HepG2 cells. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:0001.
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the relative expression level of SNHG3 in HCC cell lines was
determined in our previous study. The expression level of
SNHG3 was higher in HCC cell lines than that in LO2
[40]. In conclusion, both SNHG1 and SNHG3 were upregu-
lated in HCC cell lines. The expression level of SNHG1 was
highest in Huh7, and the expression level of SNHG3 was
highest in HepG2.

To study the role of key lncRNAs in HCC cells, SNHG1
was knocked down in Huh7, and SNHG3 was knocked
down in HepG2 by small interfering RNA (siRNA), sepa-
rately (Figures 11(b) and 11(c)). The colony formation
assays were used to assess the role of key lncRNAs in HCC
proliferation. The results showed that suppression of
SNHG1 by siRNA inhibited the proliferation of Huh7 and
suppression of SNHG3 inhibited the proliferation of HepG2
(Figures 11(d) and 11(e)). Cell apoptosis was detected using
flow cytometry analysis of Annexin V-FITC/propidium
iodide (PI). The results showed that knocking down of
SNHG1 or SNHG3 promoted cell apoptosis in Huh7 or
HepG2 (Figures 11(f) and 11(g)). These results suggested
that SNHG1 and SNHG3 could inhibit apoptosis and pro-
mote proliferation of HCC cells.

To further investigate the effects of key lncRNAs on
migration and invasion of HCC cells, the wound healing
assay and transwell assays were performed. The result of
the wound healing assay showed that cells treated with
siSNHG1 or siSNHG3 exhibited slower rate of migration
of HCC cells than the NC transfected or the untransfected
cells (Figures 12(a) and 12(b)). Moreover, the result of trans-
well assays indicated that the reduction of SNHG1 or
SNHG3 inhibited the invasion ability of HCC cells
(Figures 12(c) and 12(d)).

In conclusion, the results indicate that SNHG1 and
SNHG3 promote the proliferative, migratory, and invasive
abilities of HCC cells.

3.2. Discussion. The overall prognosis for HCC patients is
poor, with a 5-year survival rate of less than 5% in underde-
veloped areas [41]. Therefore, prognostic signature which
can distinguish high-risk and low-risk patients is essential

for determining optimal therapeutic strategies and improv-
ing survival outcomes of HCC patients. Emerging evidence
has demonstrated that m6A-related genes could be prognos-
tic markers for predicting the survival time of patients
[42–44]. In recent years, the role of m6A related lncRNAs
has been recognized profoundly in HCC [45, 46]. And stud-
ies in terms of prognosis of HCC patients were also accumu-
lated. As an instance, high expression level of LINC00958
which is mediated by m6A modification predicts poor over-
all survival of HCC patients independently [47]. Moreover,
studies using a comprehensive informatics analysis based
on data from TCGA database revealed that m6A methylated
lncRNA was closely related to the prognosis of HCC
[48–50]. However, more effective and specific prognostic
biomarkers still needed.

To screen new m6A-related lncRNA signature which is
responsible for prognosis of HCC, a total of 576 HCC
patients and 292 normal cases were included in our study
for a comprehensive bioinformatics analysis. From the
results, two m6A-related lncRNAs, namely, SNHG1 and
SNHG3 were found to be differentially expressed in HCC
and act as negative prognostic factors in both TCGA and
ICGC databases. Small nucleolar RNA host genes (SNHGs)
have been recognized as important regulators in the devel-
opment and prognosis of multiple cancers. Previous studies
have shown that SNHG1, SNHG3, SNHG5, SNHG6,
SNHG8, SNHG16, and SNHG20 were all upregulated in
HCC and associated with process of carcinogenesis such as
cell proliferation, invasion, and metastasis [51–60]. Among
them, SNHG1, SNHG3, SNHG16, and SNHG20 were dem-
onstrated to be associated with poor prognosis [51, 56, 59,
60]. Additionally, SNHG16 was linked to chemoresistant,
while SNHG3 facilitated sorafenib resistance [54, 55]. In
the present study, we identified SNHG1 and SNHG3 as sig-
nificantly upregulated m6A-related lncRNAs in HCC sam-
ples compared to the normal cases. This suggested their
probable role in HCC carcinogenesis. The in vitro experi-
ments revealed that SNHG1 and SNHG3 were upregulated
in HCC cell lines compared to LO2, and they promoted
the proliferative, migratory, and invasive abilities of HCC

⁎⁎⁎HepG2 HepG2-NC HepG2-si-SHNG3

H
ep

G
2

H
ep

G
2-

si-
SH

N
G

3

H
ep

G
2-

N
C

400

300

200

100

0

Re
lat

iv
e c

el
l n

um
be

r p
er

 fi
el

d

(d)

Figure 12: SHNG1 and SHNG3 promote migration and invasion ability of HCC cells. (a, b) The effect of siSHNG1 or siSHNG3 on cell
migration ability was determined by wound healing assay in Huh7 or HepG2 cells. Scar bars: 100 μm. (c, d) The effect of siSHNG1 or
siSHNG3 on cell invasion ability was assessed by transwell assay in Huh7 or HepG2 cells.
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cells. These results indicate that SNHG1 or SNHG3 pro-
motes the development and progression of HCC, which is
consistent with previous studies in HCC or other cancer
types [61–63]. ceRNA network was established to explore
the regulatory mechanisms of SNHG1 and SNHG3. 13 miR-
NAs were included in the ceRNA network and associated
with both SNHG1 and SNHG3. Among them, miR-139-5p
was reported to interact with SNHG3 in gastric cancer
[62], clear cell renal cell carcinoma [64], ovarian cancer
[65], and HCC [66]. SNHG1 sponged miR-216b-5p to pro-
mote cell growth and migration in serous epithelial ovarian
cancer [67] and promote tumor angiogenesis and growth
in breast cancer [68]. These findings provide further confir-
mation that SNHG1 and SNHG3 affect HCC cell behaviors
through miRNAs.

Furthermore, univariate Cox regression analysis revealed
SNHG1 and SNHG3 acted as negative prognostic factors.
The results obtained from the present study were consistent
with the previous reports which showed linkage of SNHG1
and SNHG3 to poor prognosis. Moreover, the results of fur-
ther analysis suggest the low expression of SNHG1/SNHG3
corresponding to more sensitive to AKT inhibitor VII, bex-
arotene, bicalutamide, dasatinib, erlotinib, and gefitinib.
These results indicate that high expression of SNHG1/
SNHG3 can lead to drug resistant. The results are in better
agreement with reports related to SNHG and chemoresis-
tant. Previous studies reported that increased SNHG3
expression was correlated with poor prognosis and sorafenib
resistance partly through inhibiting miR-128 signalling [55].
The study carried out by Ge et al. showed contribution of
SNHG1 in cisplatin resistance related to nonsmall cell lung
cancer [69]. In another report, high expression of SNHG3
was positively associated with cisplatin resistance in gastric
cancer cells [70].

The immune response in the microenvironment has
been identified to participate actively in the progression
and recurrence of cancer, which contributed to the adverse
outcomes of patients. Tumor-infiltrating cells, which are
the vital part of tumor microenvironment, positively corre-
lated with malignancy progression and unfavorable progno-
sis of tumor. Previous studies have revealed that m6A
modification played an undeniably important role in the for-
mation of tumor microenvironment characterizations [71].
In the present study, T cell follicular helper, macrophage
M0, B cell memory, and plasma cells were positively corre-
lated with both m6A-related lncRNAs SNHG1 and SNHG3.
Whereas mast cell resting, NK cell resting, and macrophage
M2 were negatively correlated with SNHG1 and SNHG3.
SNHG1 and SNHG3 may affect the immune cell infiltration
patterns and the crosstalk among immune cells, thus shed-
ding light on how SNHG1 and SNHG3 interact with tumor
microenvironment.

Both SNHG1 and SNHG3 were observed with correla-
tion to treatment decisions and prognosis of patients with
cancers [55, 57, 60]. Further, we analyzed the expression
level of SNHG1 and SNHG3 in tumors with different grades
and stages. The expression level of both SNHG1 and SNHG3
was related to advanced tumor grade. Further, we observed
significantly higher expression level of SNHG3 in stage II

than in stage I. SNHG1 was reported to be associated with
advanced pathological stage in multiple cancers [61,
72–74]. However, the expression of SNHG1 was not associ-
ated with clinical stage of HCC patients in our study. But the
expression level of SNHG3 was closely associated with
advanced tumor grade and stage, which is consistent with
those of previous reports in HCC or other cancers [62, 63,
75, 76]. These results revealed that the expression level of
SNHG1 and SNHG3 could serve as candidate biomarkers
for optimizing treatment strategy and predicting prognosis
of HCC patients.

4. Conclusions

In conclusion, aberrant upregulation of m6A-related
lncRNA SNHG1 and SNHG3 was found closely related with
worse prognosis of HCC patients and was of great signifi-
cance in predicting the overall survival of HCC patients.
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