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The 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorderwith an increased risk of psychosis.
Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical
networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are
sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and
370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of in-
terest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to
the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were
decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in
22q11DS using other neuroimaging methodologies.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent advances in molecular genetics provide an intriguing set of
putative biomarkers associated with increased liability to numerous
psychiatric diseases (Kendler, 2013). For schizophrenia specifically,
the genetic variant of greatest effect is a well-established copy number
variant at 22q11.2 (International Schizophrenia Consortium, 2008). A
hemizygous deletion at this locus, typically of about 1.5-3 Mb (Shaikh
et al., 2000), results in a broad spectrum of craniofacial, cardiac, endo-
crine, neurologic, and psychiatric manifestations now commonly
known as the 22q11 deletion syndrome or 22q11DS (Shprintzen,
2008). People with 22q11DS have increased risk for several psychiatric
conditions including attention-deficient hyperactivity disorders, mood
disorders, anxiety, and autism-spectrum disorders (Tang et al., 2013).
Perhaps most strikingly, persons with 22q11DS have an estimated 50%
lifetime prevalence of subthreshold psychotic features and a 25-fold in-
creased risk of psychotic-spectrum disorders relative to the general
population (Bassett and Chow, 1999; Murphy et al., 1999).
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Idiopathic schizophrenia is increasingly considered a disorder of al-
tered brain connectivity (Alexander-Bloch et al., 2010). Prior studies
using diffusion tensor imaging (DTI) suggest lower fractional anisotropy
and higher diffusivity in individuals with schizophrenia relative to typ-
ically developing controls (Kubicki et al., 2007). DTI studies in 22q11DS
are less common, but also generally suggest lower anisotropy relative to
typically developing controls (Barnea-Goraly et al., 2003; Jalbrzikowski
et al., 2014; Simon et al., 2005; Villalon-Reina et al., 2013). Resting state
fMRI studies also suggest altered connectivity in 22q11DS (Debbané et
al., 2012).

The analysis of covariance patterns within structural data using
graph theoretical models provides an additional method to explore
the multivariate substrates of complex neuropsychiatric diseases
(Alexander-Bloch et al., 2013; Bassett et al., 2008). By observing differen-
tial correlation patterns among anatomic regions of interest, the underly-
ing neural network can be inferred (Chen et al., 2012; He et al., 2007).
Network modeling with cortical thickness data, in particular, reproduces
known patterns of axonal connectivity (Lerch et al., 2006). In the current
study, we compare network structure in 22q11DS to a large group of typ-
ically developing controls via a multivariate analysis of cortical thickness.
We hypothesized that several graph theoretical statistics would be de-
creased in 22q11DS relative to typically developing controls, mirroring
prior brain network analyses using other imaging modalities.
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Methods

2.1. Sample

The 22q11DS samplewas drawn from a prospective study, Brain-Be-
havior and Genetic Studies of the 22q11DS at University of Pennsylvania
and Children's Hospital of Philadelphia (CHOP). Participants were re-
cruited from the “22q and You Center” at CHOP and through social
media. Inclusion criteria were: age ≥ 8, English proficiency, estimated
IQ N70 by clinical testing and the Wide Range Achievement Test IV
(Wilkinson and Robertson, 2006), and stable medical status. Exclusion
criteria were: pervasive developmental disorder or IQ b 70,medical dis-
orders that may affect brain function (e.g., uncontrolled seizures, head
trauma, CNS tumor and infection) or visual disability (e.g., blindness);
appropriate subjects older than 12years of agewere considered for neu-
roimaging. The 22q11.2DS neuroimaging subsample consisted of 48 in-
dividuals (mean age 20.1 years ± SD 4.5, 52% male) and is similar to a
sample described previously (Schmitt et al., 2014a). More than half of
the 22q11DS (54%) had significant psychosis spectrum symptoms, in-
cluding 48% with sub-threshold (positive, negative or disorganized)
symptoms and the remaining with threshold psychotic disorders, in-
cluding 2with schizophrenia/schizoaffective disorder. Psychiatric disor-
ders in general were common; 27% of subjects had a history of major
depression, 38% with an anxiety disorder, and 35% with ADHD. Only
seven (15%) subjects had no significant psychosis spectrum symptoms
or lifetime history of other psychiatric disorders.

Our typically developing control group was obtained from the
Philadelphia Neurodevelopmental Cohort (PNC), a prospective sample
of children and young adults aged 8–21 years, recruited through
CHOP. Details on the neuroimaging sample are described elsewhere
(Satterthwaite et al., 2013). A total of 370 typically developing subjects
without psychiatric diagnoses or any significant psychopathology were
included (mean age 14.7, sd 4.1, 48% male).

2.2. Image Acquisition

High-resolution axial T1weightedmagnetization prepared rapid ac-
quisition gradient (MPRAGE) echowas acquired, with the following pa-
rameters; TR/TE 1810/3.51 ms; TI 1100 ms; FOV 180 × 240 mm;
effective resolution 1 mm3. 22q11DS and PNC participants were all
scanned using the same 3 TeslaMRI scanner (TIMTrio; Siemens, Erlang-
en, Germany), pulse sequence parameters and 32-channel head coil.
Board certified technologists in theDepartment of Radiology at the Hos-
pital of the University of Pennsylvania performed and read all scans.

2.3. Image processing

In order to obtain measures of cortical thickness, raw data were
imported into FreeSurfer version 5.0 (http://surfer.mgh.harvard.edu).
FreeSurfer's surface-based image processing pipeline is described ex-
tensively elsewhere (Dale et al., 1999; Fischl and Dale, 2000; Fischl,
2012; Fischl et al., 1999). Briefly, for each subject, image intensity was
normalized to account for magnetic field inhomogeneity. The skull
and other non-brain tissues were removed (Ségonne et al., 2004). Pre-
liminary segmentation was performed using a connected components
algorithm. The surface boundarywas then coveredwith a polygonal tes-
sellation and smoothed, resulting in high-resolution vertices over both
cerebral hemispheres. A deformable surface algorithm was employed
to identify the pial surface. The cortical surface model was reviewed
and manually edited if necessary. Cortical parcellation was performed
based on a combination of local curvature information, the probability
of a regional label at a given location in surface-based atlas space, and
contextual information (Fischl et al., 2004) based on the Desikan atlas
(Desikan et al., 2006). This parcellation scheme resulted in 68 total re-
gions of interest (ROIs). For each ROI, cortical thickness was calculated
by averaging the distance between the pial surface and the gray/white
boundary.

2.4. Statistical Analysis

Data were then imported into the statistical programming environ-
ment R (R Core Development Team, 2012). For each ROI, linear and non-
linear effects of age, sex, race, age-sex interactions, and average global
cortical thickness were controlled via regression. Correlation matrices
were constructed from the residuals for each group separately and com-
pared using the Jennrich and Mantel tests (Jennrich, 1970; Mantel,
1967). Correlational patternswere visualized using the heatmap.2 func-
tion (gplots package) with superimposed hierarchical cluster analysis
using Euclidean distances (Warnes et al., 2015). Hierarchical clustering
requires no a priori specification of the number of clusters present in the
data, but rather orders relationships based on a distance function
(Hastie et al., 2011). Heatmap.2 performs agglomerative clustering,
which represents a stepwise bottom-up strategy that recursively groups
the most related structures until a single cluster remains. In addition to
reorganizing the data such that ROIs with similar correlational patterns
are spatially proximal in thematrix, a dendrogram also is produced that
shows the level of similarity among the ROIs; the shorter the path along
the dendrogram between two ROIs, the more similar their patterns of
correlations.

Undirected graph theoretical models were then constructed for
22q11DS and TD groups separately. The use of binary networks de-
creases variability in network statistics and is particularly advantageous
for relatively small sample sizes (Cheng et al., 2012). Since density of a
network can influence many network statistics (Bassett et al., 2008),
we examined the network properties of both groups separately using
a range of correlational thresholds to define significant edges, similar
to methods described in Liu et al. (2008); the analysis pipeline is sum-
marized in Fig. 1. Undirected graphs were constructed for each group
separately in R using the igraph package (Csárdi and Nepusz, 2006,
2015). Several global network statistics (described below) were calcu-
lated for each threshold separately using existing functions in the igraph
or qgraph packages (Epskamp et al., 2012). Standard deviations for each
statistic-threshold combination were calculated for each group sepa-
rately via bootstrapwith 1000 replicates. In order to provide a summary
statistic independent of individual threshold selection, area under the
curve (AUC) analysis was then performed for each network statistic
(Long et al., 2013). AUC was mathematically defined as:

YAUC ¼
Xn−1

k¼1

½Y Tkð Þ þ Y Tkþ1ð Þ�I=2

where n is the number of thresholds, Y(Tk) represents the value of a net-
work statistic at threshold k, and I is the interval between thresholds.
Standard deviations in AUC were calculated via bootstrap with 1000
replicates, and significant group differences in AUC identified via t-
test. Additionally, since two networks at a fixed correlation threshold
may not have identical densities, we repeated these analysis over a
range of fixed sparcities.

As an alternate strategy, significant edges were identified using the
PCIT algorithm (Reverter and Chan, 2008), which combines information
theory and first order partial correlation coefficients in order to minimize
spurious edges. The algorithm was originally designed to identify mean-
ingful gene co-expression networks, but is mathematically generalizable
to most correlational data and is available in the R package ‘pcit’
(Watson-Haigh et al., 2010). In order to ensure that differences in density
did not bias network statistics (Bassett et al., 2008), the density of the TD
group was set to match the 22q11DS group by adjusting the correlation
threshold such that graph density was equal between groups (Bassett et
al., 2008; He et al., 2009). In practice, following application of the PCIT al-
gorithm the number of edgeswas nearly equivalent (213 in TD group and

http://surfer.mgh.harvard.edu


Fig. 1. Summary of the statistical pipeline. Correlationmatrices for correctedmeasures of cortical thickness (A) were constructed for TD and 22q11DS groups separately. Significant edges
were then identified either via serial thresholding or using the PCIT algorithm (B). Finally, undirected networks for each group were generated in igraph (C). The same pipeline was used
for subsequent bootstrap and permutation analyses.
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214 in 22q11DS), even prior to adjustment. Undirected graphswere then
constructed for each group separately using the igraph package.

Using these graphmodels, we then explored global network architec-
ture through several measures of connectivity (mean betweenness, mod-
ularity, clustering coefficient, average path length, and smallworldness)
commonly used in graph theory (Rubinov and Sporns, 2010; van Wijk
et al., 2010). For a given graph Gwith V vertices and E edges, these statis-
tics are defined as follows:

2.5. Mean Betweenness

The shortest path length between two vertices (i.e. ROIs) vi and vj
represents the number of connecting edges for the minimum path
Fig. 2. Results of hierarchical cluster analysis for cortical thickness for TD and 22q11DS groups. P
were strongly clustered by lobar anatomy: 1) frontal, 2) parieto-occipital, 3) insulo-tempora
anatomic clustering.
between them. The betweenness centrality of a vertex v is defined as
the proportion of shortest paths between other vertex-vertex pairs
that traverse it (Brandes, 2001; Freeman, 1978). Thus, it quantifies
how a node influences the connectivity between other nodes. For a ver-
tex v along a path connecting vertices i and j, the betweenness can be
expressed mathematically as:

B vð Þ ¼
X

i≠v≠ j∈V

σ ij vð Þ
σ ij

where σij is the number of shortest paths between i and j. Themean be-
tweenness is simply the average betweennesses for all vertices.
ositive correlations are shown in green, negative correlations in red. In the TD group, ROIs
l, and 4) limbic. Cross-trait correlations in 22q11DS were weaker, as was the degree of
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2.6. Modularity

Themodularity Q is defined as the proportion of edges that are lo-
cated within network submodules in excess of that expected by ran-
dom chance (Clauset et al., 2004; Girvan et al., 2002). Thus, it is a
measure of the community structure of a network, with higher
values representing more densely connected vertices within mod-
ules. For a graph with binary adjacency matrix A and m total edges
and for all pairwise combinations of vertices i and j:

Q Gð Þ ¼ 1
2m

X
i≠ j

Aij−
kik j

2m

� �
� δ ci; c j

� �

where k represents the degree (i.e. number of connections) of verti-
ces i and j. δ = 1 if i and j are in the same module and 0 otherwise.
2.7. Clustering Coefficient

The global clustering coefficient (C, also known as transitivity)
represents the average proportion of a vertex's neighbors that are
also connected to one another (Barrat et al., 2004; Watts and
Strogatz, 1998). The clustering coefficient of a single vertex repre-
sents the ratio of closed triplets divided by the total number of all
triplets (open and closed); in other words, it represents the propor-
tion of all possible connections with neighboring vertices that are ac-
tually realized. Strogatz’ classic example is that within a social
network, C represents the fraction of one's friends that are also
friends with each other. The clustering coefficient can be generalized
Fig. 3. Group differences in global cortical thickness network properties as a function of correla
22q11DS (red triangles) separately with error bars representing standard deviations. Insets
differences (p b 0.0001) for all statistics.
to the network level. For all vertices with degree N2:

C Gð Þ ¼ 1
V

X
v∈V

closed−triplets
all−triplets

2.8. Average Path Length

The average (or characteristic) path length is simply the average
shortest path length between all pairwise combinations of nodes
(Watts and Strogatz, 1998). For shortest path length l(vi,vj) and n verti-
ces, the average path length lμ is defined as:

lμ ¼ 1
n � n−1ð Þ∑i≠ j

l viv j
� �

2.9. Small Worldness

Small world networks are characterized by dense local inter-
connectivity and short local path lengths between two vertices
(Humphries and Gurney, 2008; Watts and Strogatz, 1998). Multi-
ple prior studies have suggested that the human brain has intrinsic
small world properties (Bullmore et al., 2009) that may be at least in
part genetically-mediated (Schmitt et al., 2008). The smallworldness
S of a graph is defined as the ratio of its clustering coefficient C to its
average minimum path length L (i.e. the average number of edges
between vertices), normalized to a randomly generated graph with
tional threshold. Network statistics are shown for typically developing (black circles) and
display results of AUC analysis for each network statistic; there were significant group
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an identical number of vertices and edges:

S Gð Þ ¼ C Gð Þ
Crand

L Gð Þ
Lrand

Smallworldness was calculated using the ‘qgraph’ package in R
(Epskamp et al., 2012). Group differences in global network sta-
tistics were estimated with difference scores. In order to test for
group differences from PCIT analyses, we performed permutation
analyses to estimate the sampling distribution of network statis-
tics. This was accomplished by randomly assigning individuals
to two groups (equal in proportion to the original data) and re-
peating the analysis pipeline described above, calculating a differ-
ence score between the two groups (Fisher, 1935; Nichols and
Holmes, 2003). The null distribution was estimated using 10,000
replicates.
2.10. Subgroup Analyses

Given the age difference between the 22q11DS group and our
younger controls, we repeated our analysis using subsets of both
groups that were better age matched by only including control sub-
jects older than 13 and 22q11DS subjects b24. A total of 37 individ-
uals with 22q11DS and 150 TD controls were included. There were
no significant differences inmean age between this control subgroup
(mean age 18.2 years ± SD 2.26) and the group with 22q11DS (18.7
± 3.19).
Fig. 4. Group differences in global cortical thickness network properties as a function of netw
22q11DS (red triangles) separately with error bars representing standard deviations. Insets
differences (p b 0.0001) for all statistics.
3. Results

When comparing correlation matrices as a whole, there were statis-
tically significant differences in correlational patterns between groups
(Jennrich χ2 = 4422.4, p-value b0.0001; Mantel p-value b0.0001).
Four distinct clusters were identified in the TD group: 1) a cluster in-
cluding most ROIs in the frontal lobe, 2) a parietal-occipital cluster
(with subclusters for occipital and parietal lobe ROIs), 3) a temporal
lobe-insular cluster, and 4) a cluster including the ROIs of the cingulate
and precentral gyrus (Fig. 2). Rather than observing hemispheric segre-
gation, ROIs were usually tightly correlated with their contralateral an-
alogs. Overall cross-trait correlations between ROIs in 22q11DS were
weaker; clustering patterns also were less striking, with less distinct as-
sociations between ROIs in spatial proximity.

Graph analysis showed reducedmean betweenness, modularity, clus-
tering coefficient, average path length, and smallworldness in 22q11DS
relative to the TD group over a range of correlation thresholds (Fig. 3)
and sparcities (Fig. 4). AUC analysis confirmed overall reduced network
measures in 22q11DS relative to the control group (Figs. 3 and 4, insets),
with statistically significant group differences in AUC (p b 0.0001).

Network statistics for PCIT-determined graphs are shown in Table 1.
When these graphswere visualized, the 22q11DS groupwas subjectively
less tightly connected (Fig. 5A). In TD subjects, anatomic regions generally
segregated by anatomic lobe, with particularly tight interconnections
within and between the occipital lobes. Subjectively, the TD group had
highermodularity relative to 22q11DS. In contrast, local connectivity pat-
terns were less striking in 22q11DS, with reduced clustering in the occip-
ital lobe, parietal lobe, and limbic structures in particular. Quantitative
metrics of connectivity confirmed these observations, with significantly
lower global measures of modularity, betweenness, clustering, and
smallworldness (p b 0.001, Fig. 3B).
ork sparcicity. Network statistics are shown for typically developing (black circles) and
display results of AUC analysis for each network statistic; there were significant group



Table 1
Comparison of Network Statistics for graphs with significant edges defined by the PCIT
algorithm.

Full Sample Age-Matched

TD 22q11DS TD 22q11DS

Mean Betweeness 79.54 61.15 76.47 57.44
Modularity 0.5792 0.4967 0.5756 0.4269
Smallworldness 3.484 2.606 3.284 2.739
Clustering Coefficient 0.4558 0.3147 0.4128 0.2680
Average Path Length 3.374 2.825 3.273 2.714
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3.1. Subgroup analysis

Repeat analysis using age-matched subgroups produced largely sim-
ilar findings to the full dataset (Supplementary Results). Again, there
were statistically significant group differences in correlational patterns
Fig. 5. Disrupted connectivity and modularity in 22q11DS. Graphmodels of cortical thickness n
lobar anatomy.Node shape indicates laterality (square= right, circle= left). Global connectivit
network cohesion. The null distribution was estimated empirically via permutation, with mean
(Jennrich test p b 0.0001;Mantel test p b 0.0001). Correlationmaps sub-
jectively appeared more tightly clustered in the TD group relative to
22q11DS. AUC for network was significantly increased (p b 0.0001) in
the TD group for smallworldness, betweenness, andmodularity relative
to 22q11DS; clustering coefficient was higher in 22q11DS in the sub-
group model, although this difference was not statistically significant
(p= 0.0629). The PCIT algorithm produced similar findings in the sub-
group analyses with significantly increased network statistics for all
network measures in the TD group relative to 22q11DS.

4. Discussion

The present study provides further evidence that the 22q11.2 dele-
tion results in global disruptions in cerebral anatomic connectivity rela-
tive to the typically developing population. To our knowledge, this
represents the first exploration of network structure in 22q11DS using
etworks for TD and 22q11DS (top). Nodes represent 68 regions of interest color-coded by
y statistics (bottom). Black dots represent difference scores (TD - 22q11DS) formeasures of
(open dot) and 95% confidence intervals.
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covariance patterns in cortical thickness data. In addition to identifying
statistically significant reductions in global structure, we observed par-
ticular decreases in the strength of parieto-occipital and limbic net-
works compared to typically developing controls.

Our data largely support prior observations using other modalities
(Debbané et al., 2012; Ottet et al., 2013b; Padula et al., 2015; Scariati
et al., 2016; Simon et al., 2005). For example, Ottet et al. reported signif-
icant reductions in occipito-occipital and limbic connectivity in
22q11DS using DTI tractography in 30 individuals with 22q11DS and
30 typically developing controls, as well as a 10% reduction in the total
number of fibers (Ottet et al., 2013a). Ottet et al. later expanded these
analysis using graph theoretical models in a sample of 46 participants
with 22q11DS and 48 matched controls, identifying significantly
increased global path lengths and reduced global efficiency (Ottet et
al., 2013b). Using resting state fMRI, Debbané et al. reported that
individuals with 22q11DS had weaker connectivity in visuospatial,
frontotemporal, and sensorimotor networks, as well as within the de-
fault mode network (Debbané et al., 2012). Alterations to the dorsal
stream have long been postulated to explain the observed deficits in
visuospatial and mathematical ability in 22q11DS, and several prior
structural studies have identified reduced parieto-occipital volumes
in people carrying the deletion (Eliez et al., 2000; Jalbrzikowski et al.,
2013; Kates et al., 2001; Schmitt et al., 2014a). Studies on cortical
thickness specifically have shown particular reductions in 22q11DS
within parieto-occipital structures, the region whose correlational
patterns appear most disrupted in our analyses (Bearden et al.,
2007; Jalbrzikowski et al., 2013; Schmitt et al., 2014a). For example,
Bearden et al. compared cortical thickness in 21 individuals with
22q11DS to 13 typically developing controls and found the largest
region of cortical thinning in the occipital pole extending into the su-
perior parietal lobe.

Recent graph theoretical studies on idiopathic schizophrenia using
resting state fMRI, DTI, and anatomic networks also have generally sug-
gested aberrant network connectivity (Alexander-Bloch et al., 2013;
Van Den Heuvel and Fornito, 2014). For example, prior resting state
fMRI studies have reported reductions in smallworldness, average clus-
tering, and global efficiency (Lynall et al., 2010), reductions in clustering
and smallworldness (Liu et al., 2008), and reductions in local efficiency,
clustering, and smallworldness (Alexander-Bloch et al., 2010) in people
with schizophrenia. Graph theoretical studies using DTI have shown
loss of distributed connectivity within the parieto-occipital network
and its connections to the frontal lobe through the cingulum and cin-
gulate cortex (van den Heuvel et al., 2010; Zalesky et al., 2011).
Employing methods similar to ours, Zhang et al. used Freesurfer-de-
rived measures of cortical thickness to explore cerebral connectivity
differences between 101 subjects with schizophrenia and 101
matched controls (Zhang et al., 2012). In addition to identifying glob-
al alterations in smallworldness, they reported relative reductions in
betweenness in schizophrenia, localizing to the bilateral midline
parietal lobes, parahippocampal/lingual gyri, right superior frontal
gyrus, and operculum. Notably, multiple studies have suggested that
people with 22q11DS have structural anomalies including most of
these regions, with particular involvement of parasagittal cortical struc-
tures (Jalbrzikowski et al., 2013; Schaer et al., 2008; Schmitt et al.,
2014a, 2014b).
5. Conclusions

Graph theoretical analysis of cortical thickness in 22q11DS supports
prior findings of disrupted structural and functional connectivity in this
condition, with many similarities to network architecture in schizo-
phrenia. These findings provide further evidence that specific anatomic
anomalies in 22q11DS should not be considered in isolation, but rather
as genetically mediated alterations to global neurodevelopmental
patterning.
5.1. Limitations

The current study has several limitations that should be considered.
First, in order to maximize the available sample, there were group
differences in age that were controlled statistically. Although we
attempted to minimize the contributions of age by controlling for both
nonlinear effects and interactions, some bias cannot be entirely exclud-
ed. Our subgroup analysis with better agematching supports the gener-
al conclusions obtained from the full sample. Second, there are
substantial differences in IQ between typically developing individuals
and individuals with 22q11DS that are difficult to control for. A study
design including a second control group matched for IQ could improve
specificity although in practice this design is difficult to implement. Ad-
ditionally, IQ-matching may have its own limitations since it could re-
sult in selecting under-achieving controls and over-achieving patients
(Resnick, 1992). Third, the use of group statistical correlational patterns
limits our ability to assess for individual differences. Fourth, multivari-
ate anatomic approaches infer connectivity patterns rather than visual-
izing them directly. However, the use of anatomic data does have some
relative advantages compared to othermodalities, notably the availabil-
ity of larger sample sizes and increased precision of measurement, and
therefore should be considered complementary to other multivariate
approaches.
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