
Special Issue

Artificial Intelligence Algorithms to Diagnose Glaucoma and
Detect Glaucoma Progression: Translation to Clinical
Practice
Anna S. Mursch-Edlmayr1, Wai Siene Ng2, Alberto Diniz-Filho3, David C. Sousa4,
Louis Arnold5, Matthew B. Schlenker6, Karla Duenas-Angeles7, Pearse A. Keane8,
Jonathan G. Crowston9,10, and Hari Jayaram8

1 Department of Ophthalmology Johannes Kepler University, Linz, Austria
2 Cardiff Eye Unit, University Hospital of Wales, Cardiff, UK
3 Department of Ophthalmology and Otorhinolaryngology, Federal University of Minas Gerais, Belo Horizonte, Brazil
4 Department of Ophthalmology, Hospital de Santa Maria, Lisbon, Portugal
5 Department of Ophthalmology, University Hospital, Dijon, France
6 Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
7 Department of Ophthalmology, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
8 NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
9 Centre for Vision Research, Duke-NUS Medical School, Singapore
10 Singapore Eye Research Institute, Singapore National Eye Centre, Singapore

Correspondence: Hari Jayaram,
NIHR Biomedical Research Centre at
Moorfields Eye Hospital NHS
Foundation Trust and UCL Institute
of Ophthalmology, London, UK.
e-mail: h.jayaram@ucl.ac.uk

Received: September 30, 2019
Accepted: September 18, 2020
Published: October 15, 2020

Keywords: glaucoma; machine
learning; artificial intelligence

Citation:Mursch-Edlmayr AS, NgWS,
Diniz-Filho A, Sousa DC, Arnold L,
Schlenker MB, Duenas-Angeles K,
Keane PA, Crowston JG, Jayaram H.
Artificial intelligence algorithms to
diagnose glaucoma and detect
glaucoma progression: Translation
to clinical practice. Trans Vis Sci Tech.
2020;9(2):55,
https://doi.org/10.1167/tvst.9.2.55

Purpose: This concise review aims to explore the potential for the clinical implemen-
tation of artificial intelligence (AI) strategies for detecting glaucoma and monitoring
glaucoma progression.

Methods: Nonsystematic literature review using the search combinations “Artifi-
cial Intelligence,” “Deep Learning,” “Machine Learning,” “Neural Networks,” “Bayesian
Networks,” “Glaucoma Diagnosis,” and “Glaucoma Progression.” Information on sensi-
tivity and specificity regarding glaucoma diagnosis and progression analysis as well as
methodological details were extracted.

Results: Numerous AI strategies provide promising levels of specificity and sensitiv-
ity for structural (e.g. optical coherence tomography [OCT] imaging, fundus photogra-
phy) and functional (visual field [VF] testing) test modalities used for the detection of
glaucoma. Area under receiver operating curve (AROC) values of > 0.90 were achieved
with every modality. Combining structural and functional inputs has been shown to
even more improve the diagnostic ability. Regarding glaucoma progression, AI strate-
gies can detect progression earlier than conventional methods or potentially from one
single VF test.

Conclusions:AI algorithms applied to fundus photographs for screening purposesmay
provide good results using a simple and widely accessible test. However, for patients
who are likely to have glaucomamore sophisticatedmethods should be used including
data fromOCT and perimetry. Outputsmay serve as an adjunct to assist clinical decision
making, whereas also enhancing the efficiency, productivity, and quality of the delivery
ofglaucomacare. Patientswithdiagnosedglaucomamaybenefit from future algorithms
to evaluate their risk of progression. Challenges are yet to be overcome, including the
external validity of AI strategies, a move from a “black box” toward “explainable AI,” and
likely regulatory hurdles. However, it is clear that AI can enhance the role of specialist
clinicians and will inevitably shape the future of the delivery of glaucoma care to the
next generation.
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Translational Relevance: The promising levels of diagnostic accuracy reported by AI
strategies across themodalities used in clinical practice for glaucomadetection canpave
the way for the development of reliable models appropriate for their translation into
clinical practice. Future incorporation of AI into healthcaremodelsmay help address the
current limitations of access and timely management of patients with glaucoma across
the world.

Introduction

Glaucoma is a leading cause of irreversible world-
wide blindness.1 It is estimated to be the cause of
visual impairment for almost six million people and
blindness for three million people across the world.2
It is responsible for approximately 10% of those regis-
tered as blind within the United States,3 and for
almost one third of sight loss certifications in England.4
However, the disease is asymptomatic unless at an
advanced stage, and therefore an unacceptable number
of affected patients continue to remain undiagnosed.5
Early diagnosis is a crucial factor that has significant
impact upon prognosis.6 As the economic and personal
burden associated with glaucoma escalates with the
extent of disease progression, the ability to provide an
early diagnosis and initiation of appropriate treatment
becomes of crucial importance.7

The prevalence of glaucoma is projected to increase
by almost 50% over the next 20 years as the global
population lives longer.8 The burden of glaucoma care
will therefore continue to grow, without a correspond-
ing growth in the number of ophthalmologists or avail-
able resources.7,9 Although the number of ophthal-
mologists is increasing, the population aged over
60 years of age is growing at almost twice the rate.9 As a
result, the demand for the provision of glaucoma care
will likely exceed capacity and ophthalmologists may
face the insurmountable task of attempting to prior-
itize care for those patients at highest risk of visual
loss, or developing novel models of delivering care.10–12
Delays to timely glaucoma care have already resulted in
significant harm to patients in the United Kingdom.13
Thus, current models of glaucoma care are unsustain-
able and there is a need to look toward innovation in
order to address the mismatch between capacity and
demand.

Artificial intelligence (AI) strategies may provide a
potential solution to the growing demand and have
demonstrated the potential to redefine how clini-
cians can deliver health care to the next genera-
tion.14 Significant developments within the field of
retinal disease15,16 have placed ophthalmology at the
forefront of this area of innovation.17 Implemen-
tation of AI strategies offers an opportunity to

address the global challenge to meet the increasing
need for glaucoma care and significant research has
been performed to explore this field. The increas-
ing availability in primary ophthalmic care settings
of advanced imaging and perimetry technologies,
digital data acquisition, and the development of large
clinically phenotyped datasets from routine clinical
glaucoma care will continue to facilitate translational
research in this area. AI strategies therefore may
have the potential to develop novel methodologies to
develop effective glaucoma population-based screen-
ing to identify undiagnosed glaucoma and also detect
clinically relevant glaucoma progression in existing
patients.

This review summarizes contemporary develop-
ments of AI strategies using fundus photography,
optical coherence tomography (OCT) imaging, and
perimetry in glaucoma diagnosis and the detection of
glaucoma progression, and will contextualize its poten-
tial in helping shape the future of glaucoma service
delivery.

Artificial Intelligence

The concept of AI is widely considered to have
emerged at the Dartmouth Summer Research Project
in 1956.18 It is a branch of computer science that
aims to mimic intelligent human behavior. The term
is sometimes used interchangeably with machine learn-
ing19–21 (ML) and deep learning (DL),21–25 however, in
reality, AI is an umbrella term that includesML, which
itself encompasses DL.

ML is an extension of statistical modeling, whereas
in artificial neural networks (ANNs), data analysis is
through interconnected nodes with modifiable weights.
With ML and ANN, the machine is able to identify
the best parameters for a given algorithm to perform
a particular task.26 For example, the task may involve
the separation of “glaucoma” from “not glaucoma”
from a cohort of optic disc photographs. It is able to
detect relationships between multiple input parameters
and a definition or diagnosis, although not necessar-
ily providing insight into how these classifications are
derived.27,28
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In supervised learning, a “training dataset” is
required, which, for example, can be a large number
of optic disc photographs. Experts need to go through
the dataset and label each one with a correct diagno-
sis known as the “ground truth.” This information
is given to the machine, which then uses a learning
structure (e.g. random forest, support vector machine,
and Gaussian mixture model) to identify the correct
diagnosis. It adjusts itself by retesting multiple times
until the desired output is achieved. Learning can also
be unsupervised or semisupervised and is often relevant
if the data has no labels. This approach has the ability
to not only model the distribution of the data but
also to classify data into groups, including groups that
were not initially intended. DL is a modern exten-
sion of the classical neural network technique using
deep neural networks (DNNs).24,26 ADNN is anANN
with multiple intermediate “hidden layers” where each
level can transform its input signal into a gradually
more abstract feature representation. This is achieved
by successively combining outputs from the preceding
layer, therefore utilizing fewer artificial neurons than
a comparable shallow ANN. The advantage of DL is
that more complex inputs, such as an entire image, can
be used, however, this requires a much larger training
dataset.

Glaucoma Diagnosis

The use of OCT imaging, visual field (VF) assess-
ment using standard automated perimetry (SAP), and
clinical examination of the optic disc underpin the
diagnosis of glaucomatous optic nerve injury in a clini-
cal setting. In order to accurately diagnose glaucoma,
we require tests with both high sensitivity and speci-
ficity. Fundus photographs may be a suitable candidate
for population-based glaucoma screening for diagnos-
ing glaucoma as it is the simplest and most widely
established modality of optic disc assessment.29 It
represents a simple, relatively inexpensive approach
and has shown promise for case detection among
defined populations. However, the sheer workload
generated through the need to manually grade images,
the associated inter and intra-observer discrepancies,
and confounding factors, such as extremes of refractive
error, may challenge diagnostic accuracy. Therefore,
automated systems for image grading and AI-based
algorithms for improving the diagnostic efficiency of
automated glaucoma diagnosis from large image sets
is an attractive solution.

In 1999, Sinthanayothin et al. first described a
process for the automated detection of the optic disc,

fovea, and blood vessels from color fundus images.30
Since then, successful automated segmentation has
been reproduced by several groups and has been
considered a prerequisite for algorithm-based diagno-
sis of glaucoma from fundus photographs.3–34

Subsequently, fundus photographs have beenwidely
used as an input dataset for evaluating glaucoma
diagnosis using AI strategies,29,31–33,35–42 and are
summarized in Table 1. Segmentation and structured
learning appear to be themost robust methods through
which the analysis of fundus photographs can be
utilized to detect glaucoma, with reported accuracy of
over 95% in making a positive diagnosis.32,33,39

In addition, artificial neural networks based on
features, such as the cup-to-disc (C/D) ratio, achieved
an area under the receiver operating curve (AROC) of
up to 0.90 for discriminating healthy from glaucoma-
tous eyes.37,38,43 Using DL algorithms, several groups
have reported AROC values for glaucoma detec-
tion between 0.84 and 0.99.32,39,44,45 More recently,
a remarkable sensitivity and specificity of 98% for
glaucoma diagnosis was achieved through training a
neural network with 1426 fundus images.46 A compre-
hensive DL algorithm to quantify glaucomatous optic
nerve injury from fundus photographs has also been
described.47,48 This involves features from spectral-
domain OCT images being used to train a DL
algorithm in order to predict neuroretinal damage
from optic disc photographs and shows great promise.
Such DL algorithms have even been shown to perform
better than human grading of fundus photographs in
discriminating between eyeswith normal and abnormal
VF tests.49 Several authors have evaluated AI-based
fundus photograph analysis for its utility for detecting
glaucoma (see Table 1). In 2013, Cheng et al. reported
an AROC of 0.82 in a population-based dataset in
Singapore.

With recent advances in OCT imaging, spectral-
domain OCT has evolved to improve the resolution,
repeatability, and speed of image acquisition and will
further increase with advent of swept-source technol-
ogy.50 The retinal nerve fiber layer (RNFL) thick-
ness remains the most common parameter utilized
for glaucoma diagnosis50 and is a major focus in
ML approaches using OCT imaging data. Starting in
2005, several studies have reported promising results
with various ML algorithms analyzing OCT imaging
data from peripapillary RNFL thickness maps and
the macular ganglion cell complex for discriminating
between glaucomatous and normal eyes,27,51–57 with
AROC values ranging from 0.69 to 0.99. A recent
report proposed a DL network able to classify eyes
as normal or glaucomatous based upon unsegmented
OCT volumes of the optic nerve head. This achieved
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an AROC of 0.94 and also showed that the neuroreti-
nal rim, the optic disc area, and the lamina cribrosa and
its surrounding regions were significantly associated
with classification as glaucomatous.58 These studies are
summarized in Table 2.

Although the studies described above report the
general success of AI systems in identifying glauco-
matous eyes, the majority of studies were unable
to demonstrate superiority in diagnostic accuracy in
comparison to using the best single conventional OCT
parameter (e.g. rim area and average RNFL thick-
ness). More complex transformations of the OCT
data, including super-pixel segmentation in super-
vised ML,57 a hybrid DL approach,56 and use of the
Mahalanobis distance,51 were, however, able to demon-
strate superiority compared to using conventionalOCT
parameters achievingAROCvalues between 0.8657 and
0.99.51

The algorithms reported to date have been trained
and validated on specific patient cohorts or on collec-
tions of disc photographs. A potential limitation of
this approach is whether the quoted sensitivities and
specificities will be generalizable to real-world patient
populations where prevalent comorbidities, such as
cataract and ocular surface disease, exist, negatively
impacting the quality of images used as input
data.

AI strategies to diagnose glaucoma using datasets
derived from VF testing have been studied since
1994,59–64 and are summarized in Table 3. Using
standard automated perimetry (SAP) perimetry data,
AI can classify the severity of field loss from early to
advanced damage from a single field.62,64–66 In 1994,
the use of a back-propagation strategy (i.e. with no
clinical diagnostic parameters incorporated) with an
ANN showed that neural networks can be as profi-
cient as a trained specialist in distinguishing normal
from glaucomatous VFs, with agreement seen in 74%
of cases.63 In the same year, an unsupervised ML
classifier was shown to be capable of the identifica-
tion of typical patterns of VF loss seen with clinical
experience.64 Without being guided by a prior diagno-
sis, this approach was able to place 98% of normal
visual fields within the same cluster and successfully
classify 71% of glaucomatous fields across 4 other
disease-specific clusters, showing good agreement with
glaucoma specialists and pattern standard deviation.
Andersson et al. were the first to report the poten-
tial outperformance of clinicians by a trained ANN
in making a diagnosis of glaucoma based upon visual
field test data. The ANN performed comparably to
clinicians with specificities of 90% and 91%, respec-
tively, however, with significantly improved sensitivity
(91% vs. 83%).59

Other studies have demonstrated that evaluation of
VF tests withML classifiers67,68 and trainedANNs69,70
perform as well as, or if not better, at identifying
glaucomatous VFs than conventional parameters, such
as the Glaucoma Hemifield Test, Mean Deviation, and
Pattern Standard Deviation.

In order to identify early glaucomatous injury, ML
has also been applied to frequency doubling perime-
try data with promising results. Bowd et al. used an
unsupervisedML classifier to differentiate normal VFs
from glaucomatous visual fields with 93.1% speci-
ficity and 82.8% sensitivity.61 Recently, two papers
were published reporting results of DL algorithms
to diagnose glaucoma from VF data. The algorithm
of Li et al. which involved a DNN, outperformed
the diagnostic accuracy of glaucoma experts as well
as traditional indices in differentiating normal from
glaucomatous VFs, with a specificity of 83% and
sensitivity of 93%.71 Kucur et al. have also developed
an algorithm using a convolutional neural network
capable of discriminating between normal and early
glaucomatous VFs with an average precision score of
87%.72 However, in general, neural network perfor-
mance is affected by training sets, which need to be
large in size and well balanced in phenotype with
respect to the normal and glaucomatous datasets,
as well as in defect severity and defect location.73,74
Misclassification may still be an issue in more challeng-
ing diagnostic scenarios, including patients with tilted
and myopic optic discs.

Combining structural and functional inputs, such
as standard automated perimetry and OCT param-
eters, does improve the ability for AI strategies to
diagnose glaucoma with an AROC of up to 0.98
using an ANN.75–80 These approaches are summarized
in Table 4. Incorporating other clinical parameters,
including advancing age, intraocular pressure (IOP),
and corneal thickness per se appear to contribute
little to improving the diagnostic accuracy of the
algorithms.81 This may not be surprising as the fundus
appearance and retinal ganglion cell (RGC) functions
are a manifestation of the disease itself rather than
being directly determined risk factors for the disease.

Glaucoma Progression

Detection of glaucoma progression is a key compo-
nent of the clinical management of patients with
glaucoma, in order to identify those individuals at
risk of developing glaucoma-related visual impair-
ment. Identifying progression over shorter time inter-
vals is often challenging and requires the identification
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of structural or functional change at the earliest possi-
ble time point. Because AI algorithms have the poten-
tial to incorporate structural or functional changes
over time, they have the potential to provide more
accurate and timely identification of likely glaucoma
progression.

Structural Aspects: Imaging Techniques

With the widespread availability of ever increas-
ingly sophisticated imaging technology, there will be
further opportunities to develop longitudinal analytical
approaches to detect glaucoma progression. Although
AI technologies have been developed for glaucoma
screening using fundus photographs, this approach has
not been evaluated to detect progression.

Multiclass support vector machines (SVMs), a form
of supervised ML, have been used to simultane-
ously discriminate between normal, nonprogressing,
and progressing eyes82 through the analysis of confocal
scanning laser ophthalmoscopy (CSLO) images with a
correct classification rate of 88%.

The incorporation of pixel-wise rates of change
from CSLO image analysis has been shown to reduce
the overall false-positive rate in detecting glaucoma
progression.83 This strategy demonstrated a sensitiv-
ity of 86% in progressing eyes, compared to 39%
using conventional approaches.84 Higher sensitivity
for progression with similar specificity was shown
compared to statistical image mapping, suggesting an
improved ability to detect glaucomatous progression.
The sensitivity and specificity of a unified framework
for detection of glaucomatous progression usingCSLO
images was reported as 86% and 88%, respectively.85

A hierarchical framework for detecting glaucoma
progression using spectral-domain OCT images
encompassing the whole three-dimensional volume
of the optic nerve head has also been tested.86,87
The control dataset for training of the algorithm
included both healthy normal and stable nonprogres-
sive glaucoma eyes, which resulted in a very robust
algorithm. This techniquewas able to demonstrate high
diagnostic accuracy with 78% sensitivity for detect-
ing glaucoma progression, compared to 69% using
an ANN evaluating RNFL thickness alone.86 More
recently, the application of computational techniques
to a large set of swept-source OCT images to identify
structural features associated with glaucoma progres-
sion has been described.88 These features outperformed
glaucoma detection using conventional measures (e.g.
SAP, peripapillary OCT, and RNFL scans) with an
AROC of 0.95, compared to 0.90 for average global
peripapillary RNFL thickness and 0.86 for SAP mean
deviation.

Functional Aspects: Visual Field Analysis

In clinical practice, glaucoma progression is often
identified through the analysis of serial VF tests using
SAP and is considered to be the gold standard,
despite its test-retest variability.89 Early work in 1997
by Brigatti et al. demonstrated glaucoma progression
through analyzing serial fields with a neural network.90
They reported a sensitivity and specificity of 73%
and 88% with good concordance of neural network
observers. To date, the networks have used supervised
learning techniques, but, in 2005, Sample et al. used
unsupervised ML to identify areas of progression in
glaucomatous VF tests comparable or even better than
clinical criteria.91 In tandem with this study, a sister
paper was published by Goldbaum et al. detailing
the application of ML in identifying and validating
patterns of glaucomatous VF defects, reporting an
impressive 98.4% specificity.92

Various ML approaches have been tested for their
clinical effectiveness for detecting VF progression of
which the strongest performed strongest with an
AROC of 0.86, 89.9% sensitivity, and 93.8% speci-
ficity.93,94 Detailed summaries are presented in Table 5.

Of particular clinical significance, AIs have been
shown to be able to detect progressing eyes 20 months
earlier than using conventional approaches, such as
global, region-wise, and point-wise indices.95 This was
without the need for a further visit for confirmation
and showed particular strength in detecting slowly
progressing eyes. More recently, Wen et al. used an
unfiltered real-world dataset of over 30 thousand VF
tests and 1.7 million perimetry points to train a DL
ANN that was able to predict future VF test perfor-
mance over a 5-year period given only a single input
field test.96 Further validation of this approach from
other groups may enable future incorporation of this
strategy into clinical risk stratification models.

Combining Structure and Function

As observed with glaucoma diagnosis, the detection
of progression was improved using a combination of
different modalities with ML generating good AROCs,
but not remarkably higher than with single modality
inputs as would be intuitively expected.97

The combination of structural and functional
parameters using different ML classifiers generated
AROC curves for progression detection from 0.83
to 0.88.97 A Bayesian joint longitudinal model to
integrate structural and functional information from
longitudinal measures has also been evaluated. Infor-
mation derived from one test influenced the inferences
obtained from the other test. Therefore, a SAP change
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that would otherwise be declared not statistically signif-
icant by analysis of SAP data alone could become
significant after taking into consideration structural
changes occurring in the same eye.98,99 This approach
resulted in more accurate and precise estimates of
rates of change compared to the conventional method.
Glaucoma progression has been successfully predicted
from baseline CSLO and SAP through relevance vector
machine (RVM) classifiers.100 Incorporation of known
risk factors and information from additional tests into
the assessment of change resulted in a better accuracy
of the risk detection for development of functional
impairment in individual patients101 (detail on individ-
ual studies is summarized in Table 5).

Discussion

This review summarizes the current status of AI
strategies with regard to glaucoma detection and
diagnosis and in assessing progression of the disease,
and highlights the potential future role of this sphere
of innovation in shaping how glaucoma care may be
delivered to the next generation.

ML algorithms developed using almost 50,000
fundus images have been shown to identify referable
glaucomatous optic neuropathy with an AROC of
0.90.38 Further DL algorithms trained on matched
fundus and OCT images of over 30,000 eyes are able
to discriminate between glaucomatous and healthy eyes
with an AROC of 0.98,47 and may even be superior
to human grading.49 Algorithms incorporating further
clinical parameters and information from VF testing
and OCT imaging were able to identify patients with
glaucomawith anAROCof 0.98, evenwhen only using
under 200 subjects.75,81

Despite the progress that has been made in devel-
oping AI strategies for glaucoma diagnosis, several
significant hurdles still need to be overcome before
these advances can be translated to clinical practice.
Establishing a ground truth for glaucoma diagnosis
can be contentious even among experts in the field.102
This becomes evident as studies have variable levels
of agreement between glaucoma specialists in differen-
tiating patients with glaucoma from subjects without
the disease.103–105 Ultimately, any supervised ML or
DL approach is dependent on the “ground truth” as
its reference standard, which in the case of glaucoma
diagnosis can prove to be challenging. Establishing
a ground truth for glaucoma progression is equally
contentious. However, a potential solution to this is to
utilize datasets from patients with long-term follow-
up. As glaucoma is a progressive disease, absolute

confirmation of diagnosis may only be possible in some
cases through the evaluation of extended longitudinal
data.

Although impressive AROC values have been
demonstrated by many study algorithms, it is difficult
to compare the clinical applicability between differ-
ent studies with differing methodologies. Algorithms
may vary between clinic settings, the diversity of inputs
from commercially available devices, and also due to
the subjective and variable nature of patient-reported
data.106 Furthermore, current published research has
not been designed to account for the natural variabil-
ity that exists within populations, including the impact
of ethnicity, extremes of refractive error, and age.
AI strategies show great promise in their ability
to discriminate between glaucomatous and healthy
subjects. However, further large-scale population-
based algorithm validation is essential in order to
confidently implement these advances toward assist-
ing glaucoma diagnosis in the general population. In
addition, AI strategies need to be transferable in order
to accommodate input data from different machines
using standardized methodological approaches.

Even though the results on AI strategies using
VF inputs for progression analysis shows considerable
promise, even AI cannot overcome one of the major
challenges in glaucoma care, which is how we define
progression using a test that is prone to significant
test–retest variability. The studies mentioned used a
variety of methods to define glaucoma progression.
These include event-based and trend-based approaches
to detect visual field progression107 (see Table 5). Event-
based analysis compares the sensitivities of the current
VF to established thresholds from baseline exami-
nations. In trend-based analyses, VF sensitivities of
all tests during the follow-up period are analyzed to
identify any statistically significant change over time.
This is usually done by using a linear regression
approach. In addition, even with anAI approach to VF
analysis, the algorithms are still dependent on patient
factors like fixation losses.

As highlighted before, establishing confirmed
perimetric progression to define the “ground truth” is
not without challenge. Even the “expert opinion” of
glaucoma specialists of detecting glaucoma progres-
sion from assessment of the optic disc alone cannot be
regarded as a “gold standard.”108 Numerous objective
protocols have been therefore developed to identify
VF progression and are frequently used in routine
clinical care. However, considerable inter-protocol
variability exists. This is an ongoing challenge even
in current clinical practice and will further impact
the generalizability of innovations derived through
AI to individual clinical settings.109–111 In addition,
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considerable ocular variability occurs within patient
populations depending upon factors, such as age,
gender, refractive error, medical comorbidities, and
ethnicity. Before ML strategies can be translated to
everyday clinical practice, further validation across
diverse global patient populations is necessary. There
is ongoing debate about the relationship between
structure-function correlations and glaucoma progres-
sion, and how any mismatch between these should be
addressed. AI studies have the potential to integrate all
available data and provide amore reliable and objective
conclusion.

Future Prospects

Although superiority of AI technologies to humans
is frequently reported in the media and even supported
by some emerging studies,49 this area of innovation
should be regarded as a tool to supplement the skills
of clinicians who face the challenge of delivering high
quality glaucoma care to an aging population with
an increasing life expectancy.112 In the future, AI may
become an essential adjunct to glaucoma diagnosis,
which will not replace the clinical skills but facilitate
decision making. AI strategies have the potential to
transform how clinical glaucoma care may be delivered
in future years. This transformation will undoubtedly
be facilitated by the digital era of constantly improv-
ing technologies, connectivity, imaging, and electronic
medical records, andwill enable the improved efficiency
and workflow of a glaucoma service, as visualized in
the Figure.

AI algorithms may be developed to serve as
a glaucoma referral refinement scheme to manage
referrals from community based screening programs
and optometrists, as has been suggested for diabetic
retinopathy screening.42 Through DL approaches,
analysis of fundus photographs reports a diagnostic
accuracy of more than 99% in detecting glaucoma,40,47
a clinically acceptable performance level for transla-
tion to patient care. This is not an unrealistic goal
given that for diabetic retinopathy screening, a DL
system developed byAbramoff et al. has obtained aUS
Food and Drug Administration approval with a sensi-
tivity of 87.2% and specificity of 90.7%.113 Compara-
ble and even superior levels of performance have been
demonstrated by several groups using AI algorithms
to diagnose glaucoma, however, not in a population-
based study (see Tables 1–3 for summaries).

We propose that in cases of an established diagno-
sis of glaucoma, AI strategies may have the poten-
tial to function as an additional adjunct to the
glaucoma assessment in making a clinical diagnosis
in more challenging cases by helping to support the

Figure. Theoretical glaucoma service workflow incorporating
artificial intelligence algorithms.

diagnosis or reject it. The detection of glaucoma
progression at earlier stage using DL algorithms
compared with conventional approaches95 may enable
earlier intervention and therefore further reduce the
risk of patients developing glaucoma-related visual
impairment in their lifetimes. Future studies and train-
ing datasets of anterior segment OCT images may
facilitate throughput in remote monitoring clinics12 by
providing direction on safe pupil dilation to nonmed-
ical staff through the identification of occludable
drainage angles.

A diagnosis of glaucoma is based upon expert
evaluation, which can be challenging to replicate in a
population-based screening program. A major barrier
to the widespread implementation of glaucoma screen-
ing at a global level is related to the lack of a
simple and reliable screening test. More sensitive tests
will detect real cases of glaucoma better, whereas
more specific tests will better detect healthy cases.
Together, high specificity and sensitivity will prevent
unnecessary clinic reviews of individuals who do not
have glaucoma, which in turn enables more efficient
use of the available healthcare resources. Health
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economic analyses suggest that althoughwhole popula-
tion screening may not be cost effective, programs
focusing on higher risk groupsmay be worthwhile.114 A
5 yearly glaucoma screening program for older patients
would require a test specificity greater than 96% in
order to be cost-effective.115

Systematic reviews have provided no evidence in
support of an individual test or group of tests that show
superiority for glaucoma screening,116,117 however,
these analyses were performed prior to the advent of
advances in OCT technology. Nevertheless, the best
sensitivity/specificity balance with an acceptable cost-
effectiveness may be achieved through the combination
of parameters, including IOP measurement, SAP, and
vertical C/D ratio.118 The incorporation of OCT-based
parameters can only further improve this performance,
and should be the focus of DL algorithms in the future.

There have been major advances in tele-
ophthalmology in recent years, in both developed as
well as developing countries. “Teleglaucoma” involves
remote analysis of imaging data like stereoscopic disc
photographs or results of functional testing. Remote
review of fundus photographs has been shown to be
clinically effective and more cost-effective than face to
face consultations.119,120 This approach offers benefits
to both patients and healthcare systems, including early
diagnosis, reduced travel, increased targeted specialist
referral rates, and cost efficiency savings.119 Further
research into how AI strategies may further refine and
stratify telemedicine referrals within referral refine-
ment schemes would certainly improve the efficiency
of healthcare systems and improve the overall quality
of glaucoma care.

We have already highlighted that the diagnosis of
glaucoma (i.e. the gold standard or “ground truth”
in terms of AI), shows considerable variability even
between expert observers.103–105 This may prove to
be a challenge in the provision of training datasets
for supervised ML algorithms. However, in reality,
the major practical advantage of an AI based screen-
ing protocol would be to discriminate between “likely
glaucoma” and “not glaucoma.” (see the Figure)
Sources of dispute between expert clinicians often
arise in more complex cases, for example, with atypi-
cal optic disc appearances (e.g. myopic optic discs)
and patterns of VF loss. Cases such as these can be
challenging to classify, and would likely require a face
to face consultation for definitive diagnosis and to
ensure that potential confounding pathologies are not
missed. This would also serve as a safety netmechanism
to minimize the risk of misclassification and incorrect
diagnosis. Conversely the use of DL algorithms may
enable the identification of novel parameters associated
with glaucoma - the so called “unknown unknowns,”121
which can help support or reject a diagnosis. This

may enable the discovery of biomarkers that may
facilitate the identification and prediction of glauco-
matous change at an earlier stage in the disease than
is currently achievable. This may also expedite drug
discovery pipelines for novel molecular and therapeu-
tic approaches toward goals, such neuroprotection and
neuroregeneration, which may have only been aspira-
tional prior to the advent of AI.

Fundus photographs are the simplest and most
readily available input modality for ML algorithms.
Clinical databases within healthcare systems contain
vast numbers of archived fundus photographs often
with corresponding OCT imaging and perimetry data
that can be used for training datasets. VF testing, on
the other hand, is reliant upon patient compliance,
is more time consuming, less widely available, and
exhausting for the patient compared to a fundus photo-
graph. For this reason, fundus photographs were the
first dataset type to be tested using AI approaches
both in retinal disease and glaucoma. Currently, ML
approaches using photographs alone38 and augmented
by training with OCT datasets47 can obtain diagnostic
specificities in excess of 95%, which are at an accept-
able level for direct translation to patient care. Accel-
erating the translation of AI interpretation of fundus
photographs for glaucoma screening is a realistic and
reasonable goal, considering that automated analysis
of fundus photographs are already in place for diabetic
retinopathy screening.16,113

In order to truly maximize the potential power
of AI, both in terms of diagnostic ability and to
improve the efficiency of healthcare delivery systems,
a longer-term aim should be to incorporate the latest
advances in imaging technology and perimetry into
future algorithms in the same manner as in routine
clinical practice. However, caution in interpretation
and validation of outputs should be taken to ensure
that ML classifiers are based upon glaucoma-related
parameters as opposed to other population-based
features that may demonstrate a strong correlation
with patients who have glaucoma. The implementation
of ML approaches in discriminating between stable
eyes and those with glaucoma progression with fewer
tests and in a shorter timescale95 would have major
impact upon glaucoma research. It is likely that these
strategies would lead to the development of novel end
points for future clinical trials of drug or surgical
interventions, which would enable results to be more
rapidly obtained, therefore accelerating the translation
of innovation to patient care.

Despite this promise, there are still many hurdles
that need to be overcome in order to implement
AI strategies in a clinical setting. The advances
discussed in this review have largely been performed on
highly curated smaller training datasets from individual
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institutions. In reality, training datasets may need to
contain up to 100,000 images covering all stages of
the disease spectrum, and the outcome of algorithm
will be dependent on image quality, which may need
to be standardized and with accurate phenotyping.
There are also numerous sources of variability within
the global population and therefore further valida-
tion studies and/or training datasets will need to be
tested in a variety of populations in order to maximize
the external validity of novel AI algorithms. For
example, it is not currently known whether every ML
approach is as effective in every ethnicity as in “one size
fits all.”

A significant barrier to the acceptability of AI
strategies within healthcare is the “black box”
phenomenon.122 The ability of clinicians to accept
and trust outputs of an algorithm, when the decision-
making process is not apparent or comprehensible
to them, may prove to be an obstacle to adoption.
Ultimately, the responsibility for individual health-
care decisions lies with the responsible physician,
who may fear liability from adverse outcomes arising
from clinical decisions based upon AI tools of which
they have an inherent suspicion. Medical training is
based upon appraising available evidence to make a
rational and considered clinical decision in the best
interest of an individual patient. The computational
and more abstract approach used by DL algorithms
to make similar decisions can be unsettling for the
intellectual mindset of clinicians. Acceptability to
medical professionals and regulatory agencies may be
increased if there is enhanced understanding as to how
an algorithm arrives at its decision. This approach was
adopted by theMoorfields/DeepMind collaboration by
generating relevant tissue segmentations for clinicians
to interpret as a device-independent representation of
the algorithm.15 Moving forward, further research in
to so called “Explainable AI”123 may provide the neces-
sary transparency, trust and accountability desired by
the healthcare profession. Elze et al. used an archetypal
analysis to develop a framework more meaningful to
clinicians to quantify the various subtypes of glauco-
matous VF loss.124 This approach was developed
further by Yousefi et al. to study glaucoma progres-
sion, by using a ML-driven approach to cluster longi-
tudinal VF data of glaucoma patients to generate an
“AI-enabled glaucoma dashboard,”125 which showed
a specificity of 94% for “likely nonprogression.”
This has the potential to provide a clinician-friendly
tool to help determine the severity of glaucoma-
tous VF deficit and a means for monitoring disease
progression.

Regulatory permissions will need to be secured
from regional authorities, such as the US Food and

Drug Administration and the European Medicines
Agency. The required performance standards required
for glaucoma are yet to be discussed and will likely
require further international discussion and consen-
sus. The precise regulated role of where AI approaches
may sit in the clinical care pathway will be challeng-
ing to define. Despite the promising performance
statistics presented in published papers, the real-world
impact of false-positive or in particular false-negative
results derived from AI technologies remains unclear.
Clinical decisions based upon AI may even confer
increased medicolegal liability upon manufacturers in
the case of missed diagnoses, which may ultimately
influence the cost and rate of adoption of such
innovation.

Ultimately, the uptake of AI technologies within
clinical glaucomapractice will be dependent upon clini-
cians themselves. AI algorithms may help to augment
referral refinement in order to efficiently triage those
patients who need to be seen by a specialist, and
those who do not. The integration of AI within new
models of care delivery will be driven by the combined
opportunity to optimize both resource utilization and
the workload of clinicians, thus enabling the provi-
sion of high-quality glaucoma care to a popula-
tion that continues to increase in both number
and age.
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