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Abstract
Hepatocellular carcinoma (HCC) and pancreatic cancer (PC) belong to the most lethal malignancies worldwide. Despite 
advances in surgical techniques and perioperative multidisciplinary management, the prognosis of both carcinoma entities 
remains poor mainly because of rapid tumor progression and early dissemination with diagnosis in advanced tumor stages 
with poor sensitivity to current therapy regimens. Both highly heterogeneous visceral carcinomas exhibit unique somatic 
alterations, but share common driver genes and mutations as well. Recently, circulating tumor DNA (ctDNA) could be identi-
fied as a liquid biopsy tool with huge potential as non-invasive biomarker in early diagnosis and prognosis. CtDNA released 
from necrotic or apoptotic cells of primary tumors, metastasis, and circulating tumor cells can reveal genetic and epigenetic 
alterations with tumor-specific and individual mutation and methylation profiles. In this article, we focus on clinical impact 
of ctDNA as potential biomarker in patients with HCC and PC.

Keywords Hepatocellular carcinoma · Pancreatic cancer · Circulating tumor DNA · Next-generation sequencing · Digital 
droplet PCR
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Background

Hepatocellular carcinoma (HCC) and pancreatic can-
cer (PC) represent two of the most challenging visceral 
malignancies in oncology with rising incidence and lack 
of reliable biomarkers for early diagnosis, prognosis, and 
therapy response. PC and HCC are estimated to become 
the second and third respective leading causes of cancer-
related death in western countries by 2030 (Rahib et al. 
2014; Siegel et  al. 2019). As both carcinoma entities 
share some common risk factors, either environmental or 
genetic, combined analyses may provide useful informa-
tion. Hepatocellular carcinogenesis is a multistep process 
occurring in one-third of patients with liver cirrhosis, on 
the background of chronic infection with hepatitis B or 
C virus (HBV, HCV), alcoholic or non-alcoholic steato-
hepatitis, and obesity (Villanueva 2019). PC occurs with 
increased frequency among individuals with tobacco 
smoking, type 2 diabetes, obesity, chronic pancreatitis or 
hereditary risk factors (Ryan et al. 2014). In both carci-
noma entities, the majority of patients are diagnosed at 
advanced stages with a low 5-year survival rate of less 
than 10–20% and a high 5-year recurrence rate of 70–80%, 
even following oncological tumor resection (Siegel et al. 
2019). Therefore, early diagnosis at surgically manageable 
stages and early recurrence detection would have a tre-
mendous impact on survival of patients with HCC or PC. 
However, current screening of proteomic serum markers, 
such as alpha-fetoprotein (AFP) in HCC or carcinoembry-
onic antigen (CEA) and carbohydrate antigen (CA) 19.9 
in PC have not shown to be effective due to their reduced 
predictive values (Bolondi et al. 2013; Gamil et al. 2018; 
Poruk et al. 2013). In addition, imaging techniques failed 
to detect early lesions or to distinguish between benign and 
malignant lesions, so far. In addition to the risk of neoplas-
tic needle tract seeding, minimal invasive solid biopsies 
by endoscopic-ultrasound-guided fine needle aspiration in 
PC or percutaneous needle biopsy in HCC cannot accu-
rately track dynamic changes due to high tumor heteroge-
neity (Stigliano and Burroughs 2005; Yoshida et al. 2019). 
This molecular heterogeneity is the reason for the large 
variation in individual patient`s prognosis and response 
to chemotherapy.

Cytotoxic chemotherapy agents continue to form the 
backbone for the treatment of advanced PC limited to the 
pyrimidine antimetabolites gemcitabine and 5-fluoroura-
cil (5-FU), Topoisomerase I inhibition by irinotecan, the 
DNA crosslinking agents oxaliplatin and cisplatin, and the 
tubulin inhibitor paclitaxel (Burris et al. 1997; Reni et al. 
2005; Stathopoulos et al. 2006). However, the median 
survival remains 6–11 months. Since 2007, gemcitabine-
based combination chemotherapies with the selective 

epidermal growth factor receptor (EGFR) tyrosine kinase 
inhibitor erlotinib could improve the overall survival in 
locally advanced, unresectable, or metastatic PC (Moore 
et al. 2007). 5-FU-based FOLFIRINOX therapy including 
calcium folinate, irinotecan, and oxaliplatin since 2011 as 
well as the addition of nanoparticle albumin-bound pacli-
taxel to gemcitabine since 2013 significantly prolonged the 
overall survival and progression-free survival compared 
with mono-gemcitabine therapy in locally advanced and 
metastatic PC (Conroy et al. 2011; Von Hoff et al. 2013). 
Due to its greater toxicity, FOLFIRINOX was recom-
mended for PC patients in good physical condition. High 
resistance to current chemotherapy regimens still affects 
the treatment of PC and HCC (Chin et al. 2018). How-
ever, better therapy response with extended survival time 
of more than 2 years in small subgroups of patients with 
advanced PC seems to be connected with exceptionally 
favorable prognostic factors and molecular characteristics 
(Collisson et al. 2011; Cui et al. 2012).

Despite the identification of many frequently mutated 
genes as potential therapeutic targets in HCC, the multi-
kinase inhibitor Sorafenib that inhibits vascular endothe-
lial growth factor receptor (VEGFR) 1–3, platelet-derived 
growth factor receptor (PDGFR) beta, c-KIT, and RAF/
mitogen-activated protein/MEK was the sole drug approved 
for the treatment of advanced HCC between 2007 and 2016 
with a response rate of less than 5% and an extended median 
overall survival of 2.5 months (Llovet et al. 2008). Cur-
rently, two first-line alternatives to Sorafenib are approved. 
The first Lenvatinib is a multikinase inhibitor as well, that 
inhibits VEGFR 1–3, PDGFR alpha, fibroblast growth factor 
receptor 1–4, c-Kit proto-oncogene receptor tyrosine kinase, 
and RET proto-oncogene with an improved median over-
all survival of 13.6 months versus 12.3 months. The other 
one is the monoclonal antibody Nivolumab, that inhibits 
the immune checkpoint molecule programmed cell death 
protein 1 and showed a response rate of 23% in Sorafenib 
naïve HCC patients (Forner et al. 2018). Therefore, the most 
effective treatment of heterogeneous cancers like HCC and 
PC might be a tailored combination of drugs targeting spe-
cific genomic and epigenomic alterations. Routine molecular 
testing is still performed in clinical diagnostic for targeted 
therapy and prognostic stratification in cancer entities, such 
as breast cancer, melanoma and leukemia (El-Deiry et al. 
2019). In patients with diagnosed colorectal carcinoma, 
the decision for an anti-EGFR antibody therapy is based on 
routine mutation analysis of kirsten rat sarcoma viral onco-
gene homolog (KRAS), neuroblastoma RAS viral oncogene 
homolog, and B-Raf proto-oncogene serine/threonine kinase 
gene resulting in a valine-to-glutamate change at the residue 
600 (Karapetis et al. 2008). In addition to environmental fac-
tors, recent genome-wide association studies revealed that 
genetic and epigenetic abnormalities might be significant 
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determinants of HCC or PC susceptibility with important 
influence on the individual predisposition to disease pro-
gression, e.g. chronic inflammation, and resulting carcino-
genesis. Moreover, several recent studies have shown that 
identification of molecular biomarkers and real-time moni-
toring of disease and therapy efficacy in PC and HCC could 
be achieved by liquid biopsies (Tables 1 and 2). In this 
review, we discuss recent studies focusing on detection and 
clinical impact of circulating DNA mutation and methylation 
as potential biomarker for early diagnosis, prognosis, and 
therapy response in HCC and PC.

Cell‑free and circulating tumor DNA

Cell-free (cf) DNA originates from normal cells exported by 
exosomes as well as from apoptotic and necrotic cells with 
highly fragmented, double-stranded DNA of approximately 
150–180 base pair fragments in size being released into the 
bloodstream. In 1948, Mandel and Metais first reported the 
presence of cfDNA in human circulation followed by detec-
tion in urine, saliva, and other body fluids (Botezatu et al. 
2000; Liao et al. 2000; Mandel and Metais 1948; Mao et al. 
1994). A recent study showed that most of cfDNA derive 
from bone-marrow and liver in healthy individuals (Sun 
et al. 2015). Examples for clinical applications of cfDNA are 
the non-invasive prenatal testing for chromosomal aneuploi-
dies by fetal cfDNA in the plasma of pregnant women or the 
monitoring of graft rejection following organ transplanta-
tion by donor-derived cfDNA in the plasma of the recipients 
(Chiu et al. 2008; Lo et al. 1997, 1998; Snyder et al. 2011). 
In 1977, Leon et al. demonstrated that cancer patients had 
a relative higher level of cfDNA than healthy controls with 
increased levels after radiation therapy (Leon et al. 1977). 
It was postulated that cancer patients have higher levels of 
cfDNA than healthy individuals (Shapiro et al. 1983). How-
ever, cfDNA levels have also been linked to outcomes in 
patients with a variety of other physiological and pathologi-
cal conditions, including exercise, inflammation, circadian 
rhythm, exposure to smoking, sepsis, and trauma (Aucamp 
et al. 2018). In fact, cfDNA is composed of both coding 
and non-coding genomic DNA that can be used to examine 
mutations and polymorphisms, microsatellite instability, and 
epigenetic methylation (Bruhn et al. 2000; Downward 2003; 
Grutzmann et al. 2008; Jahr et al. 2001; Schwarzenbach 
et al. 2011). Epigenetic changes are considered as an early 
event in carcinogenesis and might, therefore, be a suitable 
early diagnostic tumor marker.

Since the extraction of plasma DNA with the same 
genetic changes as the primary tumor in 1989 and iden-
tification of mutated KRAS sequences in the plasma or 
serum from patients with PC in 1994, circulating tumor (ct) 
DNA is becoming a research hotspot with high potential as 

liquid biopsy marker in cancer medicine (Sorenson et al. 
1994; Stroun et al. 1989). CtDNAs as a part of circulating 
cfDNA are mutant DNA fragments released to the circula-
tion by tumor cells of different cancer entities. CtDNA is 
considered to be released from an increasing proportion of 
necrotic and apoptotic cells in primary tumors, secondary 
deposits and circulating tumor cells, corresponding to an 
increase in ctDNA. The half-lives of ctDNAs range from 
15 min to a few hours which enables ctDNA analysis to be 
considered as a ‘real-time’ snapshot of disease burden with 
supposed clearance through nuclease activity, renal excre-
tion, and uptake by the liver and spleen (Diehl et al. 2008; 
Minchin et al. 2001; Tamkovich et al. 2006; Yu et al. 2013). 
CtDNA can be detected by tumor-specific mutants and are 
less impacted by intratumor heterogeneity than a single 
specimen of tumor tissue (Bettegowda et al. 2014; Diaz and 
Bardelli 2014; Fleischhacker and Schmidt 2007; Melo et al. 
2015; Sausen et al. 2014). It is supposed, that ctDNA harbor 
the same (epi-) genetic alterations as the originating primary 
tumor cells. Recently, Heitzer et al. demonstrated the impact 
of ctDNA in early detection, surveillance, and personalized 
treatment in different cancer entities like colorectal, breast, 
and non-small cell lung cancer (Heitzer et al. 2015). In addi-
tion, previous studies have indicated a positive correlation 
between ctDNA levels and tumor burden in various can-
cer types with increasing copy numbers of ctDNA per mL 
plasma in advanced and metastatic tumors, as well as differ-
ent methylation status of ctDNA to normal cfDNA and blood 
leukocytes (Bettegowda et al. 2014; Guo et al. 2017; Madic 
et al. 2012; Xu et al. 2017). Furthermore, it is hypothesized 
that ctDNA could be a signaling trigger for cancer progres-
sion by horizontal DNA transfer affecting the biology of 
host cells (Bergsmedh et al. 2001; Gahan and Stroun 2010; 
Garcia-Olmo et al. 1999). Thus, ctDNA levels may serve as 
an early biomarker for diagnostic and therapy monitoring, 
prior to clinically or radiographically measureable changes 
of tumor burden in patients. However, ctDNAs represent a 
variable fraction of cfDNAs ranging from 0.01% to more 
than 50% in cancer patients (Diaz and Bardelli 2014; Diehl 
et al. 2008). Deoxyribonuclease activity and the release of 
cfDNA by normal cells in peripheral circulation reduces 
ctDNA concentrations. Therefore, the detection of ctDNA 
is challenging and necessitates the standardization of extrac-
tion procedures to be able to distinguish ctDNA from the 
large amount of cfDNA.

Next‑generation sequencing and digital 
droplet PCR

In the last 2 decades, growing knowledge on non-coding 
genome functionality and genome-wide sequence varia-
tion has improved personalized medicine and molecular 



1628 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

Ta
bl

e 
1 

 C
irc

ul
at

in
g 

Tu
m

or
 D

N
A

 in
 H

ep
at

oc
el

lu
la

r C
ar

ci
no

m
a

Re
fe

re
nc

es
O

rig
in

H
C

C
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 
m

ut
at

io
n 

(%
)

tiD
N

A
 m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 

ct
D

N
A

/
tiD

N
A

 (%
)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

H
ua

ng
 e

t a
l. 

(2
01

6)
Pl

as
m

a
48

dd
PC

R
 

Sa
ng

er
 

se
q

TE
RT

C
TN

N
B

1
TP

53

24
.4

12
.2

14
.6

19
.5

0 4.
9

62
.5

N
A

50
.0

84
.9

87
.8

87
.2

80
.5

87
.8

85
.4

N
A

N
A

N
A

Li
ao

 e
t a

l. 
(2

01
6)

Pl
as

m
a

41
N

G
S

TE
RT

C
TN

N
B

1
TP

53

4.
9

9.
8

4.
9

70
.7

26
.8

65
.9

6.
9

27
.3

2.
3

95
.1

96
.7

10
0.

0

34
.1

78
.0

39
.0

N
A

N
A

Po
or

 R
FS

A
n 

et
 a

l. 
(2

01
9)

Pl
as

m
a

26
N

G
S

35
4 

ge
ne

s
(T

P5
3)

96
.2

50
N

A
30

.8
N

A
N

A
88

.5
69

.2
N

A
N

A
D

FS
 

(H
R

 =
 7.

66
; 

p <
 0.

00
1)

Sz
ym

an
sk

a 
et

 a
l. 

(2
00

4)

Pl
as

m
a

17
PC

R
–R

FL
P

SO
M

A
TP

53
41

34
.5

71
.4

61
.5

76
.7

N
A

N
A

N
A

Li
n 

et
 a

l. 
(2

01
1)

U
rin

e
17

LN
A

 P
C

R
TP

53
52

.9
42

.9
66

.7
0.

0
28

.6
53

.0
75

.0
N

A

K
im

bi
 e

t a
l. 

(2
00

5)
Se

ru
m

15
8

PC
R

 a
nd

 
Se

q
TP

53
17

.7
N

A
N

A
N

A
N

A
18

83
.3

N
A

M
ar

ch
io

 
et

 a
l. 

(2
01

8)

Pl
as

m
a

14
9

dd
PC

R
TP

53
24

.8
N

A
N

A
N

A
N

A
N

A
N

A
N

A

Ik
ed

a 
et

 a
l. 

(2
01

8b
)

Pl
as

m
a

14
N

G
S

68
 g

en
es

 
(T

P5
3)

79 57
N

A
N

A
N

A
N

A
N

A
N

A
N

A

Ik
ed

a 
et

 a
l. 

(2
01

8a
)

B
lo

od
26

N
G

S
70

 g
en

es
 

(T
P5

3)
88

.5
61

.5
N

A
N

A
N

A
N

A
N

A
N

A
N

A

R
iv

ie
re

 
et

 a
l. 

(2
01

8)

Pl
as

m
a

31
N

G
S

68
 g

en
es

 
(T

P5
3)

74 61
.2

N
A

N
A

N
A

N
A

N
A

N
A

N
A

H
e 

et
 a

l. 
(2

01
9)

Pl
as

m
a

29
N

G
S

35
 g

en
es

(T
P5

3)
96

.4
50

N
A

75 N
A

N
A

75 33
N

A
N

A
N

A

K
as

eb
 e

t a
l. 

(2
01

9)
Pl

as
m

a
21

9
N

G
S

70
 g

en
es

87
.8

N
A

N
A

N
A

N
A

N
A

N
A

N
A

X
io

ng
 e

t a
l. 

(2
01

9)
Pl

as
m

a
37

N
G

S
TP

53
64

N
A

N
A

N
A

N
A

65
10

0
N

A

X
u 

et
 a

l. 
(2

01
7)

Pl
as

m
a

10
98

M
SP

ta
rg

et
 p

an
el

N
A

N
A

N
A

N
A

N
A

85
.7

94
.3

O
S 

(H
R

 =
 2.

41
; 

p <
 0.

00
1)

Iy
er

 e
t a

l. 
(2

01
0)

Pl
as

m
a

28
M

SP
m

p1
5

m
p1

6
m

A
PC

m
FH

IT

10
.7

46
.4

53
.5

67
.8

14
.2

71
.4

64
.2

75

50 60 77
.8

94
.7

95
.8

87
.5

90 66
.7

89
.2

67
.9

82
.1

85
.7

N
A

N
A

N
A



1629Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
O

rig
in

H
C

C
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 
m

ut
at

io
n 

(%
)

tiD
N

A
 m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 

ct
D

N
A

/
tiD

N
A

 (%
)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

W
on

g 
et

 a
l. 

(1
99

9)
Pl

as
m

a
22

M
SP

m
p1

6
59

.1
72

.7
N

A
N

A
81

N
A

N
A

N
A

W
on

g 
et

 a
l. 

(2
00

0)
Pl

as
m

a
25

M
SP

m
p1

5 
/ m

p1
6

87
92

N
A

N
A

74
N

A
N

A
N

A

W
on

g 
et

 a
l. 

(2
00

3)
Pl

as
m

a
29

M
SP

m
p1

6I
N

K
4a

79
.3

66
.7

N
A

N
A

46
.7

N
A

N
A

N
A

H
ua

ng
 e

t a
l. 

(2
01

4)
Se

ru
m

66
M

SP
m

IN
K

4A
65

.3
N

A
N

A
N

A
N

A
65

.3
87

.2
N

A

H
ua

ng
 e

t a
l. 

(2
01

1)
Pl

as
m

a
72

M
SP

m
A

PC
, 

m
G

ST
P1

, 
m

R
A

SS
F1

A
, 

an
d 

m
SF

R
P1

84
.7

N
A

N
A

N
A

N
A

92
.7

81
.9

O
S 

(H
R

 =
 3.

26
; 

p =
 0.

00
3)

C
ha

n 
et

 a
l. 

(2
00

8)
Se

ru
m

63
M

SP
m

R
A

SS
F1

A
93

N
A

N
A

N
A

N
A

77
89

po
or

 D
FS

Ye
o 

et
 a

l. 
(2

00
5)

Pl
as

m
a

40
M

SP
m

R
A

SS
F1

A
42

.5
92

.5
45

.9
10

0.
0

50
.0

N
A

N
A

N
A

H
u 

et
 a

l. 
(2

01
0)

Se
ru

m
35

M
SP

m
R

A
SS

F1
A

40
88

.6
45

.2
10

0
51

.4
70

–1
00

52
–1

00
N

A

M
oh

am
ed

 
et

 a
l. 

(2
01

2)

Se
ru

m
40

M
SP

m
R

A
SS

F1
A

90
N

A
N

A
N

A
N

A
75

80
N

A

M
an

so
ur

 
et

 a
l. 

(2
01

7)

Se
ru

m
45

M
SP

m
R

A
SS

F1
A

87
.7

N
A

N
A

N
A

N
A

86
.7

72
.5

co
rr

el
at

io
n 

w
ith

 
tu

m
or

 si
ze

 
(r

 =
 0.

72
8;

 
p <

 0.
00

1)
Li

u 
et

 a
l. 

(2
01

7)
Se

ru
m

10
5

M
SP

m
R

A
SS

F1
A

hy
po

m
LI

N
E-

1
73

.3
66

.7
N

A
N

A
N

A
N

A
N

A
N

A
po

or
 D

FS
 a

nd
 

O
S

Ta
ng

ki
jv

an
-

ic
h 

et
 a

l. 
(2

00
7)

Se
ru

m
85

M
SP

hy
po

m
LI

N
E-

1
70

.4
N

A
N

A
N

A
N

A
N

A
N

A
in

cr
ea

se
d 

H
C

C
 ri

sk
 

(O
R

 =
 1.

74
), 

po
or

 O
S

O
us

sa
la

h 
et

 a
l. 

(2
01

8)

Pl
as

m
a

51
M

SP
m

SE
PT

9
83

.0
N

A
N

A
N

A
N

A
94

.1
84

.4
N

A

Su
n 

et
 a

l. 
(2

01
3)

Se
ru

m
43

M
SP

m
TF

PI
2

46
.5

N
A

N
A

N
A

N
A

80
.8

80
N

A



1630 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

es
O

rig
in

H
C

C
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 
m

ut
at

io
n 

(%
)

tiD
N

A
 m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 

ct
D

N
A

/
tiD

N
A

 (%
)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

W
u 

et
 a

l. 
(2

01
7)

Pl
as

m
a

23
7

M
SP

m
TB

X
2

75
.5

N
A

N
A

N
A

N
A

75
.5

41
.2

In
cr

ea
se

d 
H

C
C

 ri
sk

 
(O

R
 =

 2.
39

)
Iiz

uk
a 

et
 a

l. 
(2

01
1)

Se
ru

m
10

8
M

SP
m

BA
SP

1
m

C
C

N
D

2
m

A
PC

m
C

FT
R

m
R

A
SS

F1
A

N
A

N
A

N
A

N
A

N
A

62
.0

64
.8

17
.6

56
.5

83
.3

78
.6

42
.9

78
.6

83
.9

58
.9

N
A

Zh
an

g 
et

 a
l. 

(2
01

3)
Se

ru
m

31
M

SP
m

D
B

X
2

m
TH

Y
1

N
A

N
A

N
A

N
A

N
A

88
.9

85
.2

87
.1

80
.7

N
A

Ji 
et

 a
l. 

(2
01

4)
Se

ru
m

12
1

M
SP

m
M

T1
M

m
M

T1
G

m
M

T1
M

/G

48
.8

70
.2

N
A

N
A

N
A

N
A

48
.8

70
.2

90
.9

93
.5

87
.1

83
.9

C
or

re
la

tio
n 

w
ith

 
tu

m
or

 si
ze

 
(r

 =
 0.

32
1;

 
p <

 0.
00

1)
H

an
 e

t a
l. 

(2
01

4)
Se

ru
m

16
0

M
SP

m
TG

R
5

m
TG

R
5 

an
d 

m
A

FP

48
.1

N
A

N
A

N
A

N
A

N
A

N
A

65
.0

N
A

85
.2

N
A

W
an

g 
et

 a
l. 

(2
00

6)
Se

ru
m

32
M

SP
G

ST
P1

50
88

.5
60

.9
10

0
65

.4
50

.0
62

.5
N

A

W
en

 e
t a

l. 
(2

01
5)

Pl
as

m
a

36
M

SP
m

RG
S1

0,
 

m
ST

8S
IA

6,
 

m
V

IM
, a

nd
 

m
RU

N
X

2

85
.6

N
A

N
A

N
A

N
A

94
.0

89
.0

N
A

ct
D

N
A

: c
irc

ul
at

in
g 

tu
m

or
 D

N
A

, d
dP

C
R

: d
ro

pl
et

 d
ig

ita
l p

ol
ym

er
as

e 
ch

ai
n 

re
ac

tio
n,

 D
FS

: d
is

ea
se

 fr
ee

 s
ur

vi
va

l, 
H

C
C

: h
ep

at
oc

el
lu

la
r c

ar
ci

no
m

a,
 H

R
: h

az
ar

d 
ra

tio
, L

N
A

: L
oc

ke
d 

N
uc

le
ic

 A
ci

d 
C

la
m

, M
SP

: m
et

hy
la

tio
n 

sp
ec

ifi
c 

PC
R

, n
: n

um
be

r o
f p

at
ie

nt
s, 

N
G

S:
 n

ex
t-g

en
er

at
io

n 
se

qu
en

ci
ng

, O
R

: o
dd

s 
ra

tio
, O

S:
 o

ve
ra

ll 
su

rv
iv

al
, r

: P
ea

rs
on

’s
 c

oe
ffi

ci
en

t o
f c

or
re

la
tio

n,
 R

FL
P:

 re
str

ic
tio

n 
fr

ag
m

en
t l

en
gt

h 
po

ly
m

or
ph

is
m

, R
FS

: r
ec

ur
re

nc
e 

fr
ee

 su
rv

iv
al

, s
eq

: s
eq

ue
nc

in
g,

 S
O

M
A

: s
ho

rt 
ol

ig
on

uc
le

ot
id

e 
m

as
s s

pe
ct

ro
m

et
ry

 a
na

ly
si

s, 
tiD

N
A

: t
is

su
e-

re
la

te
d 

D
N

A



1631Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645 

1 3

Ta
bl

e 
2 

 C
irc

ul
at

in
g 

Tu
m

or
 D

N
A

 in
 P

an
cr

ea
tic

 C
ar

ci
no

m
a

Re
fe

re
nc

e
O

rig
in

PC
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 m
ut

a-
tio

n 
(%

)
tiD

N
A

 
m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 c

tD
N

A
/

tiD
N

A
 (%

)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

R
iv

ie
re

 e
t a

l. 
(2

01
8)

Pl
as

m
a

25
N

G
S

K
R

A
S

M
Y

C
EG

FR

N
A

N
A

N
A

N
A

96 94 91

N
A

N
A

N
A

Jia
o 

et
 a

l. 
(2

00
7)

Pl
as

m
a

83
PC

R
 a

nd
 S

eq
M

SP
K

R
A

S
m

pp
EN

K
, 

m
p1

6

62
.7

N
A

N
A

N
A

N
A

N
A

N
A

N
A

Pa
te

l e
t a

l. 
(2

01
9)

B
lo

od
11

2
N

G
S

K
R

A
S

TP
53

43
.8

45
.8

90
.9

77
.3

N
A

N
A

52 61
N

A
N

A
ct

D
N

A
: O

S
(H

R
 =

 4.
35

; 
p =

 0.
00

1)
W

at
an

ab
e 

et
 a

l. 
(2

01
9)

Pl
as

m
a

39
dd

PC
R

K
R

A
S

30
.8

88
.1

N
A

N
A

N
A

N
A

N
A

O
S

(H
R

 =
 54

.5
; 

p <
 0.

00
1)

Ta
ka

i e
t a

l. 
(2

01
5)

Pl
as

m
a

25
9

dd
PC

R
K

R
A

S
32

N
A

N
A

N
A

N
A

N
A

N
A

N
A

Su
gi

m
or

i 
et

 a
l. 

(2
02

0)
Pl

as
m

a
45

dd
PC

R
K

R
A

S
51

.1
95

.7
N

A
N

A
N

A
N

A
N

A
W

or
se

 P
FS

G
ro

ot
 e

t a
l. 

(2
01

9)
Pr

eo
p 

pl
as

m
a

59
dd

PC
R

K
R

A
S

49
N

A
90

88
N

A
N

A
N

A
R

FS
 

(H
R

 =
 2.

67
; 

p =
 0.

01
1)

; 
O

S 
(H

R
 =

 2.
37

; 
p =

 0.
04

8)
Tj

en
sv

ol
l 

et
 a

l. 
(2

01
6)

Pl
as

m
a

14
PN

A
-c

la
m

p 
PC

R
K

R
A

S
Pr

e-
C

TX
71

.4
N

A
N

A
N

A
N

A
N

A
N

A
R

FS
 

(H
R

 =
 1.

29
; 

p =
 0.

01
4)

; 
O

S 
(H

R
 =

 1.
43

; 
p =

 0.
01

)
C

he
n 

et
 a

l. 
(2

01
7)

Pl
as

m
a

18
9

N
G

S
K

R
A

S
93

.7
N

A
N

A
N

A
N

A
N

A
N

A
TT

P (H
R

 =
 1.

45
; 

p =
 0.

00
2)

;
O

S 
(H

R
 =

 1.
45

; 
p =

 0.
00

1)
K

in
ug

as
a 

et
 a

l. 
(2

01
5)

Se
ru

m
66

dd
PC

R
, P

C
R-

PH
FA

K
R

A
S

62
.6

74
.7

76
.8

78
.9

77
.3

N
A

N
A

O
S 

(H
R

 =
 3.

24
; 

p =
 0.

00
1)

A
da

m
o 

et
 a

l. 
(2

01
7)

Pl
as

m
a

26
N

G
S

K
R

A
S

27
78

N
A

N
A

N
A

N
A

N
A

O
S 

(H
R

 =
 2.

89
; 

p =
 0.

01
8)

M
ai

re
 e

t a
l. 

(2
00

2)
Se

ru
m

47
PC

R
K

R
A

S
47

N
A

N
A

N
A

N
A

47
87

N
A



1632 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
O

rig
in

PC
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 m
ut

a-
tio

n 
(%

)
tiD

N
A

 
m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 c

tD
N

A
/

tiD
N

A
 (%

)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

D
ia

nx
u 

et
 a

l. 
(2

00
2)

Pl
as

m
a

41
PC

R
–R

FL
P

Se
q

K
R

A
S

70
.7

91
.7

75
.8

10
0.

0
77

.8
N

A
10

0
N

A

Pr
at

t e
t a

l. 
(2

01
9)

Pl
as

m
a

17
dd

PC
R

K
R

A
S

86
N

A
86

70
N

A
N

A
N

A
N

A

Ea
rl 

et
 a

l. 
(2

01
5)

Pl
as

m
a

31
dd

PC
R

K
R

A
S

25
.8

58
.3

42
.9

60
50

N
A

N
A

O
S 

(H
R

 =
 12

.2
; 

p <
 0.

00
1)

U
em

ur
a 

et
 a

l. 
(2

00
4)

Pl
as

m
a

28
M

is
m

at
ch

 
lig

at
io

n 
as

sa
y

K
R

A
S

32
.1

92
.9

34
.6

10
0.

0
39

.2
N

A
10

0
N

A

M
ar

ch
es

e 
et

 a
l. 

(2
00

6)
Pl

as
m

a
30

PC
R

 a
nd

 S
eq

K
R

A
S

0
70

N
A

N
A

N
A

N
A

N
A

N
A

Pa
rk

 e
t a

l. 
(2

01
8)

Pl
as

m
a

17
Ta

rg
et

ed
-

N
G

S 
an

d 
dd

PC
R

K
R

A
S

58
.8

76
.5

N
A

N
A

N
A

N
A

N
A

N
A

D
el

 R
e 

et
 a

l. 
(2

01
7)

Pl
as

m
a 

fo
llo

w
-u

p 
du

rin
g 

pa
lli

at
iv

e 
C

TX

27
dd

PC
R

K
R

A
S

70
.4

N
A

N
A

N
A

N
A

N
A

N
A

PF
S 

(2
.5

 v
s. 

7.
5 

m
on

th
s;

 
p =

 0.
03

);
O

S 
(6

.5
 v

s. 
11

.5
 m

on
th

s;
 

p =
 0.

00
9)

Pe
re

ts
 e

t a
l. 

(2
01

8)
Pl

as
m

a
17

N
G

S
K

R
A

S
29

.4
N

A
N

A
N

A
N

A
N

A
N

A
O

S 
(r

 =
 -0

.7
6;

 
p =

 0.
03

)
K

im
 e

t a
l. 

(2
01

8)
Pl

as
m

a
10

6
dd

PC
R

K
R

A
S

80
.5

96
.1

78
.4

33
.3

N
A

N
A

N
A

PF
S (H

R
 =

 2.
08

; 
p =

 0.
00

9)
O

S 
(H

R
 =

 1.
97

; 
p =

 0.
03

4)
Li

n 
et

 a
l. 

(2
01

8)
Pl

as
m

a
65

dd
PC

R
K

R
A

S
80

10
0

N
A

N
A

10
0

N
A

N
A

O
S 

(H
R

 =
 3.

1;
 

p <
 0.

00
1)

C
he

n 
et

 a
l. 

(2
01

0)
Pl

as
m

a
91

PC
R

K
R

A
S

33
N

A
N

A
N

A
N

A
N

A
N

A
ct

D
N

A
: O

S 
(H

R
 =

 7.
39

; 
p <

 0.
00

1)
C

oh
en

 e
t a

l. 
(2

01
7)

Pl
as

m
a

22
1

N
G

S
K

R
A

S
K

R
A

S 
an

d 
fo

ur
 p

ro
-

te
in

s

30 N
A

N
A

N
A

N
A

N
A

N
A

N
A

10
0

N
A

N
A

64
N

A
99

.5
N

A



1633Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645 

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
O

rig
in

PC
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 m
ut

a-
tio

n 
(%

)
tiD

N
A

 
m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 c

tD
N

A
/

tiD
N

A
 (%

)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

N
ak

an
o 

et
 a

l. 
(2

01
8)

Se
ru

m
45

PN
A

 c
la

m
p 

PC
R

K
R

A
S

24
.4

 (p
re

-o
p)

44
.4

 (p
os

t-o
p)

83
.3

N
A

N
A

N
A

N
A

N
A

R
FS

 
(H

R
 =

 2.
92

; 
p =

 0.
02

7)
K

ru
ge

r e
t a

l. 
(2

01
8)

Pl
as

m
a

54
B

EA
M

in
g

K
R

A
S

67
58

75
10

0
79

83
10

0
Ea

rly
 C

TX
 

re
sp

on
se

 
pr

ed
ic

tio
n

H
ad

an
o 

et
 a

l. 
(2

01
6)

Pr
eo

p 
pl

as
m

a
10

5
dd

PC
R

K
R

A
S

31
82

N
A

N
A

10
0

N
A

N
A

O
S 

(H
R

 =
 3.

2;
 

p <
 0.

00
1)

D
ab

rit
z 

et
 a

l. 
(2

00
9)

Pl
as

m
a

56
PN

A
 c

la
m

p 
PC

R
K

R
A

S
36

10
0

N
A

N
A

N
A

N
A

N
A

N
A

W
u 

et
 a

l. 
(2

01
4)

Pl
as

m
a

36
CO

LD
-P

C
R

Sa
ng

er
 se

c
K

R
A

S
72

.2
N

A
80

.6
87

.5
N

A
N

A
N

A
N

A

Se
m

ra
d 

et
 a

l. 
(2

01
5)

Pl
as

m
a

27
PC

R
K

R
A

S
37

78
N

A
N

A
N

A
N

A
N

A
D

FS
 (1

.8
 v

s. 
4.

6 
m

on
th

s;
 

p =
 0.

01
4)

O
S 

(3
.0

 v
s. 

10
.5

 m
on

th
s;

 
p =

 0.
00

3)
Sa

us
en

 e
t a

l. 
(2

01
5)

Pl
as

m
a

51
dd

PC
R

K
R

A
S

43
88

N
A

99
.9

N
A

N
A

N
A

N
A

A
ko

 e
t a

l. 
(2

01
7)

Se
ru

m
, 

pl
as

m
a

40
dd

PC
R

K
R

A
S

48
93

N
A

N
A

N
A

N
A

N
A

Po
or

 p
ro

gn
os

is

Va
n 

La
et

he
m

 
et

 a
l. 

(2
01

7)
Pl

as
m

a
60

B
EA

M
in

g
K

R
A

S
65

N
A

N
A

N
A

N
A

N
A

N
A

PF
S (H

R
 =

 0.
32

; 
p =

 0.
00

2)
O

S 
(H

R
 =

 0.
27

; 
p =

 0.
00

1)
W

ei
 e

t a
l. 

(2
01

9)
Pl

as
m

a
38

N
G

S
K

R
A

S
T5

3
84 60

N
A

N
A

N
A

N
A

N
A

N
A

C
or

re
la

tio
n 

w
ith

 tu
m

or
 

bu
rd

en
 p

os
t 

C
TX

Pi
et

ra
sz

 e
t a

l. 
(2

01
7)

Pl
as

m
a

13
5

N
G

S 
an

d 
dd

PC
R

K
R

A
S

TP
53

SM
A

D
4

41
.3

22
.1

7.
7

N
A

N
A

N
A

N
A

N
A

N
A

ct
D

N
A

: O
S 

(H
R

 =
 1.

99
; 

p =
 0.

01
6)



1634 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
O

rig
in

PC
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 m
ut

a-
tio

n 
(%

)
tiD

N
A

 
m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 c

tD
N

A
/

tiD
N

A
 (%

)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

Zi
ll 

et
 a

l. 
(2

01
5)

Pl
as

m
a

17
N

G
S

K
R

A
S

58
.8

64
.7

10
0

10
0

10
0

N
A

N
A

N
A

TP
53

52
.9

58
.8

90
10

0
94

A
PC

11
.8

11
.8

10
0

10
0

10
0

SM
A

D
4

5.
9

11
.8

10
0

10
0

94

FB
X

W
7

11
.8

5.
9

50
10

0
10

0

K
R

A
S,

 
TP

53
, A

PC
, 

SM
A

D
, a

nd
 

FB
X

W
7

82
.3

88
.2

92
.3

10
0

97
.7

Pi
sh

va
ia

n 
et

 a
l. 

(2
01

7)
B

lo
od

23
N

G
S

K
R

A
S

T5
3

SM
A

D
4

C
D

K
N

2A

29 N
A

0 0

87 N
A

26
.1

47
.8

N
A

N
A

39 26
.1

0 0

N
A

N
A

N
A

Y
u 

et
 a

l. 
(2

01
7)

pa
nc

 ju
ic

e
11

5
N

G
S

TP
53

 a
nd

 
SM

A
D

4
64

.7
N

A
N

A
N

A
N

A
64

.7
10

0
N

A

K
an

da
 e

t a
l. 

(2
01

3)
pa

nc
 ju

ic
e

43
PC

R
 a

nd
 

Sa
ng

er
 se

c
TP

53
67

.4
N

A
N

A
N

A
N

A
67

.4
10

0
N

A

C
he

ng
 e

t a
l. 

(2
01

7)
Pl

as
m

a
18

8
dd

PC
R

N
G

S
B

RC
A

2
K

D
R

EG
FR

ER
B

B
2

K
R

A
S

11
.7

13
.8

13
.3

13
.3

72
.3

N
A

N
A

N
A

N
A

N
A

N
A

ER
B

B
2:

 O
S 

(H
R

 =
 1.

61
; 

p =
 0.

03
5)

K
R

A
S:

 O
S 

(H
R

 =
 1.

45
; 

p =
 0.

01
9)

B
er

ge
r e

t a
l. 

(2
01

8)
Pl

as
m

a
20

N
G

S 
an

d 
dd

PC
R

K
R

A
S 

an
d 

TP
53

80
81

.8
N

A
N

A
N

A
80

N
A

PF
S (r
 =

 – 
0.

86
; 

p =
 0.

01
)

H
en

rik
se

n 
et

 a
l. 

(2
01

6)
Pl

as
m

a
95

M
SP

10
 g

en
es

N
A

N
A

N
A

N
A

N
A

76
83

U
IC

C
 st

ag
es

 
I-

II
 v

s. 
II

I–
IV

 
(A

U
C

 =
 0.

82
)

Li
gg

et
t e

t a
l. 

(2
01

0)
Pl

as
m

a
30

m
ic

ro
ar

ra
y-

 
m

ed
ia

te
d 

m
et

hy
la

tio
n

17
 m

ar
ke

r 
pa

ne
l

N
A

N
A

N
A

N
A

N
A

91
.2

90
.8

N
A

Pa
rk

 e
t a

l. 
(2

01
2)

Pl
as

m
a

10
6

M
SP

m
N

PT
X

2
80

N
A

N
A

N
A

N
A

80
76

N
A



1635Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645 

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
O

rig
in

PC
 (n

)
Te

ch
ni

qu
e

C
irc

ul
at

in
g 

m
ar

ke
rs

ct
D

N
A

 m
ut

a-
tio

n 
(%

)
tiD

N
A

 
m

ut
at

io
n 

(%
)

M
ut

at
io

n 
in

 li
qu

id
 a

nd
 tu

m
or

 ti
ss

ue
C

ar
ci

no
m

a 
vs

. h
ea

lth
y

B
io

m
ar

ke
r

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

C
on

co
rd

-
an

ce
 c

tD
N

A
/

tiD
N

A
 (%

)

Se
ns

iti
vi

ty
 

(%
)

Sp
ec

ifi
ci

ty
 

(%
)

M
el

ni
ko

v 
et

 a
l. 

(2
00

9)
Pl

as
m

a
30

m
ul

tip
le

xe
d 

ar
ra

y-
 

m
et

hy
la

tio
n

m
C

C
N

D
2,

 
m

PL
A

U
m

SO
C

S1
, 

m
V

H
L,

 
m

TH
B

S1

N
A

N
A

N
A

N
A

N
A

76
59

N
A

M
el

so
n 

et
 a

l. 
(2

01
4)

Pl
as

m
a

30
M

SP
m

V
H

L,
 

m
M

Y
F3

, 
m

TM
S,

 
m

G
PC

3,
 

m
SR

B
C

N
A

N
A

N
A

N
A

N
A

81
67

N
A

Ei
ss

a 
et

 a
l. 

(2
01

9)
Pl

as
m

a
39

M
SP

m
B

N
C

1
65

.1
N

A
N

A
N

A
N

A
64

.1
93

.7
N

A
m

A
D

A
M

TS
1

87
.2

87
.2

95
.8

m
B

N
C

1 
an

d 
m

A
D

-
A

M
TS

1

97
.4

97
.4

91
.6

Y
i e

t a
l. 

(2
01

3)
Se

ru
m

42
M

O
B

 a
nd

 
M

SP
m

B
N

C
1

92
N

A
N

A
N

A
N

A
79

89
N

A
m

A
D

A
M

TS
1

68
48

92
m

B
N

C
1 

an
d 

m
A

D
-

A
M

TS
1

N
A

81
85

A
U

C
: a

re
a 

un
de

r t
he

 c
ur

ve
, B

EA
M

in
g:

 b
ea

ds
, e

m
ul

si
on

, a
m

pl
ifi

ca
tio

n,
 m

ag
ne

tic
s 

PC
R

, C
O

LD
-P

C
R

: c
o-

am
pl

ifi
ca

tio
n-

at
-lo

w
er

 d
en

at
ur

at
io

n-
te

m
pe

ra
tu

re
 P

C
R

, c
tD

N
A

: c
irc

ul
at

in
g 

tu
m

or
 D

N
A

, 
C

TX
: c

he
m

ot
he

ra
py

, d
dP

C
R

: d
ro

pl
et

 d
ig

ita
l p

ol
ym

er
as

e 
ch

ai
n 

re
ac

tio
n,

 D
FS

: d
is

ea
se

 fr
ee

 su
rv

iv
al

, L
N

A
: L

oc
ke

d 
N

uc
le

ic
 A

ci
d,

 M
SP

: m
et

hy
la

tio
n 

sp
ec

ifi
c 

PC
R

, M
O

B
: m

et
hy

la
tio

n 
on

 b
ea

ds
, n

: 
nu

m
be

r o
f p

at
ie

nt
s, 

N
G

S:
 n

ex
t-g

en
er

at
io

n 
se

qu
en

ci
ng

, O
S:

 o
ve

ra
ll 

su
rv

iv
al

, P
C

: p
an

cr
ea

tic
 c

an
ce

r, 
PN

A
: P

ep
tid

e 
N

uc
le

ic
 A

ci
d,

 p
an

c:
 p

an
cr

ea
tic

, P
FS

: p
ro

gr
es

si
on

 fr
ee

 s
ur

vi
va

l, 
PH

FA
: p

re
fe

r-
en

tia
l h

om
od

up
le

x 
fo

rm
at

io
n 

as
sa

y,
 p

re
op

: p
re

op
er

at
iv

e,
 r:

 P
ea

rs
on

’s
 c

oe
ffi

ci
en

t o
f c

or
re

la
tio

n,
 R

FL
P:

 re
str

ic
tio

n 
fr

ag
m

en
t l

en
gt

h 
po

ly
m

or
ph

is
m

, R
FS

: r
ec

ur
re

nc
e 

fr
ee

 su
rv

iv
al

, s
eq

: s
eq

ue
nc

in
g,

 
SO

M
A

: s
ho

rt 
ol

ig
on

uc
le

ot
id

e 
m

as
s s

pe
ct

ro
m

et
ry

 a
na

ly
si

s;
 T

TP
: t

im
e 

to
 p

ro
gr

es
si

on
, t

iD
N

A
: t

is
su

e-
re

la
te

d 
D

N
A

, U
IC

C
: U

ni
on

 fo
r I

nt
er

na
tio

na
l C

an
ce

r C
on

tro
l



1636 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

oncology. With technological advances broadly categorized 
into PCR-based and genomic sequencing-based techniques, 
sensitivity and specificity of biomolecular techniques for 
ctDNA detection have been highly improved. Currently, 
high-throughput next-generation sequencing (NGS) and 
digital droplet PCR (ddPCR) are the most promising meth-
ods for the detection of mutations in liquid biopsies. In 
general, plasma samples are used in preference over serum 
because of lower concentrations of wild-type DNA (Jung 
et al. 2003). NGS techniques allow the simultaneous assess-
ment and detection of multiple genetic aberrations and 
copy number changes, including targeted techniques such 
as enhanced tagged amplicon deep sequencing, or whole-
exome sequencing. The aim of NGS is to generate extensive 
information about the mutation landscape, then to screen 
the genome and discover new genomic aberrations, e.g. 
those that confer resistance to a specific targeted therapy 
(Murtaza et al. 2013). The whole-genome and whole-exome 
sequencing could provide more comprehensive informa-
tion regarding the mutant status of ctDNA. However, the 
targeted region deep sequencing, which focuses on a fewer 
gene loci with ultra-deep sequencing, has gained popularity, 
because the sequencing region can be customized accord-
ing to cancer types, sequencing purpose, costs, and turna-
round time (Leary et al. 2010; Martinez et al. 2013). Among 
PCR-based techniques, digital PCR including droplet PCR 
and BEAMing (beads, emulsion, amplification, magnetics) 
PCR appears as the most promising approach for detection 
of highly recurrent hotspot mutations at frequencies as low 
as 0.01%. Compared to quantitative real-time (qRT) PCR, 
samples are processed with a water–oil emulsion to allow for 
individual droplets to be assessed as a discrete PCR sample 
and does not rely on external calibrant. DNA templates are 
distributed into thousands of droplets each containing only 
one DNA fragment. Digital PCR has a higher tolerance for 
enzyme-inhibiting substances thereby improving sensitiv-
ity and specificity of mutant DNA detection (Hindson et al. 
2011; Zhang et al. 2015). In combination with circulating 
nucleic acids, ddPCR has gained wide applicability in liquid 
biopsy diagnostic of cancer, especially in the assessment 
of methylation status to identify epigenetic dysregulation 
during carcinogenesis and measurement of changes in gene 
expression to early diagnosis of cancer, the absolute quan-
tification of copy number variations to predict disease pro-
gression, or the detection of rare mutations within ctDNA 
to guide targeted therapy (Huggett et al. 2015).

Genomic alterations of ctDNA in HCC

NGS profiling of surgically resected HCC revealed a 
highly heterogeneous cancer caused by the accumulation 
of genomic and epigenomic alterations (Ozen et al. 2013). 

Recently, integrative genomic characterization by whole 
exome sequencing and analyses of DNA copy number, 
DNA methylation, RNA, microRNA, and proteomic expres-
sion defined two major molecular subtypes of HCC. One 
subtype is defined as a proliferation class associated with 
higher HBV prevalence and poor clinical outcome character-
ized by activation of proliferative signaling pathways such 
as Phosphatidylinositide-3-kinase/AKT/mammalian target 
of rapamycin and RAS- Mitogen-Activated Protein Kinase 
pathways, Wingless-type (WNT)/Transforming Growth 
Factor (TGF) beta signaling, amplification of mitogenic 
Fibroblast Growth Factor family members and of the cell 
cycle regulatory subunit Cyclin D1 (CCND1) and inacti-
vation of the tumor suppressor TP53. The second subtype 
contains a heterogenous non-proliferation class associated 
with higher HCV prevalence or alcohol abuse and a bet-
ter clinical outcome characterized by WNT–beta–catenin 
pathway activation via Catenin Beta 1 (CTNNB1) muta-
tion, Telomerase Reverse Transcriptase (TERT) promo-
tor mutation and silencing of the tumor suppressor Cyclin 
Dependent Kinase Inhibitor 2A (CDKN2A) by mutation and 
DNA methylation (Comprehensive and Integrative Genomic 
Characterization of Hepatocellular Carcinoma 2017). This 
comprehensive and integrative characterization of molecular 
profiling in HCC tissues followed by the identification and 
quantification of corresponding ctDNA in the plasma may 
provide powerful data for targeted therapies and monitoring 
of therapy response.

Several genomic and epigenomic alterations within 
ctDNA as molecular targets in the context of aberrant sign-
aling pathways were detected by NGS, ddPCR and methyl-
ation-specific PCR (MSP) in HCC patients (Table 1). TERT 
promotor mutations were found to be the most common point 
mutations in several carcinoma entities with reactivation of 
telomerase enabling limitless cell proliferation driven by 
oncogenes (Bell et al. 2016). In HCC, TERT promotor muta-
tions were found in dysplastic nodules and early stages with 
a reported frequency of 59–90% correlating with poor sur-
vival (Nault and Villanueva 2015). DdPCR by Huang et al. 
and NGS by Liao et al. of TERT mutation (c.1-124C > T) in 
plasma ctDNA of HCC patients revealed a frequency of 23% 
and 5% with a high specificity of 85% and 95%, respectively 
(Huang et al. 2016; Liao et al. 2016). Aberrant amplification 
of TERT was reported to be significantly associated with 
CTNNB1 mutations in HCC, indicating that the interaction 
between upregulation of TERT mutations and dysregulation 
of the WNT–beta–catenin pathway could promote hepato-
cellular carcinogenesis (Nault et al. 2013). Gain of function 
mutations in the CTNNB1 gene encoding beta catenin allow 
the accumulation of beta catenin within the cell nucleus 
through WNT pathway und promote tumor progression in 
about 30% of cases in HCC. CtDNA analysis on CTNNB1 
mutations (c.121A > G, c.122C > T, c.133T > C, c134C > T) 
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resulted in a high specific frequency of about 10% in two 
small HCC collectives screened by ddPCR and NGS (Huang 
et al. 2016; Liao et al. 2016). Another well known driver 
gene of HCC is TP53 with a high mutation frequency of 
more than 30%. Mainly missense mutations in the DNA-
binding domain of TP53 are generally thought to abrogate 
the tumor suppressor function of p53 as the guardian of the 
genome. Loss of p53 function with consecutive dysregula-
tion of apoptosis, cell cycle arrest, DNA repair and meta-
bolic regulation is a prerequisite for tumor initiation and pro-
gression in a multitude of human cancers. However, mutant 
p53 not only lose tumor suppressive functions of wild-type 
p53 but also gain new oncogenic properties promoting tumor 
cell proliferation, angiogenesis, and metastasis. The mecha-
nism for the accumulation of mutant p53 and its mutational 
gain of function in tumors is not yet well understood. The 
frequency of mutant TP53 in blood and urine ctDNA of 
HCC studies ranged between 5 and 60% (An et al. 2019; He 
et al. 2019; Huang et al. 2016; Ikeda et al. 2018a, b; Kaseb 
et al. 2019; Kimbi et al. 2005; Liao et al. 2016; Lin et al. 
2011; Marchio et al. 2018; Riviere et al. 2018; Szyman-
ska et al. 2004; Xiong et al. 2019). Liao et al. could reveal 
that the median recurrence-free survival (RFS) of patients 
with the presence of TERT, CTNNB1 and TP53 mutations 
detected in ctDNA post surgical treatment was significantly 
decreased with 3 versus 12 months (Liao et al. 2016). Simi-
larly, postoperative detection of ctDNA related mutations by 
An et al. with TP53 as the most common mutant gene cor-
related significantly with worse disease-free survival (DFS) 
of 6.7 versus 17.5 months (An et al. 2019).

Methylation alterations of ctDNA in HCC

Besides genetic alterations with change of DNA sequence, 
epigenetic silencing of tumor suppressor genes by promo-
tor hypermethylation has been proven to be present in pre-
cursor lesions of HCC. Aberrant DNA hypermethylation 
consists of the addition of a methyl residue on cytosines 
preceding guanosines leading to a condensed chromatin 
structure without transcriptional activity. High concordance 
of DNA methylation in plasma and tumor DNA could be 
shown for a number of tumor suppressor genes in HCC (Iyer 
et al. 2010). Aberrant methylation of the cyclin-dependent 
kinase inhibitor genes p15 (CDKN2B or p15INK4b) and 
p16 (CDKN2A or p16INK4a) on chromosome 9p21 in the 
peripheral circulation of HCC patients using MSP is one of 
first detected epigenetic changes associated with hepatocel-
lular tumorigenesis. Wong et al. detected concurrent p15 
and p16 methylation in 74% of ctDNA of 23 blood samples 
from 92% of HCC patients with tumor p15/p16 methylation 
(Wong et al. 1999, 2000). High incidence of p16INK4a pro-
moter hypermethylation in ctDNA with significant decrease 

in postoperative blood samples was shown to be a useful 
marker in the detection and monitoring of HCC (Wong et al. 
2003). Correspondingly, Huang et al. demonstrated higher 
levels of methylated p16INK4a in circulating cfDNA of 66 
HCC serum samples versus 43 benign chronic liver diseases 
(Huang et al. 2014). Further common tumor suppressing 
and cell cycle regulation-related genes with promoter hyper-
methylation are the adenomatous polyposis coli (APC) on 
chromosome 5q21 and the Ras association domain family 
protein 1A (RASSF1A) genes on chromosome 3p21.3 with 
high frequency of promoter hypermethylation in tumor and 
blood samples of HCC patients (Hu et al. 2010; Huang et al. 
2011; Yeo et al. 2005). Mohamed et al. as well as Man-
sour et al. could demonstrate that serum levels of methyl-
ated RASSF1A could well discriminate HCC patients from 
healthy volunteers and from chronic HCV infection with an 
incidence of about 90% in HCC serum samples (Mansour 
et al. 2017; Mohamed et al. 2012). Similar frequencies of 
methylated RASSF1A in serum of HCC patients at diag-
nosis or 1 year after tumor resection versus low concentra-
tions in HBV carriers correlated with poorer disease-free 
survival (DFS) in a study of Chan et al. (Chan et al. 2008). 
Moreover, elevated plasma methylation levels of APC or 
RASSF1A correlated with poorer overall survival reaching 
significance for RASSF1A in multivariate analysis (Huang 
et al. 2011). Coevaluation of RASSF1A and Long Inter-
spersed Nucleotide Element 1 (LINE-1) as one of the major 
repetitive DNA sequence of the human genome and most 
active mediator of retrotransposition revealed LINE-1 hypo-
methylation in 66.7% and RASSF1A promoter hypermeth-
ylation in 73.3% only in HCC serum DNA samples corre-
lating with early recurrence and poor survival after curative 
resection (Liu et al. 2017). Tangkijvanich et al. described 
significantly increased serum LINE-1 hypomethylation in 
HCC as independent prognostic factor of overall survival 
(Tangkijvanich et al. 2007). Combined detection of ctDNA 
methylation markers was performed by several studies to 
improve the efficiency in early HCC diagnostic. Plasma 
methylation analysis of the four genes panel with APC, glu-
tathione S-transferase P 1 (GSTP1), RASSF1A, and secreted 
frizzled-related protein 1 (SFRP1) resulted in an increased 
accuracy of 93% to differentiate between HCC and healthy 
controls (Huang et al. 2011). Xu et al. constructed a diag-
nostic prediction model using a cfDNA methylation marker 
panel that predicted HCC survival and could effectively dis-
criminate patients with HCC from individuals with HBV/
HCV infection, fatty liver disease as well as healthy controls 
superior to AFP (Xu et al. 2017). Although a multitude of 
aberrant methylated genes could be identified as prognostic 
target in HCC, there is no recognized biomarker confirmed 
in multiple centers (Han et al. 2014; Iizuka et al. 2011; Ji 
et al. 2014; Oussalah et al. 2018; Sun et al. 2013; Wang et al. 
2006; Wen et al. 2015; Wu et al. 2017; Zhang et al. 2013).



1638 Journal of Cancer Research and Clinical Oncology (2020) 146:1625–1645

1 3

Genomic alterations of ctDNA in PC

In the last decade, comprehensive genomic analysis 
allowed important advances in the understanding of the 
molecular pathogenesis of PC with reclassification in dif-
ferent specific subtypes (Bailey et al. 2016; Biankin et al. 
2012; Collisson et al. 2011; Jones et al. 2008; Moffitt et al. 
2015; Waddell et al. 2015; Witkiewicz et al. 2015). Several 
studies using different techniques could reveal that repro-
ducible molecular subgroups with consistent alterations in 
genes and signaling pathways are emerging in PC. Evalu-
ating 456 specimens of resected PC by a combination of 
whole-genome sequencing and deep-exome sequencing, 
Bailey et al. identified genetic mutations particularly of 
KRAS in 92%, cell cycle checkpoint mutations as TP53 
and CDKN2A in 78%, aberrations in TGF beta signal-
ing as SMAD4, TGFBR1, and Activin A receptor 1B in 
47%, mutations leading to histone modification in 24%, 
mutations in the Breast Cancer Gene (BRCA) pathway 
in 17%, and mutations in the ATP-dependent chromatin 
remodeling complex as AT-rich interaction domain 1A 
(ARID1A) in 14% (Bailey et al. 2016). However, there is 
still a lack of consensus in the clinical applicability of cur-
rent PC subtyping approaches. Recently, plasma cfDNA 
profiling in 38 patients with advanced PC receiving first-
line FOLFIRINOX chemotherapy could demonstrate 
that 65.8% of patients had at least one common driver 
gene alteration in KRAS, TP53, SMAD4, or CDKN2A 
in high concordance with corresponding tumor tissue 
(Table 2) (Wei et al. 2019). Interestingly, the dynamics 
of total cfDNA concentration correlated positively with 
tumor burden following chemotherapy and might be a 
promising tool for early response prediction and therapy 
surveillance in patients with advanced PC. Among these 
key genes, KRAS is the best characterized tumor-related 
gene in PC with the highest frequency of KRAS point 
mutations located in codon 12 and with appearance even 
at early stages of PC carcinogenesis (Almoguera et al. 
1988; Rhim et al. 2014; Uemura et al. 2003). Therefore, 
KRAS mutant ctDNA represents a promising biomarker 
and therapeutic target of PC. Using ddPCR and targeted 
NGS, different KRAS mutations were detected in up to 
80% of PC serum and plasma samples and were associ-
ated with decreased survival (Adamo et al. 2017; Ako 
et al. 2017; Chen et al. 2010; Cohen et al. 2017; Dabritz 
et al. 2009; Del Re et al. 2017; Dianxu et al. 2002; Earl 
et al. 2015; Hadano et al. 2016; Jiao et al. 2007; Kim et al. 
2018; Kinugasa et al. 2015; Kruger et al. 2018; Lin et al. 
2018; Maire et al. 2002; Marchese et al. 2006; Nakano 
et al. 2018; Park et al. 2018; Patel et al. 2019; Perets et al. 
2018; Pratt et al. 2019; Riviere et al. 2018; Sausen et al. 
2015; Semrad et al. 2015; Sugimori et al. 2020; Takai et al. 

2015; Tjensvoll et al. 2016; Uemura et al. 2004; Van Lae-
them et al. 2017; Watanabe et al. 2019; Wu et al. 2014). 
Chen et al. published a KRAS mutant ctDNA detection 
rate of 93.7% which correlates with time to progression 
and overall survival of 189 patients with unresectable PC 
(Chen et al. 2017). In metastatic PC absence of KRAS 
mutant ctDNA was significantly associated with survival 
benefit of 37.5 versus 8 months (p < 0.004) (Perets et al. 
2018). Correspondingly, PC patients with KRAS mutant 
ctDNA were more likely to relapse after curative surgery 
than those without KRAS mutant ctDNA with desease-
free survival of 6.1 versus 16.1 months and overall sur-
vival of 13.6 versus 27.6 months (p < 0.001) (Groot et al. 
2019; Hadano et  al. 2016; Sausen et  al. 2015). Serial 
plasma testing of KRAS mutant ctDNA in advanced PC 
patients receiving chemotherapy allowed the monitoring 
of rapid changes of KRAS mutant ctDNA levels supe-
rior to CA19-9 and CEA kinetics (Kruger et al. 2018). 
Targeting KRAS pathway is a promising effort to make 
therapeutic progress in PC (Krantz and O’Reilly 2018). 
Although mutant KRAS is often identified in plasma as a 
ctDNA benchmark for PC, advances in sequencing of the 
whole PC genomic landscape have expanded the panel of 
key mutations (Kanda et al. 2013; Pietrasz et al. 2017; 
Pishvaian et al. 2017; Yu et al. 2017; Zill et al. 2015). 
CtDNA whole-exome sequencing of 60 hotspot genes in 
metastatic PC identified KRAS, BRCA2, KDR, EGFR, 
and ERBB2 as candidate genetic mutations. DdPCR could 
validate ctDNA mutations at ERBB2 exon17 and KRAS 
G12V that were significantly correlated with worse overall 
survival (Cheng et al. 2017). Berger et al. performed NGS 
and ddPCR to dynamically monitor the most frequently 
ctDNA mutated genes in PC. TP53 and KRAS mutation 
levels were significantly decreased during treatment, and 
on the other hand significantly increased during tumor pro-
gression correlating with progression-free survival (Berger 
et al. 2018). However, current biomolecular technologies 
confirm the genetic heterogeneity of PC with a large num-
ber of low-frequently mutated loci and a large fraction of 
patients who does not harbor mutations in KRAS or TP53 
(Martinez et al. 2013).

Methylation alterations of ctDNA in PC

Methylation analyses of ctDNA that reveal epigenetic altera-
tions with more or less diagnostic and prognostic impact 
reflect the remarkable heterogeneity in PC patients. CfDNA 
promotor hypermethylation in plasma or serum could be 
detected in all stages of PC (Henriksen et al. 2017b). Hen-
riksen et al. developed a survival prediction model based on 
plasma-derived cfDNA hypermethylation of a large gene 
panel that enables the stratification of patients into risk 
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groups (Henriksen et al. 2017a). Further methylation analy-
ses of ctDNA were able to differentiate PC from chronic 
pancreatitis and healthy controls (Henriksen et al. 2016; Lig-
gett et al. 2010; Melnikov et al. 2009; Melson et al. 2014; 
Park et al. 2012). Confirming study results of Yi et al., 
Eissa et al. could show that a two-gene promotor methyla-
tion panel of Zinc finger protein basonuclin-1 (BNC1) and 
A disintegrin and metalloproteinase with thrombospondin 
motifs 1 (ADAMTS1) increased sensitivity to 97.4% and 
specificity to 91.6% in plasma cfDNA of early PC stages 
(Eissa et al. 2019; Yi et al. 2013). So far, in relatively, few 
PC patients no single ctDNA promotor hypermethylation 
with adequate sensitivity and specificity has been found. 
Furthermore, serial ctDNA studies following the methyla-
tion profile of PC patients in accordance with treatment and 
tumor recurrence are lacking.

Challenges in clinical utility of circulating 
DNA

CtDNA has gained considerable attention as novel liquid 
biopsy marker for cancer detection in asymptomatic individ-
uals and of residual disease. Indeed, ctDNA has huge clini-
cal potential for prognostication and response monitoring 
of patients with HCC and PC characterized by high tumor 
heterogeneity and dismal prognosis. However, although 
literature regarding ctDNA assays and molecular profiling 
is rapidly growing, its translation into clinical applicabil-
ity is highly complex. Limited data are available regard-
ing the blood draw procedure and pre-analytical variables 
that increase degradation of cfDNA or contamination by 
cellular genomic DNA derived from leukocyte lysis (Lee 
et al. 2001). Indeed, varying cfDNA purification methods 
and various protocol modifications may affect cfDNA yield 
and purity. There is consensus that cfDNA analysis requires 
special processing and handling by using cell-stabilization 
tubes and avoiding repeated freeze–thaw cycles. Further-
more, patient-related factors as medical treatment, smoking, 
exercise, age-related clonal hematopoiesis, inflammation or 
cardio-pulmonary disorders may contribute to the release 
of cfDNA. Interestingly, several studies could demonstrate 
that false-positive plasma genotyping is due to clonal hemat-
opoiesis with non-malignant mutations harbored by hemat-
opoietic cells with increasing frequency in 10% of patients 
over the age of 65 years, but only in 1% of patients under the 
age of 50 years (Hu et al. 2018; Jaiswal et al. 2014). The pro-
portion of ctDNA as a fraction of cfDNA varies substantially 
between different patients, and different subclonal variants 
might be identified. Therefore, allele fractions of variants in 
ctDNA need to be interpreted with great caution.

In the last decade, numerous platforms for genotyp-
ing of cfDNA have been developed. However, the test 

characteristics of each platform as ddPCR and NGS vary and 
were validated in different patient populations with differ-
ent lower limits of detection. Therefore, direct comparison 
of these platforms with reported high diagnostic specificity, 
but modest sensitivity is challenging and requires rigorous 
cross-assay comparisons. The low diagnostic sensitivity 
of ctDNA tests in carcinomas could be a major reason of 
discordant tissue and ctDNA genotyping results. Although 
clinical utility of ctDNA assays is mainly based on retro-
spective analyses, first FDA-approved application in 2018 
for cfDNA assay in routine clinical practice could demon-
strate high concordance between plasma and tumor tissue 
genotyping for early detection of specific EGFR mutation 
(T790M) and therapy stratification in advanced non-small 
cell lung cancer patients (Zhang et al. 2018). The concept of 
plasma genotyping is highly promising, although its applica-
tion in the clinical routine to identify and treat patients with 
HCC or PC requires ongoing evaluation.

Conclusion

Overall, ctDNA mapping of somatic driver mutations and 
specific epigenetic alterations has great potential in early 
detection and dynamic monitoring of hepatic or pancreatic 
carcinomas to achieve a significant decrease of mortality. 
However, low sensitivity of current ctDNA assays rest a 
major challenge.

So far, ctDNA analysis in PC and HCC could reveal high 
frequency of common key mutations as TP53 and CDKN2A. 
CTNNB1 and TERT mutations and aberrant methylation of 
RASSF1A and CDKN2A were detected in ctDNA of HCC 
patients, whereas high frequency of KRAS mutations was 
characteristic for PC. Prospective trial data based on sufficient 
sample size and defined entry criteria regarding the blood 
draw procedure and pre-analytical variables as well as stand-
ardization of experimental techniques that demonstrate the 
clinical utility of ctDNA assays in PC and HCC are required.
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