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Abstract: The novel coronavirus (COVID-19) pandemic has provided a distinct opportunity to
explore the mechanisms by which human activities affect air quality and pollution emissions. We
conduct a quasi-difference-in-differences (DID) analysis of the impacts of lockdown measures on
air pollution during the first wave of the COVID-19 pandemic in China. Our study covers 367 cities
from the beginning of the lockdown on 23 January 2020 until April 22, two weeks after the lockdown
in the epicenter was lifted. Static and dynamic analysis of the average treatment effects on the treated
is conducted for the air quality index (AQI) and six criteria pollutants. The results indicate that, first,
on average, the AQI decreased by about 7%. However, it was still over the threshold set by the World
Health Organization. Second, we detect heterogeneous changes in the level of different pollutants,
which suggests heterogeneous impacts of the lockdown on human activities: carbon monoxide (CO)
had the biggest drop, about 30%, and nitrogen dioxide (NO2) had the second-biggest drop, 20%. In
contrast, ozone (O3) increased by 3.74% due to the changes in the NOx/VOCs caused by the decrease
in NOx, the decrease of O3 titration, and particulate matter concentration. Third, air pollution levels
rebounded immediately after the number of infections dropped, which indicates a swift recovery of
human activities. This study provides insights into the implementation of environmental policies in
China and other developing countries.

Keywords: COVID-19; ambient air quality; air pollution emissions; quasi-difference-in-difference
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1. Introduction

At the end of 2019, an unusual coronavirus disease, eventually named COVID-19,
was identified in Wuhan, China [1]. To curb its spread, the Chinese government enacted
lockdown measures in the epicenter on 23 January 2020. The lockdown was expanded to
the rest of the country soon after [2]. Non-essential businesses were closed, and residents
were quarantined at home to cut off the viral transmission [3]. The drastic lockdown
worked successfully [4,5], and it took 76 days for the epicenter to reopen.

These measures significantly reduced industrial, business, and residential activities [6].
One of the most concerning aspects is that energy consumption is reduced by the drastic
lockdown measures and the cessation of human activities [7]. For instance, Wang, et al. [8]
suggest that the fossil fuel-related CO2 emissions in China decreased by 18.7% YOY in the
first quarter of 2020. Since ambient air quality is closely related to energy consumption,
prior studies found that the air quality is improved dramatically during lockdown [9]. He,
et al. [10] found that the operating vent numbers of NOx decreased by 24.68% in China
during the lockdown period, which would reduce the NOx concentration by 9.54 ± 6.00.

The pandemic provided a distinct opportunity to examine the mechanisms and ways
in which human activities affect air quality and pollution emissions. Moreover, in-depth
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research through a quasi-experiment of nature is worth conducting [11]. However, pre-
vious research has some limitations. First, most recent findings are based on descriptive-
comparative methods, and the lack of proper identification strategies threatens the validity
of their results; for instance, the direct comparison of air quality before and after lockdown
overestimates its impacts, as seasonal trends are ignored. Second, most previous studies
only cover a short period, which limits comprehensive interpretation not only on the
shrinkage but also on the rebound effect [10]. In this case, the rebound effect is of more
concern since it captures the economic recovery from the deadly shock of COVID-19. Third,
the results of previous research are mostly static and lack a dynamic analysis.

Therefore, we adopt a quasi-difference-in-difference (quasi-DID) approach, which
enables the comparison of air quality between the epidemical period in 2020 and Chinese
New Year’s leave in 2019, to estimate the net impact of the lockdown during the first peak
of COVID-19. Moreover, through dynamic analysis, we identify the varying impact of
the lockdown on air quality, which facilitates our understanding of human responses to
the epidemic.

Our results suggest that, first, on average, the air quality index (AQI) decreased by
about 7%. Although our results indicate immense improvements, the air quality was still
above the threshold set by the World Health Organization (WHO) and Chinese health
standards. Second, we detect significant heterogeneous impacts on different pollutants.
Carbon monoxide (CO) had the highest biggest drop, about 30%, and nitrogen dioxide
(NO2) had the second-highest drop, about 20%. In contrast, ozone (O3) increased by 3.74%
due to the changes in the NOx/VOCs caused by the decrease in NOx, the decrease of O3
titration, and the decrease of PM2.5 concentration. Third, although the AQI fell steeply
after the lockdown, it increased immediately after the number of novel infections dropped,
which indicates a swift economic recovery. Besides, we document preliminary cues of the
rebound effect immediately after the lifting of lockdown measures in Wuhan.

This study’s contribution to the literature is two-fold. First, compared with the recent
studies in this field, our period covers the whole lockdown period, from the beginning of
the lockdown on January 23 to two weeks after the lift of lockdown in Wuhan. Therefore, it
enables us to not only identify the shrinkage but also study the rebound of air pollution and
human activities, which is more relevant to current opening-up processes in most regions.
To the best of our knowledge, this is the first study that identifies the dynamic impacts
of lockdown measures on the environment. Second, this study also contributes to future
environmental policy measures. Although the temporary shutdown of pollution-intensive
plants has become a common practice during periods of extreme air pollution, the impact
of such emergency measures is still unclear. Our research sheds light on the mechanisms of
human activities affecting air quality and pollution emissions.

The remainder of this paper is organized as follows: Section 2 provides information
on the data sources and empirical methodology. Section 3 presents the average effect of
the lockdown on the air quality in China. Section 4 reports the dynamic patterns of the
effects of the COVID-19 lockdown. Finally, Section 5 summarizes this study and discusses
its limitations.

2. Data and Empirical Methodology
2.1. Datasets

In this study, we combine three datasets: hourly real-time reports of air pollutants,
daily historical meteorological information, and pandemic data. All three datasets are at
the prefecture and county levels and cover 367 cities in China.

Air quality data were collected from the China National Urban Air Quality Real-time
Publishing Platform sponsored by the China National Environmental Monitoring Center.
The platform reports the concentrations of six air pollutants—SO2, NO2, CO, O3, PM10,
and PM2.5 (in micrograms [µg] per cubic meter under standard conditions)—as well as the
aggregate AQI based on the Chinese Technical Regulation on Ambient Air Quality Index. Its
wide coverage facilitates our investigation of the lockdown’s impact on different human
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activities. For example, NO2 is an effective way to track transportation in urban areas [12],
while SO2 is mostly caused by flue gas of coal-fired boilers [13]. Notably, air quality
monitoring stations are always located within urban areas, especially for prefecture-level
cities [14]. Therefore, the pollution data largely represent air quality in the downtown areas
of cities.

We collected prefectural infection data from a public GitHub repository and cross-
checked the data against official daily reports by the National Health and Family Planning
Commission. This dataset contains daily cumulative confirmed cases, cumulative death
toll, and cumulative recovered cases for each infected city since 1 December 2019, when
the first case was traced back to Wuhan.

Meteorological conditions also influence ambient air quality [15–17]. We took daily
meteorological information from the website of the China Meteorological Data Service
Center. Data reported by meteorological stations located in the city downtowns were
chosen to match the collected air quality information. Thus, in our analysis, we could
control for meteorological conditions, including temperature [18], precipitation [19], and
wind [20], which affect air pollutants transmissions.

2.2. Quasi-DID Identification
2.2.1. Identification Strategy

Previous studies have used various events to explore exogenous shocks on air quality.
For example, Chiquetto, et al. [21] studied the impact of a sudden truck driver strike in
Sao Paulo on urban air pollution. Li, et al. [22] took the suspended production of heavy-
polluting factories during the 2008 Beijing Summer Olympics as an environmental event to
study its impact on outpatient visits for asthma owing to the improvement of air quality.
Additionally, Feng, et al. [23] conducted an event study on the environmental impact of the
Chinese Spring Festival. In this vein, we build a quasi-DID model to identify the causal
relationship between air pollution and the lockdown imposed under the COVID-19 state of
emergency in China. As illustrated in Figure 1, if the influence of meteorological conditions
is not considered, there is a clear reversal in air quality during the Chinese New Year
holiday [23,24]. As the new year approaches, factories shut down and release their workers
so they can travel home and spend time with their families during the Spring Festival
(which was 24–30 January 2020) [25]. Besides, most industrial plants remain closed until
the end of the holiday [26].

Figure 1. Illustration of an identification strategy. Note: This figure illustrates the quasi-DID approach
in this study. Day zero in 2019 is set as the beginning of Chinese New Year’s leave, February 5, while
day zero in 2020 is set as the beginning of the lockdown period for most Hubei cities, January 23.
We choose 22 April 2020, as the end of our research period in 2020, two weeks after Wuhan lifted its
lockdown and resumed transportation conditionally on April 8.
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The lockdown measures induced by the COVID-19 pandemic have functioned simi-
larly to the usual New Year holiday period [27]. Residents are required to stay at home
and are only allowed to visit nearby grocery stores. Most factories are temporarily shut
down [4]. Therefore, non-essential industrial activities are restricted. Highways, as well as
major carriageways, are completely blocked. Only vehicles with special permissions can
travel across jurisdictions [28].

Therefore, it is feasible to compare the air quality between the 2020 lockdown period
and the 2019 Chinese New Year’s holiday to estimate the net impact of the COVID-19
lockdown. Day zero in 2019 is set as the beginning of Chinese New Year’s leave, February
5, while day zero in 2020 is set as the beginning of the lockdown period for most Hubei
cities, January 23. We choose April 22 as the end of our research period, two weeks after
Wuhan lifted its lockdown and resumed transportation conditionally on April 8.

As shown in Figure 1, we can calculate the daily impact, which is given by the
concentration of air pollutants in 2019 minus that in 2020. We can also identify the dynamic
impacts day by day. Besides, the shaded area, as the integral of impact over time, represents
the aggregated impact of the COVID-19 lockdown on air quality. Compared to the single
difference model used in other studies, such as Li, et al. [29], our DID approach can
eliminate the impact of the New Year holiday; hence, it is more accurate in estimating the
average treatment effects on the treated.

2.2.2. The Average Effect on Air Pollution

Based on the above analysis, we evaluate the treatment impact of the lockdown on air
pollution with the following DID regression equation:

yit = γTreati × Postt + β1Treati + β2Postt + ΓXit + ηi + δt + εit (1)

where the dependent variable yit is the proxy for air quality. The dummy variable Treat
takes “1” for observations in 2020 and “0” for those in 2019. The dummy variable Post
takes “1” for periods after January 23 in 2020 and “1” after February 5 in 2019. The term
ηi captures the prefectural fixed effects, δt is the time fixed effects, and εit is the random
error term.

Besides, we control for a full set of daily meteorological variates Xit in Equation (1)
following previous research [30,31]. Xit contains the highest and lowest temperatures, the
Beaufort scale of predominant winds in 24 h, and a dummy for rainy days.

The coefficient obtained by the first difference before and after the 2020 lockdown is
γ + β2. The coefficient obtained by the first difference before and after the 2019 Spring
Festival is β2. We differentiate the two distinct results again, so γ captures the net effect of
the lockdown measures after the COVID-19 outbreak.

2.2.3. Dynamic Impacts on Air Pollution

We investigate the dynamic evolution of the impacts on air pollution by using the
following equation:

yit =
n

∑
t=1

γtTreati × Postt + β1Treati + β2Postt + ΓXit + ηi + εit (2)

where Post is the dummy variable for a specific period after day zero. In our analysis
framework, Postt is defined as the tth week after the beginning of the lockdown. Therefore,
the coefficient γt captures the net effects during its corresponding week t.

2.3. Summary Statistics

We report the summary statistics of the urban ambient AQI for the two periods in
Table 1. The observations in the control and treatment groups are divided into pre-periods
before the event day and post-periods after the event day.
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Table 1. Summary Statistics of the Urban Ambient Air Quality Index (AQI).

Panel A: 2019 Sample

(1) (2) (3) (4) (5) (6) (7)
Obs. Mean p10 p25 p50 p75 p90

All 45718 77.32 36.33 47.58 64.21 89.63 134.85
pre: [−22, −1] 7944 92.40 41.46 55.75 78.94 113.88 158.82

post: [0, 93] 33444 71.55 35.92 46.46 61.08 81.42 116.79

Panel B: 2020 Sample

(1) (2) (3) (4) (5) (6) (7)
Obs. Mean p10 p25 p50 p75 p90

All 41960 67.86 27.96 39.21 56.58 79.05 116.71
pre: [−22, −1] 7955 90.25 31.90 46.96 72.71 116.94 179.36

post: [0, 93] 33644 62.32 27.38 37.92 54.25 73.46 99.28

Panel C: Mean difference of city-level air pollutants

(1) (2) (3) (1) (2) (3)
pre:2019 post:2019 post-pre:2019 pre:2020 post:2020 post-pre:2020

AQI 92.40 71.55 −20.85 *** 90.25 62.32 −27.92 ***
Type:
SO2 16.42 11.42 −5.00 *** 14.21 10.48 −3.73 ***
NO2 36.36 26.56 −9.80 *** 37.24 22.21 −15.03 ***
CO 1.15 0.80 −0.34 *** 1.15 0.74 −0.41 ***
O3 75.31 103.77 28.46 *** 69.24 100.84 31.6 ***

PM2.5 63.43 41.97 −21.45 *** 65.18 38.52 −26.66 ***
PM10 99.53 76.79 −22.73 *** 86.60 66.58 −20.02 ***

Note: The summary statistics are calculated for the daily AQI of all cities in the sample. The unit for CO is mg per cubic meter, and the unit
for other pollutants is µg per cubic meter, both under standard conditions. Day zero is January 23 for 2020 (the date when the Wuhan
lockdown was implemented), while day zero for 2019 is February 5. The pre-period is defined as [−22, −1], while the post-period is
defined as [0, 93], according to day zero. *** p < 0.01, ** p < 0.05, * p < 0.1.

Panel A reports the summary statistics for the control group in 2019. The average AQI
for the whole period, pre-period, and post-period are 77.32, 92.40, and 71.55, respectively.
Compared to the pre-period, the average AQI decreased by 20.85, or 22.56%. We find a
similar pattern in the change in the median. The medians of the three periods are 64.21,
78.94, and 61.08, respectively. Moreover, we find a sharp decrease of 17.86, or 22.62%, in
the median of the AQI. The decrease is likely attributed to two factors: the seasonal change
caused by meteorological conditions and socioeconomic factors such as the spring festival.

Panel B reports the summary statistics of the control group in 2020. The decrease
recurs in that year. For example, the average AQI for the whole period, pre-period, and
post-period are 67.86, 90.25, and 62.32, respectively. Compared with the pre-period, the
average AQI decreased by 27.93, or 30.95%. The medians of the three periods are 56.58,
72.71, and 54.25, respectively. Besides, we find a sharp decrease of 18.45 or 25.37% in the
median of the AQI. The decrease is likely attributed to two factors: the seasonal change
caused by meteorological conditions and socio-economic factors such as the lockdown
measures induced by the COVID-19 pandemic.

As for the quasi-DID design, we can roughly estimate the impacts of the COVID-19
lockdown on the AQI by subtracting the AQI decrease in 2020 from the decrease in 2019.
For instance, the average treatment effect is roughly 7.07 for the AQI if meteorological
conditions stay the same in both years. Although the decline is significant, the AQI is
still above the healthy level recommended by the WHO (World Health Organization
(2 May 2018), Ambient (outdoor) air pollution, from https://www.who.int/news-room/
fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 11 March 2021),
and outdoor air quality is still unhealthy according to environmental non-government
organizations [32].

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
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Column (1) of Panel C reports the comparisons of the group mean and the t-test results
for the AQI. We can see that in the single difference design, the AQI decreases significantly
in both years. However, the gap grew by 7.07 in 2020, which is 33.90% less than in 2019.

We also report comparisons of all types of air pollutants to obtain an integrated
overview of the impacts. Five out of the six pollutants significantly decreased after the event
day, except for O3. Fine atmospheric particulate matter PM2.5 and PM10 experienced the
greatest drop. The levels of primary pollutants SO2, NO2, and CO also declined, confirmed
by the pollution monitoring satellites of the National Aeronautics and Space Administration
and the European Space Agency. The increase of O3 can mainly be attributed to the
seasonal change of ultraviolet (UV) rays in solar radiation, which is a photo catalyst for the
generation of O3 particles. Panel C also shows that the primary air pollutant during the
COVID-19 pandemic is PM2.5, whose levels are nearly twice as high as the annual limits
recommended by the WHO. Other pollutants, such as NO2 and SO2, are well below their
healthy levels.

We illustrate the time-varying patterns of the AQI and NO2 levels for regions of
varying epidemic severity in Figures 2 and 3, respectively. To show the impact of the
COVID-19 lockdown on air pollution, the total sample is classified into four groups based
on their epidemic severity, from highest severity to lowest: Wuhan city, cities inside Hubei
Province, cities outside Hubei Province, and the full sample. The patterns for the AQI
and NO2 levels are quite similar except that the changes in NO2 levels are typical. In the
epicenter, Wuhan, we see a steep drop immediately after the lockdown. The pollution
level stayed at its background concentration rate for nearly 12 weeks. The background
concentration rate can be used to track fundamental human activities that were not affected
by lockdown measures, for example, the transportation of daily necessities. Moreover,
after the lockdown was lifted, the concentration gradually increased and returned to its
normal level, just as it was in 2019. The pattern of pollution experienced in the cities in
Hubei Province is similar to that in Wuhan. However, for the average city in China, the
concentration of pollutants bounced back to normal levels around seven weeks after the
event day, which is much quicker than in the epicenter. Figure 4 depicts the time-varying
patterns of SO2, which shows that SO2 emissions instead increased when the lockdown
was implemented. This SO2 emissions trend echoes that of 2019, but after about three
weeks from the date of lockdown implementation, SO2 emissions were slightly lower than
those in the same period in 2019. After economic activities resumed, SO2 emissions were
higher than those in the same period in 2019 due to increased industrial production.

The parallel trend assumption is essential for the counterfactual setting in the DID
approach [33]. All these figures show roughly similar trends of air quality change before
the event day, which validates the parallel trend assumption.
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Figure 2. The time-varying patterns of the Air Quality Index (AQI) for different regions. Note: The daily average AQI is the
average of the hourly AQI during the day. AQI is a simple, unitless index for reporting air quality and indicates the quality
of the air and its health effects. Our sample covers 367 prefecture and county-level cities in China. The sample period for
2019 is from 14 January 2019to 9 May 2019, and the sample period for 2020 is from 1 January 2020 to 22 April 2020. The
event day of 2020 is defined as January 23 (the date when the Wuhan lockdown was enacted), while the event day of 2019 is
defined as February 5, one day before the Chinese New Year’s Eve. The red line shows the AQI variation for the sample
period in 2020, while the blue line displays that for 2019. The 2019 Spring Festival is shown in dark grey, and the 2020
lockdown period is in light grey.
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Figure 3. The time-varying patterns of NO2 for different regions. Note: The daily average of NO2 is the average of hourly
NO2 levels during the day. The figure elements are the same as in Figure 2.
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Figure 4. The time-varying patterns of SO2 for different regions. Note: The average daily SO2 is the average of hourly SO2

levels during the day. The figure elements are the same as in Figure 2.

3. The Average Effect on Air Quality

We begin by estimating the average effect of the COVID-19 lockdown on the daily
AQI, and we estimate the results of Equation (1) with the AQI as the dependent variable.
Alternative sets of control variates are reported in Table 2. Column (1) reports a model with
no control on meteorological variates. The average net impact of the COVID-19 lockdown
on the AQI is −7.125. This result is similar to our estimates in Table 1.
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Table 2. The impact of the COVID-19 lockdown on ambient air quality.

Dependent Variable
AQI

(1) (2) (3) (4) (5)

Treat*Post −7.125 *** −5.604 *** −4.749 ** −5.831 *** −4.884 **
(1.605) (1.842) (1.945) (1.827) (1.944)

Treat −1.412 −4.176 *** −4.226 *** −4.034 ** −4.172 ***
(1.452) (1.598) (1.596) (1.588) (1.602)

Wind Speed −0.424 −0.559 * −0.372 −0.478
(0.296) (0.292) (0.296) (0.293)

L.Wind Speed −6.094 *** −6.033 *** −6.088 *** −6.072 ***
(0.461) (0.462) (0.460) (0.459)

L2. Wind Speed −5.146 *** −5.172 *** −5.151 *** −5.163 ***
(0.311) (0.309) (0.311) (0.307)

L3. Wind Speed −2.759 *** −2.799 *** −2.763 *** −2.865 ***
(0.286) (0.280) (0.286) (0.283)

L4. Wind Speed −2.037 *** −2.199 *** −2.054 *** −2.219 ***
(0.314) (0.294) (0.314) (0.293)

Temperature (Minimum) 0.093 0.120
(0.098) (0.110)

Temperature (Highest) 0.385 ** 0.396 **
(0.166) (0.178)

Sunny 1.189 *** 1.296 ***
(0.433) (0.487)

Constant 100.713 *** 112.625 *** 112.971 *** 111.668 *** 117.206 ***
(1.937) (3.152) (3.078) (3.173) (4.102)

Date Dummy Y Y Y Y Y
City Dummy Y Y Y Y Y

Groups 367 335 335 335 335
Sample 83,710 71,597 71,597 71,597 71,597
adj R2 0.127 0.141 0.143 0.141 0.144

Note: This table reports the regression results of the average impact of the COVID-19 lockdown on the Air Quality Index (AQI) of all cities
in the sample. The dependent variable is the AQI of each city. The dummy variable “treat” is defined as 1 for observations in 2020, and 0
otherwise. “Post” is defined as 1 for the post periods [0, 58], and 0 otherwise. The event day is defined as January 23 for 2020 (the date
on which the Wuhan lockdown was implemented), while the event day for 2019 is defined as February 5. Standard errors reported in
parentheses are clustered at the city level. *** p < 0.01, ** p < 0.05, * p < 0.1.

Unfavorable weather conditions lead to an increase in the level of air pollutants,
even when emissions remain unchanged [34,35]. For example, high wind speeds lead
to more dispersion of particulates [36]. Furthermore, the effect of wind speed on air
quality is continuous, and a given day’s wind speed may affect air quality for several days.
Therefore, in Column (2), we control the Beaufort scale of predominant winds in the current
day and the past four days. In previous studies, only the wind on a particular day was
analyzed [30,31]. We find that the wind scale of a particular day has little impact because
the diffusion of pollutants takes time. The lag terms are influential. Although the impacts
of the wind scale fade as time passes, the wind will exert its impact even after four days.
After controlling for the wind condition, the effect declines to −5.604.

In addition to wind speed, temperature and humidity also impact air quality. High
temperatures can increase oxidation and production of sulfate but reduce nitrate levels
through higher volatilization of particles to gas [37]. In Columns (3) and (4), we control for
the temperature and rain dummy, respectively. Besides, in Column (5), we control for a full
set of meteorological conditions. The ATT is smaller compared to that in Column (1), but it
is still significant. The results indicate that the net impact of the COVID-19 lockdown on
the AQI is −4.884, or −7.84% compared to what it was in 2019. Hence, our study suggests
that news reports and former studies may exaggerate the COVID-19 lockdown’s impact
on air pollution by failing to consider meteorological conditions. Our results support the
findings of Wang, et al. [38] that severe air pollution is associated with both anthropogenic
activities and meteorological conditions.
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Notably, the AQI reduction in our results is only half of that estimated in He, Pan, and
Tanaka [3]. The major reason for this is that they focused on the AQI in the first-month
post-lockdown, while our study covers the full period from the lockdown’s beginning to
two weeks after Wuhan‘s reopening. Since their results are based on the first half of the
lockdown period in which the most stringent quarantine measures were implemented,
their results would overestimate impacts on air pollution.

Ambient air pollution exposure has been found to correlate with respiratory [39,40]
and cardiovascular [41,42] diseases, and lead to increased non-trauma deaths [43–45]. It has
been reported that severe air pollution in China contributes to about 1.6 million premature
deaths per year [46]. Pollution control measures can effectively reduce premature deaths
effectively even when implemented in a short period [45]. Thus, we project that the
decrease of air pollutants reduced the premature deaths by 150,000 nationwide during
the research period, according to the all-cause death rate estimated by Dutheil, Baker, and
Navel [9]. This number far exceeds the officially reported deaths due to COVID-19.

The overall analysis confirms that the AQI level declined moderately due to the
outbreak of COVID-19. However, one may wonder which pollutant level had the most
drastic change. Table 3 reports the estimated results of each pollutant. Columns (1)–(6)
report the results for SO2, NO2, CO, O3, PM2.5, and PM10, respectively. The estimation
results show diversified impacts of the lockdown measures on different air pollutants,
as follows.

Table 3. The impact of the COVID-19 lockdown on different air pollutants.

(1) (2) (3) (4) (5) (6)

SO2
Concentration

NO2
Concentration

CO
Concentration

O3
Concentration

PM2.5
Concentration

PM10
Concentration

Treat*Post 1.679 *** −5.113 *** −0.105 *** 3.881 *** −5.772 *** 2.721
(0.343) (0.402) (0.012) (0.794) (1.526) (2.198)

Treat −3.073 *** −0.156 0.019 −3.134 *** 1.077 −11.821 ***
(0.425) (0.427) (0.013) (0.605) (1.347) (1.647)

Wind Speed −0.149 ** −0.120 * −0.005 ** 1.945 *** −0.645 *** 0.725 *
(0.067) (0.065) (0.002) (0.190) (0.209) (0.387)

L.Wind Speed −1.391 *** −4.008 *** −0.075 *** 0.584 *** −5.363 *** −0.563
(0.106) (0.113) (0.004) (0.177) (0.294) (0.645)

L2. Wind Speed −1.239 *** −3.363 *** −0.084 *** −2.013 *** −7.452 *** −6.733 ***
(0.094) (0.105) (0.004) (0.183) (0.346) (0.476)

L3. Wind Speed −0.458 *** −0.879 *** −0.038 *** −2.036 *** −3.954 *** −4.282 ***
(0.056) (0.069) (0.003) (0.173) (0.295) (0.428)

Temperature (Minimum) 0.129 *** 0.270 *** −0.003 *** 2.105 *** −0.242 *** 0.179
(0.020) (0.021) (0.001) (0.076) (0.087) (0.139)

Temperature (Highest) −0.241 *** −0.362 *** −0.002 * −0.835 *** 0.314 ** 0.649 **
(0.027) (0.031) (0.001) (0.081) (0.151) (0.304)

No-rain −0.322 *** −0.735 *** −0.029 *** 0.234 −0.735 ** 0.711
(0.076) (0.101) (0.003) (0.329) (0.351) (0.662)

Constant 22.881 *** 54.813 *** 1.648 *** 57.874 *** 108.913 *** 135.890 ***
(1.059) (1.119) (0.040) (2.182) (3.177) (5.310)

Groups 335 335 335 335 335 335
Sample 72,281 72,281 72,281 72,281 72,281 72,281
adj R2 0.153 0.403 0.347 0.418 0.208 0.059

Note: This table reports the regression results of the average impact of the COVID-19 lockdown on each pollutant for all cities in the sample.
Standard errors reported in parentheses are clustered at the city level. *** p < 0.01, ** p < 0.05, * p < 0.1.

First, the average impact on SO2 is positively significant at a 99.9 confidence interval.
Surprisingly, its concentration during the COVID-19 pandemic increased by 1.68 µg/m3,
or 14.71%, compared to 2019. This can be partly explained by the extension of the heating
season in most northern cities. The statutory heating period ends around March 15 every
year. However, in 2020, residents were required to stay at home. Therefore, most local
governments postponed the end of collective heating to mid-April. The extended heating
season and daily heating time increased SO2 emissions due to the massive combustion of
coal [47,48].
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Second, the concentration of NO2 in 2020 decreased by 5.11 µg/m3, or 19.24% com-
pared to 2019. NO2 can be used to effectively measure traffic intensity, especially in urban
areas [12,13]. NO2 has been identified as a typical pollutant associated with lockdown
measures around the world [9,49,50]. Therefore, on average, vehicle kilometers traveled
decreased by roughly 20% during the three months after the lockdown.

Third, CO concentration decreased by 0.105 mg/m3, or 30.88%, compared to 2019.
Carbon monoxide is a by-product of the incomplete combustion of carbon-containing fuels,
and on-road vehicles are a major source of CO in Chinese urban areas [51,52]. Besides,
CO pollution mainly comes from small and medium passenger cars, while NO2 emissions
mainly come from heavy-duty trucks in commercial vehicles. Therefore, as people remained
sequestered in their residential areas, there were fewer passenger cars than heavy-duty
trucks on the road, which led to a higher reduction of CO than NO2.

Fourth, the concentration of ground-level O3 increased by 3.881 µg/m3, or 3.74%,
compared to 2019. O3 is formed when nitrogen oxides react with a group of volatile
organic compounds (VOCs) under the ultraviolet rays in the presence of sunlight [53].
The increase in the O3 level may be a consequence of three combined causes. First, the
reduction of NOx changes the ratio of VOCs to NOx in VOC-controlled systems (which
applies to most urban areas of China), increasing O3 concentration [54,55]. Second, PM2.5
reduces atmospheric visibility and significantly blocks ultraviolet rays from sunshine,
which further leads to an increase in O3 [34]. Third, the reduction of NOx leads to the
decrease of nitrogen oxide (NO, NOx = NO2 + NO), which further reduces the O3 titration
(consumption, NO + O3 = NO2 + O2) [54,56,57].

Finally, the concentration of PM2.5 decreased by 5.772 µg/m3, or 13.75%, compared to
2019. PM2.5 is one of the pollutants that most affects air quality and is a secondary pollutant,
which is formed in the atmosphere through the reaction, coagulation, or nucleation of
precursor gases, especially NO2 and SO2 [58]. With the reduction of other pollutants, the
PM2.5 level declined.

Our results can be compared with related studies done in other countries [59]. For
example, Sharma, et al. [60] explored the impacts of COVID-19 related restrictions in
20 Indian cities and found that PM2.5 had the largest decrease, 43%; by contrast, CO and
NO2 only decreased by 10% and 18%, respectively, and SO2 emissions were negligible.
Since both China and India rely largely on coal as their primary energy resource, coal-fired
boilers are the highest contributors to SO2 and CO emissions. Therefore, the comparison
suggests that boilers were more affected by lockdown measures in China, while lockdown
impacts on traffic-related emissions were similar in both countries. Tobías et al. [54]
also found that NO2 emission markedly decreased in Barcelona (Spain), due to the strict
restrictions in urban areas. Finally, nearly all studies found significant increases in O3
levels [55].

4. Discussion: The Dynamic Patterns of the Lockdown Effects

To study the dynamic pattern of how air quality was affected by the COVID-19-related
lockdown, we estimated Equation (2) with 12 dummy variables, post0, post1, . . . , post11,
interacting with the treat dummy variable. The dummy variable post0 is taken for the
sample period [0, 7) after the event day, while post1, . . . , post11 are taken for the subsequent
11 weeks.

Figure 5 presents the pattern of the change in AQI. We also illustrate the change in
the number of new infections (in its logarithmic form) on the second axis to detect the
corresponding impact. In our quasi-DID design, the AQI decrease depicted in Figure 5 is
the net impact, which is the air pollution level in 2020, minus that in 2019. Therefore, we
observe patterns similar to the mechanism depicted in Figure 1. In the first two weeks of the
lockdown, the AQI level is quite the same as it was in 2019, which confirms our assumption
that the effects of the lockdown measures and the New Year holiday are comparable. In the
third and fourth weeks, as the lockdown continued in most cities, the AQI level dropped
by 20 points compared to 2019.
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Figure 5. The dynamic air quality index (AQI) response. Note: This figure illustrates the dynamic air quality response.
Changes in the daily AQI are the regression coefficients estimated from the DID regression on 12 weeks dummy variables
(including post0, post1, . . . , post11), interacting with a treat dummy variable, which is shown in Equation (2). The week
dummy variable post0 is taken for the sample period [0, 7) after the event day, while post1, . . . , post11 are taken for the
subsequent 11 weeks after the event day. Treat is equal to 1 for observations in 2020, and 0 for observations in 2019. The
event day is January 23 for 2020 (the date when the Wuhan lockdown was implemented), while the event day for 2019 is
February 5, one day before 2019 Chinese New Year’s Eve. The error bar indicates a 95% confidence interval. The incremental
# of weekly novel COVID-19 cases is the total number of COVID-19 cases confirmed during the event week.

After week 4, the AQI climbed steeply back to its normal level over three weeks. As
the number of daily new infections dropped in early March, most cities gradually moved
closer to normality; hence the treatment effect fades away. On average, the AQI steadily
returned to its normal level about seven weeks after the end of the lockdown of Wuhan
city. The temporary improvements in air pollution from the lockdown only lasted for one
month for the average city in mainland China.

The turning point comes just one month after the event day. Although most analysts
thought that local governors were reluctant to reopen cities due to fear of the epidemic
resurging, our analysis shows that the AQI increased immediately after novel infections
dropped, which is a quick response. The AQI plateaued for four consecutive weeks after
week 7. During this month, the AQI gradually returned to the same level that it was in the
same period in 2019 after economic activity resumed. Finally, the AQI increased sharply
in the last two weeks. We find strong rebound effects after April 8, immediately after
the epicenter lifted its lockdown measures. It suggests that pollution-related industrial
and business activities bounced back after 2019 as the government called for a restart of
the economy.

Figure 6 depicts the association between the AQI and daily new infections. The
straight line in the scatterplot shows that the more daily new infections, the better the air
quality. When the number of daily new infections is highest, human activities are strictly
monitored, and people are required to stay at home. As the number of daily new infections
gradually decreases, control measures also gradually relax. Simultaneously, people start to
resume work, and companies begin production activities, leading to a decline in air quality.
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Figure 6. The association between the air quality index (AQI) and the daily new infections. Note: This figure shows the
impact of the daily new COVID-19 cases on the AQI across cities. It displays the simple scatterplot between the AQI and the
total number of COVID-19 cases as of 22 April 2020. We also included the fitted line in the scatterplot.

To summarize, our estimation suggests that the lockdown’s impact on the AQI per-
sisted for nearly four weeks, from January 23 to late February. The AQI then returned to its
normal level and seesawed up and down for more than one month. Lastly, as daily new
infections went down and mass quarantine measures were relaxed and then eventually
removed, and air pollution increased significantly.

Figure 7 shows the dynamic change of each major air pollutant’s concentration. Al-
though their u-shape patterns are similar to that of the AQI, we find subtle differences
among pollutants, which are worth exploring. However, SO2 exhibits a unique pattern
during the epidemic period. This is because most northern cities expanded their heating
season to mid-April, which increased SO2 emissions.

Among the six pollutant criteria, the changes in NO2 levels are the most typical. In
urban areas, vehicles are the major source of NO2 emission. Therefore, NO2 concentrations
are an effective way to measure traffic. As shown in Figure 7, in the first week of lockdown,
NO2 concentration is similar to that in 2019. However, soon after, there is a steep decline in
NO2 levels, which suggests that residents were still sequestered in their houses. It only
started to increase after week 4.

The changing trend of PM2.5 mirrors that of NO2. In the first two weeks of lockdown,
the PM2.5 level was higher than that of the same period in 2019, and then it plummeted. It
started to bounce back after the fourth week. However, it remained lower than the PM2.5
levels of the same period in 2019. In the eleventh week, it returned to a level higher than
that in 2019. The overall changing trend of PM10 also declined first and then increased.
For PM10, its level in the first week during the lockdown was lower than that of the same
period in 2019, while in the second week, it rose to the same level as in 2019, then began to
decline. It started to bounce back after the fourth week. However, there was a decline from



Int. J. Environ. Res. Public Health 2021, 18, 3404 15 of 19

the fifth to the sixth week. Again, it continued to rise, and after eight weeks, it reached a
level that was higher than that of the same period in 2019. These patterns can be explained
as follows. The main sources of PM2.5 are the residues of power generation, industrial
production, vehicle exhaust emissions, and coal-burning [60]. Although power generation
did not decrease, and coal-burning increased, vehicle exhaust emissions and industrial
production greatly reduced, thus resulting in a reduction of PM2.5 during the lockdown.
However, most of the time, the PM10 level was higher than or equal to that of the same
period in 2019, which is most likely due to increased coal-burning during the lockdown.
Meanwhile, the reduction of certain pollutants in the atmosphere changed the composition
ratio of substances, allowing compounds to interact to form more fine particles [6].

Figure 7. Concentration changes of air pollutants over time: by categories. Note: This figure presents the dynamic pollutant
concentration responses by categories. Changes in daily average concentration are the regression coefficients estimated
from the DID regression on 12 week dummy variables (including post0, post1, . . . , post11), interacting with a treat dummy
variable, which is shown in Equation (2). The week dummy variable post0 is taken for the sample period [0, 7) after the event
day, while post1, . . . , post11 are taken for the subsequent 11 weeks after the event day. Treat is equal to 1 for observations
in 2020, and 0 for observations in 2019. The event day is January 23 for 2020 (the date when the Wuhan lockdown was
implemented), while the event day for 2019 is February 5, one day before the 2019 Chinese New Year’s Eve. The error bar
indicates a 95% confidence interval.

Regarding O3, its level rose from the first to the second week and then plummeted.
However, it was not until the sixth week that for the first time, its level fell below that
of the same period in 2019. It then started to bounce back, and it remained higher than
that of the same period in 2019. The increase of O3 can be explained by three reasons.
First, the decrease in NOx led to the change in its ratio to VOCs, which in turn led to
an increase in O3 concentration [55,61]. Second, the lower PM2.5 concentrations reduced
the scattering and absorption of sunlight, which increased UV radiation and led to a
higher O3 concentration [34]. Third, the decreased NOx reduced the consumption of O3
(NO + O3 = NO2 + O2) in urban areas, thus leading to higher O3 concentrations [50].

To sum up, the heterogeneous dynamic patterns of different pollutants are related
to changes in substantive human activities. Significant rebound effects were detected for
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almost all pollutants after the lockdown was lifted, which triggers concerns about the
long-term impacts of the COVID-19 lockdown on air pollution.

Although the above results indicate a quick rebound on average, there is much
heterogeneity among regions. Figure 8 depicts a heat map of urban NO2 concentration
nationwide, which shows the spatial-temporal fluctuation of NO2 concentration. In Panel
A, NO2 concentration three weeks pre-lockdown can be considered as the usual pattern.
Four pollution hotspots are clear and include the Capital Region, the Yangtze River Delta,
the Pearl River Delta, and the Sichuan Basin. Compared with Panel A, Panel B indicates
that the lockdown reduced NO2 concentrations drastically and uniformly from the first to
the fourth week nationwide. However, as shown in Panel E, air pollution rebounded much
faster in the Yangtze River Delta and the Pearl River Delta and was much slower to increase
in other hotspots, namely the Sichuan Basin and the Capital Region. The stark differences
in rebound suggest regional differences in industrial structures and other institutional
factors. For example, the export sectors in the southern regions are more vital, especially
those manufacturing personal protective equipment, which was affected by the surge of
infections in other countries.

Figure 8. Heat maps of weekly NO2 concentration across China during the COVID-19-related lockdown period.Notes:
This figure presents the weekly average NO2 concentration across China before and after the COVID-19 lockdown. The
epicenter, Hubei Province is outlined in a red circle. The weekly average is adopted to curb the stochastic influence of
weather conditions.

5. Conclusions

In this study, we conducted a quasi-DID analysis of the impacts of COVID-19-related
lockdown measures on air quality in China. Our study covers 367 prefectural- and county-
level cities during the epidemic period from the beginning of the lockdown until two weeks
after its lifting in Wuhan. The results suggest the following.
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First, on average, the AQI decreased by about 7%. Although our results indicate
immense improvements, air quality levels were still over the threshold set by the WHO
and Chinese standards. Second, we detected significant heterogeneous impacts on dif-
ferent pollutants. CO had the biggest drop, about 30%, and NO2 had the second-largest
drop, about 20%. In contrast, O3 increased by 3.74%. We attribute these differences to the
lockdown’s heterogeneous impacts on different anthropogenic activities. Concentrations
of CO and NO2 were sharply reduced from traffic restriction measures meant to contain
the viral transmission, while O3 increased because the reduction of PM2.5 and PM10 in the
troposphere increased the UV radiation, which in turn increased photochemical reaction
intensity. Third, although the AQI reduced steeply after the lockdown, it increased imme-
diately after the number of novel infections dropped, which is a quick response. Finally,
we also detected preliminary cues of the rebound effect, immediately after the lifting of
lockdown measures in Wuhan.

Our study also sheds some light on the effectiveness of the quick-response measures
put into place after the declaration of an environmental emergency, especially when urban
air quality reaches the red alert level, which, according to WHO standards, is extremely
toxic for humans. Quick and temporary restrictive measures, including activity suspension
of heavy-polluting plants and traffic restrictions based on the last digit of license plate
numbers, can be effective at lowering NO2, SO2, and PM2.5 concentrations. However,
policymakers should be cautious about increases in O3 concentrations.

One limitation of our study is that as the epidemic is fading away in China, its
long-term impacts are still not clear. On the one hand, some suggest that environmental
degradation due to the extreme, massive economic stimulus will occur. On the other
hand, COVID-19 is more infectious compared to severe acute respiratory syndrome (SARS),
which emerged in 2002 in China. Lifestyles may change permanently in a more sustainable
direction. For example, virtual meetings are now held more frequently, and white-collar
workers prefer working from home. Moreover, instead of simply turning to the old
playbook of investment stimulus, the government has launched a new infrastructure
initiative, which mainly incorporates fifth-generation networks, industrial internet, inter-
city transit systems, vehicle charging stations, data centers, and several other projects.
These policies would lead to more sustainable growth. Therefore, instead of focusing on
the short-term environmental effects related to the lockdown, it would be worthwhile
to expand our research to explore the potential permanent environmental impacts of the
COVID-19 lockdown.
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