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Abstract

Background and Aims

Since high-density lipoprotein (HDL) has pro-endothelial and anti-thrombotic effects, a HDL

recruiting stent may prevent restenosis. In the present study we address the functional char-

acteristics of an apolipoprotein A-I (ApoA-I) antibody coating in vitro. Subsequently, we test-

ed its biological performance applied on stents in vivo in rabbits.

Materials and Methods

The impact of anti ApoA-I- versus apoB-antibody coated stainless steel discs were evaluat-

ed in vitro for endothelial cell adhesion, thrombin generation and platelet adhesion. In vivo,
response to injury in the iliac artery of New Zealand white rabbits was used as read out com-

paring apoA-I-coated versus bare metal stents.

Results

ApoA-I antibody coated metal discs showed increased endothelial cell adhesion and prolif-

eration and decreased thrombin generation and platelet adhesion, compared to control

discs. In vivo, no difference was observed between ApoA-I and BMS stents in lumen steno-

sis (23.3±13.8% versus 23.3±11.3%, p=0.77) or intima surface area (0.81±0.62 mm2 vs

0.84±0.55 mm2, p=0.85). Immunohistochemistry also revealed no differences in cell prolif-

eration, fibrin deposition, inflammation and endothelialization.
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Conclusion

ApoA-I antibody coating has potent pro-endothelial and anti-thrombotic effects in vitro, but
failed to enhance stent performance in a balloon injury rabbit model in vivo.

Introduction
The introduction of stents has increased the success of percutaneous coronary interventions
(PCI) by reducing coronary artery restenosis rates.[1] This advantage, however, comes at a
price. Bare metal stents (BMS) are more prone to in-stent restenosis (ISR) and their pro-
thrombotic capacity may yield occlusion rates of up to 24% in the absence of pharmacological
treatment.[2] Drug-eluting stents (DES) have proven highly effective through local delivery of
antiproliferative drugs,[1,3] albeit the imminent threat of late stent thrombosis (LST) has ham-
pered their success. Thus, a comparative meta-analysis revealed that long-term cardiac death
rates for BMS and DES were not significantly different.[4] These results highlight the need for
novel stents with better long-term performance compared to both BMS and DES.

We hypothesized that stent performance could be enhanced by coating the stent struts with
anti-apolipoprotein A-I (ApoA-I) antibodies, aimed to attract high-density lipoprotein (HDL)
to the stent. Indeed, HDL has been shown to carry a wide array of anti-inflammatory and anti-
proliferative proteins, [5] which collectively have the capacity to prevent intimal hyperplasia.
[6–8] In addition, HDL has also been shown to promote recruitment of endothelial progenitor
cells, thereby promoting restoration of an intact endothelial monolayer covering the stent
struts as well as the injured artery wall.[9] The physiological role of the endothelium is expected
to reduce the inflammatory response and decrease coagulation activation with subsequent
thrombus formation.[10,11]

In the present study, we evaluated the efficacy and therapeutic potential of anti-ApoA-I an-
tibody coating on metal discs in vitro and bare metal stents in vivo. First, we addressed whether
anti-ApoA-I coating improved the vascular homeostasis by improving endothelial cell adhe-
sion, proliferation and decreasing thrombogenicity in vitro, compared to a bare-metal surface.
Subsequently, we compared neointimal hyperplasia in a balloon-injury model in rabbits in vivo
using an anti-ApoA-I coated versus bare-metal stent.

Methods

In vitro studies
The anti–human monoclonal ApoA-I antibody, ApoB100 antibody and isotype control IgG
antibody were covalently coupled to stainless steel discs (5 mm diameter; double-sided). The
surfaces with immobilized ApoA-I antibody (Clone 2F1, Ottawa Heart Institute Research Cor-
poration, Ottawa, Canada)[12] were treated with human HDL (Sigma-Aldrich, Zwijndrecht,
The Netherlands) or oxidized (ox)-HDL (0.2 mg/ml). Oxidized lipoproteins were obtained by
dialysis of 0.8 mg/ml solutions of HDL or LDL against 5 μMCu SO4 for 20 hours and using
Slide-A-Lyzer with MWCO of 3,500 (Thermo Fisher, Etten-Leur, The Netherlands).[13] The
surfaces with ApoB antibody (Clone 1D1, Ottawa Heart Institute Research Corporation) were
incubated with human LDL (Sigma-Aldrich, Zwijndrecht, The Netherlands) or ox-LDL (0.2
mg/ml), while the surfaces with the isotype control IgG antibody were treated with a mixture
of HDL and LDL or ox-HDL and ox-LDL (0.2 mg/ml). Ox-HDL, LDL and ox-LDL were used
as negative control.
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Human microvascular endothelial cells (HMEC-1; obtained from The Breakthrough Breast
Cancer Research Center, London, England) were grown in MDCB-131 medium supplemented
with 10% FBS, 2 mM L-glutamine, 1 μg/ml hydrocortisone, 10ng/ml recombinant h-EGF, and
antibiotics (100U/ml penicillin, 100 μg/ml streptomycin, 0.25 μg/ml amphothericin B).[14] In
order to determine proliferation of HMEC-1 on the different surfaces, metal discs were incu-
bated for 1 hour with HDL, LDL, or a 1: 1 mixture of both. After washing, HMEC-1 cells were
deposited on the discs and allowed to adhere for 1 hour at 37 ºC. After addition of medium, the
discs were incubated for 1, 2 or 4 days. Subsequently, the discs were rinsed and frozen at -80ºC.
The number of adhered cells to the metal surfaces was determined using the CyQuant kit (Life
Technologies, Breda, The Netherlands).[15]

In order to quantify HMEC-1 adhesion, pre-incubated metal discs were put in a sterile 2.0
ml tube and incubated with 1.5x105 cells in 0.8 ml MDCB-131 medium for 20 hours at 37 ºC
under rotation. After rinsing, discs were stored at -80ºC. The number of adhered cells was de-
termined using the CyQuant kit. Thrombin generation was determined in a static set-up, [16]
(described in detail in S1 Text.

Platelet adhesion was determined using PRP that was prepared as described above. Metal
discs were pre-incubated with HDL, LDL, or a HDL/LDL mixture and incubated with PRP for
1 hour at 37 ºC under continuous stirring at 150 rpm. Subsequently, the discs were washed
with phosphate buffered saline (PBS), and the number of adhered platelets was determined
using the CytoTox kit (Promega, Leiden, The Netherlands).[17] The modified surfaces were in-
cubated with native or oxidized versions of HDL or LDL and treated with PRP under identical
conditions as described above. Oxidized HDL and LDL were used to rule out the effect of oxi-
dative modification on platelet activation.[18] Platelet activation was studied by fixing platelets
adhered to modified surfaces with cold 2.5% glutaraldehyde in PBS. After careful washing with
PBS, the samples were dehydrated with an ethanol series followed by incubation in hexam-
ethyldisilazane (Aldrich, Zwijndrecht, The Netherlands) in order to achieve rapid drying.[19]
Subsequently the samples were sputter coated with gold and observed using a SEM (Philips
XL30 Scanning Electron Microscope, Philips, Eindhoven, The Netherlands). Photographs of
randomly chosen areas were taken, and the morphology of the platelets was recorded according
to the method described by Cooper et al.[20]

Stent coating. The anti–human monoclonal ApoA-I antibody was covalently coupled to
struts of a 9mm x 3mm R-stent evolution 2 (OrbusNeich, US) at highest surface density
(100%) using a proprietary multistep process (Ssens, The Netherlands). The R-stent has 316L
stainless steel struts with dimensions of 0.09mm x 0.10mm, which are smooth and electropol-
ished, and achieve 17% vessel wall coverage when implanted in the artery. The stent has an
open, double helical design with recoil of less than 4% after implantation. The ApoA-I antibody
coating was similar to the 100% density ApoA-I coated disks. An untreated R-stent was used as
BMS comparator.

In vivo study
Rabbit model. The study protocol was reviewed and approved by the Institutional Animal

Care and Research Committee at the Academic Medical Center, Amsterdam, The Netherlands
(protocol number DCA101095) and conforms to the Directive 2010/63/EU of the European
Parliament. We used 15 female New Zealand White rabbits (3.0–3.5kg), which were treated
with acetylsalicylic acid 38mg/day started 5 days prior to stent implantation. The rabbit model
of balloon-induced artery injury is an established model to test intravascular stent devices since
it is characterized by fast development of intima hyperplasia (described in detail in S2 Text).
[21–23] In short, after induction of anaesthesia, stents were placed via cannulation of the left
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carotid artery, followed by endothelial denudation by pulling an inflated balloon through the
iliac arteries. Directly thereafter, ApoA-I coated versus BMS stents were pair wise implanted in
both endothelial denudated iliac arteries. During the experiment, rabbits had free access to
food (AB-diets, high fibre complete diet).

At 28 days after stenting, the rabbits were anesthetized. Via the abdominal cavity, the retro-
peritoneal infrarenal aorta was cannulated with an 18G cannula and after intravenous injection
of heparin 200IU/kg, angiography of the iliac arteries was performed. Subsequently, the ani-
mals were euthanized and the iliac arteries were flushed with saline, followed by perfusion-
fixation using Neutral Buffered Formalin (NBF). The stented arteries were taken over a dis-
tance from the aorta-iliac bifurcation to one cm distal of the stent, fixated in NBF for 24 hours
and subjected to the tissue embedding procedure.

After dehydration, the harvested arteries were stepwise embedded in MMA/BMA mix in a
1:1 ratio and allowed to harden for 24 hours under a vacuum at 4ºC. Using a microtome with
diamond knife, 10 μm thick transversal sections were cut from 3 regions (proximal, middle
and distal) of the stented arteries and 2 peri-stent regions proximal and distal to the stented
artery. The middle region (region 3) is defined as 30 sections taken from the exact centre of
the stent. The proximal and distal regions (regions 2 and 4) are defined as the 30 sections
cut at a distance from 100μm from the stent edge, inside the stent, inwards. The 2 peri-stent
regions (regions 1 and 5) are defined as the 30 sections cut at a distance from 100μm from
the stent edge, outside the stent, outwards. Sections were stretched on a 60ºC bath of
40% acetone and adhered to glass slides using 70% Ethanol overnight at 60ºC under
mechanical pressure.

Three randomly selected sections of any of the 5 regions were used for staining of the arteri-
al laminae. Sections were stained using Haematoxilin-eosin staining, Lawson staining and
immunohistochemical stainings detecting α-smooth muscle actin (α-SMA), Ki-67, rabbit
macrophage-specific monoclonal antibody, von Willebrand factor and fibrin. Details
about these stainings and morphometrical analysis are described in detail in S3 and S4
Texts, respectively.

Immunohistochemical analysis was performed by 2 separate reviewers, who were both
blinded for type of stent coating. The mean score per stent was based on the average score of 2
randomly selected slides taken from both the proximal and distal stented area. Cell prolifera-
tion, inflammation, fibrin deposition and endothelialisation of the stented artery were scored
(described in detail in S5 Text).[24–27] One rabbit was sacrificed after 28 days to perform scan-
ning electron microscopy (SEM) on the implanted stents. For this purpose, the stented segment
of the iliac artery was fixed in 2% glutaraldehyde and processed for SEM imaging, described in
detail in S6 Text).

Statistical analysis
Statistics were performed using IBM SPSS statistic (version 19) and graphs were constructed
using Prism Graphpad (version 5). Based on previous studies utilizing this bilateral vascular in-
jury in rabbits for a side-to-side comparison of two different stent modalities, we determined
that for a difference of 25% in lumen stenosis with a standard deviation of 30% within one ani-
mal the minimum number of rabbits needed was 12 (power of 0,80 and a type I error probabili-
ty of<0,05). Data are expressed as mean ± SD. Significance of differences in in vitro tests was
tested using one-way ANOVA. Comparisons of histological findings between BMS-stent and
ApoA-I-coated stent were made by the Wilcoxon signed ranks test. Comparisons of immuno-
histochemistry results were made by Wilcoxon signed ranks test. A probability value of
P< 0.05 was considered significant.
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Results

In vitro studies
HMEC-1 cell growth and adhesion. After 4 days of incubation, the number of HMEC-1

cells on the anti-ApoA-I antibody coated surfaces was significantly higher compared to the iso-
type-antibody control, independent from antibody concentration (10% and 100%) (Fig 1A;
p<0.05). There was an increased proliferation of HMEC-1 cells after 4 days on the surfaces
with the highest density of anti-ApoA-I antibody, compared to those with lower densities
(p<0.05).

The anti-ApoA-I antibody coated surface with the highest antibody density was associated
with a higher HMEC-1 adhesion under dynamic conditions as compared to the isotype con-
trols (p<0.05; Fig 1B). No effect on HMEC-1 adhesion was observed for the surfaces with the
lowest anti-ApoA-I and anti-ApoB antibody density.

Thrombin generation. Fig 2 shows that the anti-ApoA-I antibody coated surfaces that
were incubated with HMEC-1 caused a significant prolongation in the thrombin generation
time when compared to uncoated surfaces (p<0.01). In addition, lowered peak thrombin and
the total amount of thrombin produced (p<0.05) was observed as compared to the isotype con-
trol. These anticoagulant effects increased with a higher density of the anti-ApoA-I antibody. In
contrast, anti-ApoB antibody covered discs had no impact on the thrombin generation.

Platelet adhesion and activation. Platelet adhesion to the coated discs was clearly reduced
on anti-ApoA-I antibody coated surfaces, particularly at a high density, as compared to the
ApoB and isotype control (p<0.05; Fig 3A). Similarly, the ApoB antibody coated surface at
high density showed reduced platelet adhesion compared to the isotype control (p<0.05). To
further elucidate the implications of this latter finding we studied the influence of the oxidation
state of these lipoproteins, in particular oxidized LDL, on the morphology and activation of the
adhered platelets using scanning electron microscopy (Fig 3B). Only in the presence of oxi-
dized LDL we noted significantly increased adhered platelet activation.

In vivo study
All rabbits (n = 15; weight 3.3kg ± 0.2 kg) were successfully stented, no peri-procedural compli-
cations occurred. Two rabbits were euthanized prematurely because of gastrointestinal discom-
fort and significant (>10%) weight loss at day 11 and day 19 after stenting. At 28 days, the
stented iliac arteries of all remaining rabbits were patent.

Morphometric analysis and scanning electron microscopy analysis. The Lawson-stained
sections were assessed for mean lumen stenosis, intima surface and IM-ratio. As shown in
panel A1 of Fig 4, anti-ApoA-I coated stents with a mean lumen stenosis of 23.3% showed ste-
nosis rates similar to the BMS stent (P = 0.77). Comparison of the corresponding regions be-
tween the two stent types indicated no significant difference (panel A2). This degree of in-stent
stenosis is comparable to the magnitude of stenosis observed by other groups using a similar
rabbit model [28–30]. In addition, mean intima surfaces in ApoA-I coated and bare metal
stents were 0.81 and 0.84 mm2 respectively (P = 0.85; panel B1). Consistent with these findings,
mean IM-ratios in both stents (3.0 vs. 2.7 for ApoA-I vs. BMS, P = 0.28) were not different
(panel C1). With respect to intima surface and IM-ratio, corresponding regions were compara-
ble between the two stent types (panel B2 and C2).

We did observe a trend towards decreased RAM-11 positive regions in the vicinity of struts
with the anti-ApoA-I coated stent (Fig 5; p = 0.056). The number of KI-67-positive (proliferat-
ing) cells did not differ between the two stents (P = 0.673). No difference was observed in fibrin
deposition between the two stent types (P = 0.187). Next to the VonWillebrand staining
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reflecting endothelialization, the en face analysis of endothelium using SEM (Fig 6) shows that
in both stent types, endothelialization pattern is comparable. Immunohistochemical analysis of

Fig 1. HMEC-1 cell growth on coated and uncoated disks.HMEC-1 cell growth on ApoA-I-coated discs in 100%, 10% and 1% density, incubated in HDL
after 1, 2 and 4 days, compared to similarly incubated uncoated discs (control). Error bars indicate Standard Deviation (SD) of mean (n = 3). (* = P<0.05).
HMEC-1 cell adhesion (B) on disks—HMEC-1 cell adhesion on ApoA-I-, ApoB- or Isotype-coated discs with 100% and 10% antibody density, incubated for 4
days. Error bars indicate Standard Deviation (SD) of mean (n = 4). (* = P<0.05)

doi:10.1371/journal.pone.0122836.g001
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VonWillebrand stained slides showed a trend to an increased grade of endothelialization in
the ApoA-I coated stents compared to BMS (P = 0.072).

Discussion
The present study shows that an anti-ApoA-I antibody coated surface, saturated with HDL,
improves endothelial cell adhesion and proliferation with a concomitant decrease in thrombin
generation and platelet adhesion in vitro. These beneficial features in vitro did, however, not
translate into improved stent performance in vivo in a rabbit model of iliac artery balloon inju-
ry. The discrepancy between the in vitro and in vivo effect of anti-ApoA-I antibody coating
may reflect insufficient availability of ApoA1 near the stent struts or limited capacity of HDL
to attenuate the vascular injury response in an injury model of intimal hyperplasia.

In vitro experiments
The improved endothelial cell adhesion and proliferation in our in vitro experiments using
anti-ApoA-I coated metal discs endorse the results from earlier experimental studies on the
protective functions of HDL. HDL has been shown to exert a protective effect on the endotheli-
um by preventing apoptosis and promoting migration of endothelial cells in in vitromodels.
[31–34] In humans, HDL has consistently been shown to exert a beneficial effect on abnormal

Fig 2. Thrombin generation on coated discs. Thrombin generation for discs coated with either ApoA-I-, ApoB-, Isotype- or no antibody (empty discs),
compared to thrombin generation in absence of a disc (negative control). (n = 4).

doi:10.1371/journal.pone.0122836.g002
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vascular reactivity.[35,36] The concomitant antithrombotic effects of ApoA-I in our in vitro ex-
periments correspond to previous studies reporting antithrombotic effects of HDL. Thus, Fle-
isher et al showed that human HDL stimulates endothelial cell prostacyclin synthesis in vitro,
[37] whereas ApoA-I-Milano resulted in decreased thrombus formation in a rat model.[10] In
humans, low HDL has also been recognized as a risk factor for venous thrombotic embolism.
[38,39] Mechanistically, HDL has been shown to serve as a carrier of a wide array of proteins
affecting the innate immune system and proteolytic cascades.[40] In line, systemic infusion of
HDL has been shown to reduce vessel wall inflammation.[41,41,42] Collectively, our in vitro

Fig 3. A. Platelet adhesion on coated disks. Platelet adhesion: SEM analysis of adhered platelets on
surfaces coated with ApoA-I-, ApoB- or isotype antibody after corresponding pre-treatment. The number of
adhered platelets are given as the mean ± SD (n = 3). (* = P<0.05). B. Platelet morphology. The
morphology of the adhered platelets was divided into 4 different classes representing various degrees of
activation, ranging from “round” (weak), “dendritic” (intermediate), “spread/dendritic” (strong) to “spread” (very
strong). The data are presented as the percentage of platelets exhibiting the indicated morphology. Data
error bars are the standard deviation of the mean (n = 3).

doi:10.1371/journal.pone.0122836.g003
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results lend further support to the concept that the presence of ApoA-I on the stent struts may
contribute to a better stent performance in vivo.

Rabbit experiments
Anti ApoA-I-coated stents were not capable of decreasing the vascular response in a rabbit
model of iliac balloon artery injury. Similar degree of stenosis, cell proliferation and

Fig 4. Morphometric analysis results. Lumen stenosis (A1 and A2), intima surface (B1 and B2) and IM-
ratio (C1 and C2) of anti ApoA-I coated stent and BMS stent 28 days after implantation. Bars indicate mean
value per section with error bars indicating the standard deviation (SD). Three left panels (A1, B1 and C1)
show results of five stent regions together. No significant differences were observed between the two stent
types. Three right panels (A2, B2 and C2) show results of individual stent regions in the two stent types. No
significant differences were observed between the corresponding regions in the two stent types.

doi:10.1371/journal.pone.0122836.g004
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endothelialisation were observed between ApoA-I antibody coated stents and the BMS. The
apparent discrepancy between the beneficial effects in vitro and the absence of a beneficial ef-
fect in vivomay have several explanations.

First, since the stent is fenestrated, the majority of the arterial wall area is not covered by the
stent struts. In contrast to coatings such as sirolimus and paclitaxel that are delivered into the
local environment, the ApoA-I/HDL complex is tightly bound at the surface of the stent strut.
The spatial distance between the HDL particles in relation to the lesion area between the struts
may have undermined a potentially beneficial effect. In support, there was a trend towards a
decreased number of inflammatory cells in the anti ApoA-I-coated stents, as well as a trend to
a higher degree of endothelialisation.

Second, increased oxidative modification of fixated HDL combined with overgrowth of
stent struts by intimal hyperplasia may reduce the bio-availability and potentially beneficial ef-
fects of HDL.[43] The latter may even imply that the struts become devoid of HDL delivered
from the blood. Attempts to visualize the presence of HDL on stent struts using immunohis-
tochemistry, however, failed due to the plastic embedding of the tissue.[44]

Study limitations
Despite that inflammatory, proliferative and thrombotic stimuli within the first two weeks
after stent implantation are immense, [43] the stent harvest after 28 days may have been too
early to detect clinically significant differences between the two stents if in-stent restenosis oc-
curs after longer periods of observation. Therefore, longer observation periods may yet reveal
superior performance of the ApoA-I coated stent. Another drawback of the study involves the
lack of information regarding the antibody binding-place availability and its effects on circulat-
ing HDL recruitment within the stented arterial wall. (S1 Fig)

Clinical implications
Relevance of HDL mediated protection beyond reverse cholesterol transport has been widely
acknowledged, whereas its impact on cardiovascular outcome remains to be proven. Positive
functional effects are confirmed by our in vitro studies with anti ApoA-I antibody coated

Fig 5. Immunohistochemical analysis.Results of immunohistochemical analysis (top) with corresponding representative examples of the
immunohistochemical staining (20x objective). KI-67 (first panels), Fibrin (second panel), RAM11 (third panel) and VWF (fourth panel) are shown. Bars
indicate mean score or count with error bars indicating the standard deviation (SD). Proliferation (KI-67), fibrin deposition, macrophage infiltration (RAM11)
and endothelialization (VWF) were not significantly different between the two stent types.

doi:10.1371/journal.pone.0122836.g005
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metallic surfaces. The attempt to translate these results to a (pre-) clinical setting has, however,
failed. Whereas strategies aimed at increasing local ApoA-I concentration may still prove to be
beneficial for long-term stent patency, we were unable to provide in vivo support for the use of
anti-ApoA-I antibody coated stents to reduce intimal hyperplasia.

Fig 6. Scanning electronmicroscopy overview. SEM images of a 28-day BMS (upper half) and anti- ApoA-I coated stent (lower half) implanted in the
rabbit common iliac artery. High magnification details of stent strut coverage are shown of three randomly chosen spots, next to the low magnification
overview in the centre. Complete endothelial lining of the lumen is shown in all high-magnification details, with similar endothelial cell aspect.

doi:10.1371/journal.pone.0122836.g006
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Supporting Information
S1 Fig. Overview of hypothesis. Schematic overview of the predefined stent regions (lower
left) and a transversal section of a stented artery (upper left) The details (A-C) of an anti
ApoA-I antibody coated strut compared with the strut of a bare metal stent (BMS; D-F) pro-
vide an overview of the hypothesis: anti ApoA-I antibody coated stents are implanted in the
pre-injured artery (A). The coated struts attract HDL cholesterol by binding ApoA-I (B). The
presence of ApoA-I and HDL prevent restenosis and promotes restoration of the endothelial
layer (C). Restenosis occurs in bare metal stents (BMS), which after implantation in the artery
(D) does specifically attract ApoA-I and HDL (E) and becomes overgrown by proliferating vas-
cular smooth muscle cells, effectuating stenosis.
(TIF)

S1 Text. Thrombin generation test.
(DOC)

S2 Text. Rabbit stent implantation model.
(DOC)

S3 Text. Histological and immunohistochemical staining.
(DOC)

S4 Text. Morphometric analysis.
(DOC)

S5 Text. Immunohistochemistry and the scoring systems.
(DOC)

S6 Text. Scanning electron microscopy.
(DOC)
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