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We show, by measuring the level of the metabolite C4
in the blood from patients with primary sclerosing
cholangitis (PSC), that low production of bile acids in
the liver predicts a more rapid progression to severe
disease. Many people with PSC appear to have fully
suppressed bile acid production, and both established
and new drugs that aim to reduce bile acid production
may therefore be futile for them. We propose C4 as a
test to find those likely to respond to these treatments.
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Background & Aims: Farnesoid X receptor (FXR) agonists and fibroblast growth factor 19 (FGF19) analogues suppress bile
acid synthesis and are being investigated for their potential therapeutic efficacy in cholestatic liver diseases. We investigated
whether bile acid synthesis associated with outcomes in 2 independent populations of people with primary sclerosing
cholangitis (PSC) not receiving such therapy.
Methods: Concentrations of individual bile acids and 7a-hydroxy-4-cholesten-3-one (C4) were measured in blood samples
from 330 patients with PSC attending tertiary care hospitals in the discovery and validation cohorts and from 100 healthy
donors. We used a predefined multivariable Cox proportional hazards model to evaluate the prognostic value of C4 to predict
liver transplantation-free survival and evaluated its performance in the validation cohort.
Results: The bile acid synthesis marker C4 was negatively associated with total bile acids. Patients with fully suppressed bile
acid synthesis had strongly elevated total bile acids and short liver transplantation-free survival. In multivariable models, a
50% reduction in C4 corresponded to increased hazards for liver transplantation or death in both the discovery (adjusted
hazard ratio [HR] = 1.24, 95% CI 1.06–1.43) and validation (adjusted HR = 1.23, 95% CI 1.03–1.47) cohorts. Adding C4 to
established risk scores added value to predict future events, and predicted survival probabilities were well calibrated
externally. There was no discernible impact of ursodeoxycholic acid treatment on bile acid synthesis.
Conclusions: Bile acid accumulation-associated suppression of bile acid synthesis was apparent in patients with advanced
PSC and associated with reduced transplantation-free survival. In a subset of the patients, bile acid synthesis was likely
suppressed beyond a tipping point at which any further pharmacological suppression may be futile. Implications for patient
stratification and inclusion criteria for clinical trials in PSC warrant further investigation.
Lay summary: We show, by measuring the level of the metabolite C4 in the blood from patients with primary sclerosing
cholangitis (PSC), that low production of bile acids in the liver predicts a more rapid progression to severe disease. Many
people with PSC appear to have fully suppressed bile acid production, and both established and new drugs that aim to reduce
bile acid production may therefore be futile for them. We propose C4 as a test to find those likely to respond to these
treatments.
© 2022 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
A hallmark of primary sclerosing cholangitis (PSC) is cholestasis
caused by the formation of intrahepatic and/or extrahepatic bile
duct strictures. No effective medical treatments are available,
and death or liver transplantation occurs after a median of 13–21
years.1 Some patients live for years without symptoms, whereas
others develop cancer or experience rapidly progressing liver
disease early after diagnosis. This heterogeneous disease course
is a major challenge in the clinical management of patients with
PSC, and there is a lack of tools to evaluate prognosis or risk of

https://doi.org/10.1016/j.jhepr.2022.100561
http://creativecommons.org/licenses/by/4.0/
mailto:hanns-ulrich.marschall@gu.se
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2022.100561&domain=pdf


Research article
complications or to predict response to therapy. Today’s best
available tools indirectly reflect the fibrosis process, measuring
liver stiffness with elastography or circulating fibrosis-related
markers,2–4 but markers of inflammation also predict disease
activity in PSC.5

The clinical value of biomarkers of bile acid homeostasis is
unexplored, despite studies showing hepatic and systemic
accumulation of bile acids in cholestatic liver disease.6,7 In fact,
the first large study showing an association between bile acid
profiles and hepatic decompensation was only recently pub-
lished.8 Biochemical footprints of cholestasis8 and degree of
biliary changes9 are potent prognostic factors in PSC. Despite
controversy about its efficacy, the bile acid ursodeoxycholic acid
(UDCA) is the most commonly used drug, whereas drugs tar-
geting the farnesoid X receptor (FXR)–fibroblast growth factor 19
(FGF19) axis, which regulates bile acid homeostasis, are actively
pursued.10,11

Bile acids are synthesised in the liver and enter the intestine,
where microbial modifications generate deconjugated and sec-
ondary bile acids. The majority of bile acids are reabsorbed in the
terminal ileum and returned to the liver. In both the intestine
and the liver, activation of the nuclear receptor FXR by bile acids
leads to negative feedback and reduced transcription of the rate-
limiting enzyme of bile acid synthesis cytochrome P450 family 7
subfamily A member 1 (CYP7A1). From the intestine, this is
mediated via the release of the gut hormone FGF19. The FXR–
FGF19 pathway is, therefore, an attractive target to influence bile
acid synthesis. The activity of CYP7A1 can non-invasively be
measured by the concentration of the circulating bile acid pre-
cursor 7a-hydroxy-cholesten-3-one (C4).12 Hence, C4 is a useful
biomarker of the contribution of de novo synthesis to bile acid
homeostasis in, for example, cholestatic liver diseases.

In a recent study investigating bile acid homeostasis in a
murine PSC model and UDCA-naïve patients with PSC, we
observed a negative association between levels of C4 and risk of
liver transplantation or death.13 When using activators of the
FXR–FGF19 axis, the bile acid synthesis and hence the C4 con-
centrationwill be reduced.11 Similarly, hepatic bile acid synthesis
can intrinsically be suppressed in patients owing to cirrhosis.
These patients with advanced disease are usually not included in
clinical trials, and there are reports of severe adverse events in
patients with cirrhosis, suggesting that therapeutic bile acid
synthesis suppression is not beneficial or even harmful in these
patients.14 In PSC, advanced disease is difficult to define,
providing a strong rationale for investigating further the asso-
ciation seen between C4 levels and robust outcome measures
observed in UDCA-naïve patients.13 We, therefore, investigated
C4 in 2 different cohorts and 2 different laboratories, aiming to
define the role of C4 as a prognostic factor and, in particular, the
potential clinical usefulness of agents activating the FXR–FGF19
axis.
Patients and methods
Study design, participants, and samples
We used the cross-sectional sampling strategy. The Norwegian
discovery cohort consisted of patients with PSC prospectively
recruited at admission to the tertiary care hospital Oslo Univer-
sity Hospital, Rikshospitalet (Oslo, Norway) between 2008 and
2015. Samples from patients with PSC in the external validation
cohort were collected at Karolinska University Hospital (Stock-
holm, Sweden) between 2008 and 2012. Healthy controls of age
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within the normal range of a general population with PSC were
recruited from the Norwegian Bone Marrow Donor Registry (n =
100) (please refer to the Supplementary CTAT methods table).

PSC was diagnosed by accepted criteria, and hence, biological
sample availability determined the sample sizes. We collected
clinical follow-up data up until 2019.

We collected informed, written consent from all participating
patients and healthy donors. The study was approved by the
Regional Committee for Medical and Health Research Ethics in
South-Eastern Norway (2011/2572 and 2015/2140) and the
Regional Ethics Committee in Stockholm (2018/1111-32).

Serum and plasma samples were collected and kept according
to a standardised procedure at each centre. The Norwegian
plasma samples had not been thawed until the day of C4 anal-
ysis, whereas the Swedish serum samples had been frozen and
thawed at least twice. Routine blood biochemistry results at
baseline were collected from journal records and were tempo-
rally matched with blood samples used for bile acid profiling and
C4 measurement for all but 2 patients (0.5%) where samples
were taken 1 month apart. All relevant clinical and demographic
data (Table 1) were collected from patient journals.

Amsterdam–Oxford PSC and Mayo PSC scores were calculated
according to de Vries et al.9 and Kim et al.,15 respectively, and
were modelled as continuous variables.

The study reporting adhered to the STROBE statement.

Bile acid and C4 analyses
Bile acids and C4 were analysed using ultraperformance liquid
chromatography–tandem mass spectrometry (UPLC-MS/MS).
Plasma samples from the Norwegian cohort were run at the
Wallenberglab Laboratory (Sahlgrenska University Hospital,
Gothenburg, Sweden), and serum samples from the Swedish
cohort were run at the Department of Clinical Chemistry at
Karolinska University Hospital, Stockholm, Sweden (Supple-
mentary material and CTAT methods table). Total UDCA and
UDCA metabolite enrichment was calculated as (TUDCA [taur-
oursodeoxycholic acid] + GUDCA [glycooursodeoxycholic acid] +
UDCA + isoUDCA [ursodeoxycholic acids]):total bile acids
(Table S1).

Handling of missing data
The nonimputed circulating UDCA concentrations could classify
actual UDCA use with a sensitivity of 0.85 and specificity of 1.00
using a cut-off of 225 nmol/L, which we used to classify UDCA
use for the 7 patients in the validation cohort that lacked these
clinical records.

Missing values in UDCA, isoUDCA, GUDCA, and TUDCA were
considered below the lowest detection limit as their concentra-
tions are primarily determined by UDCA treatment and were
hence imputed to the lowest detected value. For the remaining
bile acids (Table S1), 7 and 10% of the samples had a missing
value, but no single bile acid was missing in >37% of the samples.
No sample had a missing C4 value. Of routine biochemical pa-
rameters used to compute composite risk scores, 7 and 1% were
missing. Missing clinical and blood biochemical values in each
cohort were imputed using K-nearest neighbours in the DMwR
package (Data Mining with R, learning with case studies; Luis
Torgo, CRC Press 2010). We used a weighted average based on
the Euclidean distance to the case and a number-of-neighbours
equal to the square root of the number of variables used. UDCA
medication, sex, bile acids, routine blood biochemistry, and the
outcome were used as predictors.
2vol. 4 j 100561



Table 1. Baseline, non-imputed clinical, and biochemical characteristics of healthy controls and patients included in the study.

Variable

Healthy controls PSC

Norway, n = 100 Discovery, Norway, n = 191 Validation, Sweden, n = 139

Sex, female 41 (41%) 40 (21%) 44 (32%)
Age at sampling [min–max] 40 [28–56] 41 [16–72] 42 [21–77]
Inflammatory bowel disease, any — 139 (74%) 103 (75%)

Ulcerative colitis — 96 (51%) 86 (62%)
Crohn’s disease — 31 (16%) 16 (12%)
Indeterminate colitis — 12 (6.3%) 1 (<1%)
Missing — 2 (1%) 0 (0%)

Ursodeoxycholic acid treatment — 71 (37%) 102 (77%)
Missing — 0 (0%) 7 (5%)

Hepatobiliary cancer, any* — 8 (5%) 1 (<1%)
Cholangiocarcinoma — 6 (3%) 1 (<1 %)
Gallbladder cancer — 1 (<1%) 0 (0%)
Hepatocellular carcinoma — 1 (<1%) 0 (0%)

Variceal bleeding — 5 (2.6%) 2 (1.4%)
Ascites — 20 (10%) 0 (0%)
Encephalopathy — 2 (1%) 0 (0%)
Mayo PSC score [IQR] — 0.26 [-0.45 to 1.39] 0.04 [-0.58 to 0.78]

Missing — 2 4
AOM PSC score [IQR] — 1.81 [1.3–2.51] 1.78 [1.44–2.31]

Missing — 15 (8%) 7 (5%)

AOM, Amsterdam–Oxford model; PSC, primary sclerosing cholangitis.
* An additional 20 and 4 patients were diagnosed with cholangiocarcinoma, and 4 and 0 with gall bladder cancer, in the discovery and validation cohorts, respectively, during
follow-up.
The total bile acid concentration was calculated as the sum of
all bile acids (after exclusion and imputation as detailed above).

Outcome definition
Liver transplantation or all-cause mortality was used as a com-
posite endpoint for the time-to-event analyses. Of note, the
median waiting times after listing for liver transplantation in the
Nordic have generally been around 1–2 months.16,17 Patients
who underwent a liver transplantation within 3 months (n = 22)
were excluded because they likely had their blood drawn in
conjunctionwith a referral for liver transplantation. Two patients
in the validation cohort lacked event status and were excluded.
In addition, 6 patients and 1 patient, from the discovery and
validation cohorts, respectively, had hepatobiliary cancer di-
agnoses before sampling and were excluded. As a hepatobiliary
cancer diagnosis can be a competing event to liver trans-
plantation, we censored patients who were diagnosed during the
study’s follow-up at their dates of a cancer diagnosis.

In sensitivity analyses, we tested the effect of (i) excluding
those diagnosed with a hepatobiliary cancer diagnosis during
follow-up and (ii) following them until they reached the
outcome. All individuals with a hepatobiliary cancer diagnosis
died within the follow-up without receiving a liver transplant.

Statistical analyses
Adjusted R2 was calculated to test for linear regression model
goodness of fit. Spearman’s correlation (rs) was calculated to
evaluate bivariate trends of associations.

The functional forms for the exposure and covariates were
inspected by fitting loess lines between their Martingale re-
siduals and their linear predictions. Median follow-up was
calculated using the reverse Kaplan–Meier method.

Discrimination was assessed using Harrell’s concordance index
(c-index) and by inspection of Kaplan–Meier survival curveswhere
patientswere censored at 10-year follow-up.Wewere not aware of
any a priori reported, biologically meaningful cut points for C4.
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Hence, for Kaplan–Meier plots, we categorised patients by C4
quartiles and assessed differences in survival using log-rank tests.

To evaluate the added value of C4 when nested with
established risk scores, we prespecified our Cox proportional
hazards model to include the composite PSC risk scores from
the Mayo clinic15 or Amsterdam–Oxford9 as additive, contin-
uous covariates. External validation of predictive accuracy
(calibration) was assessed by visual inspection of predicted
survival (event-free) probabilities plotted against observed
event-free proportions using rms::survest and rms::val.surv18

and the polspline::hare function. The smoothed calibration
curve reflects the correspondence between the predicted
event-free probabilities (using the fitted time-to-event model)
and the observed event-free fractions at specific time horizons.
Goodness of fit of the survival models were evaluated using
likelihood ratio v2 tests. The internal validity of the survival
models was evaluated using resampling validation with 200
bootstrap repetitions using the rms::validate function. All sta-
tistical analyses were done in R (R Foundation for Statistical
Computing, Vienna, Austria).
Results
Systemic bile acid accumulation associates with suppression
of bile acid biosynthesis in PSC
The discovery cohort consisted of 191 patients with PSC and 100
healthy controls with similar age distributions (Table 1). The
median (IQR) blood C4 concentration was 8.8 (2.75–26.8) nmol/L
in the discovery cohort and 33.3 (17.3–51.8) nmol/L in the
healthy controls (Wilcoxon rank-sum test p <0.0001) (Fig. 1A).
Notably, the 5th, 50th, and 95th percentiles of C4 in the Nor-
wegian healthy controls (9.1, 33.3, and 99.2 nmol/L, respectively)
were similar to those previously found for Swedish healthy
subjects (10.0, 33.9, and 102.3 nmol/L, respectively).19 In both
healthy controls and patients with PSC, there was no evidence of
a difference in C4 among individuals who were fasting and those
3vol. 4 j 100561
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Fig. 1. Cholestasis-driven suppression of bile acid synthesis is evident in PSC. (A and B) Circulating levels of C4 and total bile acids in healthy controls (n = 100)
and patients with PSC in the discovery (n = 191) and validation (n = 139) cohorts. Individual data points, boxplots (white dots indicate the median), and
probability densities are shown for each category. (C) Untransformed bivariate plot of C4 and total bile acids, coloured by whether the samples were drawn from
individuals with or without PSC and cohort affiliation. Two outliers with C4 >300 nmol/L are not shown. To the upper right, the same data points are plotted on
log10-transformed axes with smooth loess lines fitted for each cohort with PSC. To the lower right, an estimated log-linear regression model is plotted on the
original scale (zoomed in for clarity) generated from all samples from patients with PSC pooled together. The adjusted R2 value from linear regressions fitted to
each cohort separately is indented. C4, 7a-hydroxy-4-cholesten-3-one; PSC, primary sclerosing cholangitis.
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who were postprandial at the time of blood draw (p = 0.11 for
PSC and p = 0.81 for healthy controls).

To investigate the effect of systemic bile acids on bile acid
synthesis, we compared total bile acid and C4 levels in the
Norwegian samples (Table S1). As expected in cholestasis, pa-
tients with PSC had strongly elevated circulating bile acid levels,
with a median (IQR) of 17.8 (4.8–55.6) lmol/L compared with a
median (IQR) of 2.2 (1.4–3.4) lmol/L in healthy controls (Fig. 1B;
Wilcoxon rank-sum test p <0.0001). Patients with PSC had a
reduced deconjugated:conjugated bile acids ratio, particularly
among UDCA-naïve patients (Table S2), which is congruent with
biliary obstruction favouring hepatic accumulation rather than
gut microbial enzymatic deconjugation. There was a clear devi-
ance from linearity between C4 and total bile acids in blood
sampled from patients with PSC (Fig. 1C). The best regression fit
between C4 and total bile acids appeared to be a log-linear one
(adjusted R2 = 0.38 and 0.39 in the discovery and validation
JHEP Reports 2022
cohorts, respectively). There was no evidence of a correlation
between C4 and total bile acids in healthy controls (Spearman’s
rank-order correlation rs = 0.01), and in blood from patients with
PSC, there was a tendency of a tapering in the increase in C4 at
total bile acid concentrations within the normal range of healthy
controls (Fig. 1C, top-right panel). In patients with PSC with
higher bile acid concentrations, the absolute increase in sup-
pression of bile acid synthesis tapered with increasing accumu-
lation of systemic bile acids.

We next measured C4 levels in 139 serum samples collected
from patients with PSC attending a tertiary care centre in Swe-
den (validation cohort; Table 1). These patients had overall less
advanced liver disease with fewer complications such as variceal
bleeding, ascites, and encephalopathy; lower median Mayo PSC
scores; and a higher proportion of patients being treated with
UDCA (102 [77%] vs. 71 [37%]). The median C4 level was
33.3 nmol/L (IQR 12.6–60.3 nmol/L), which was similar to the
4vol. 4 j 100561
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Fig. 2. The limited apparent effect of UDCA on bile acid-mediated regulation of bile acid synthesis. (A) Concentrations of total bile acids in circulation,
grouped by phenotype, cohort, and UDCA use. (B) Fractions of circulating UDCA and UDCA-derived bile acids relative to the total circulating bile acids (UDCA
enrichment; UDCA + isoUDCA + GUDCA + TUDCA/total bile acids). Median enrichment (IQR) is annotated to the right of each bar. (C) Concentrations of C4 in
circulation, grouped by phenotype, cohort, and UDCA use. (D) Bivariate log–log plots of C4 and total bile acids stratified by cohort affiliation and UDCA treatment
status. The strengths of the associations between paired samples were tested using Spearman’s rank-order correlation (rs). C4, 7a-hydroxy-4-cholesten-3-one;
GUDCA, glycooursodeoxycholic acid; TUDCA, tauroursodeoxycholic acid; UDCA, ursodeoxycholic acid.
Norwegian healthy controls. However, there was a long tail of
low C4 validation cohort samples. In fact, 31 (22%) of the samples
had C4 levels below the fifth percentile of healthy controls.
Furthermore, the same negative relationship between C4 and
total bile acids was found in the validation cohort samples
(Fig. 1C; rs = −0.56, p <0.0001), which contrasted the mentioned
lack of a trend of an association in the healthy controls. Hence,
despite high median C4 levels, the validation cohort also repre-
sented a patient population with cholestasis with a bile acid-
mediated, dose-dependent suppression of bile acid synthesis.

UDCA has no discernible impact on bile acid synthesis
Having bile acid profiles of both UDCA-naïve and UDCA-treated
patients allowed us to explore the contribution of this drug to
the total amount of circulating bile acids and its potential effect
on FXR activation.20 There was a high concordance between
UDCA use and circulating UDCA (Fig. S1 and Tables S1 and S2).
Total bile acid levels were more than 4 times higher in the UDCA-
treated than in the UDCA-naïve patients (Fig. 2A and Table S2),
and expectedly, treated patients had a higher enrichment of
UDCA and its metabolites (Fig. 2B). Although those constituted
more than half of the circulating total bile acids in the patients
taking UDCA, median bile acid synthesis was not different be-
tween those taking and those not taking UDCA (Fig. 2C). There
were also no apparent differences in the associations between C4
and total bile acids by UDCA treatment status (Fig. 2D), and there
were no interactions between C4 and UDCA enrichment in the
JHEP Reports 2022
prediction of total bile acid levels (linear regression, pinteraction
>0.8).
Patients with PSC with suppressed synthesis of bile acids
experience shorter liver transplantation-free survival
Cholestasis-driven liver damage is believed to be a major cause
of the complications of advanced PSC. We, therefore, evaluated
whether circulating levels of C4 had an apparent associationwith
liver transplantation-free survival and if it could improve pre-
diction atop established risk prediction models in 2 independent
populations with PSC, irrespective of UDCA use. Baseline char-
acteristics of the patients eligible for survival analyses are shown
in Table S3. The median follow-up was 9.17 and 9.47 years in the
discovery and validation cohorts, respectively. Of 167 and 135
patients eligible for survival analyses, 62 (37%) and 40 (30%) had
a recorded endpoint, respectively. The baseline survival in the
discovery cohort was shorter than that in the validation cohort
(Fig. S2; log-rank p <0.0001).

Fig. 2A shows the Kaplan–Meier curves for liver
transplantation-free survival of patients in the discovery cohort
categorised by C4 quartile boundaries. There was an apparent
discrimination of the survival curves, where patients within the
higher quartiles had longer survival (overall log-rank p <0.0001).
To assess the predictive accuracy of C4 in an independent pop-
ulation, we used the same boundaries to categorise patients in
the validation cohort (n = 136). Here, discrimination was also
apparent, with a clearer separation of survival curves among
5vol. 4 j 100561



Table 2. Model estimates and performance metrics from univariate and multivariable Cox proportional hazards models for liver transplantation-free
survival in the discovery and validation cohorts.

Model HR [95% CI] p value c-index Dc-index* LR v2† LR v2 p

Discovery cohort (n = 167, n events = 62)
C4 0.73 [0.64–0.83] <0.0001 0.660 23.5 <0.0001
Mayo PSC score 1.67 [1.36–2.04] <0.0001 0.694 22.7 <0.0001
AOM PSC score 2.47 [1.82–3.36] <0.0001 0.706 33.6 <0.0001
C4 + Mayo PSC score 0.81 [0.70–0.94] 0.0052 0.694 0.000 8.10 0.0044
C4 + AOM PSC score 0.82 [0.72–0.93] 0.0016 0.726 0.020 8.02 0.0046

Validation cohort (n = 135, n events = 40)
C4 0.68 [0.60–0.79] <0.0001 0.706 25.2 <0.0001
Mayo PSC score 2.30 [1.74–3.02] <0.0001 0.764 31.85 <0.0001
AOM PSC score 2.58 [1.75–3.79] <0.0001 0.708 23.09 <0.0001
C4 + Mayo PSC score 0.81 [0.68–0.97] 0.0215 0.775 0.011 4.98 0.0256
C4 + AOM PSC score 0.76 [0.64–0.89] 0.0007 0.734 0.026 10.6 0.0011

AOM, Amsterdam–Oxford model; C4, 7a-hydroxy-cholesten-3-one; c-index, concordance index; HR, hazard ratio; LR, likelihood ratio; PSC, primary sclerosing cholangitis;
UDCA, ursodeoxycholic acid. For multivariable models, adjusted HRs, 95% CIs, and p values are shown for the exposure (log2(C4)).
* The delta (D) c-index is the difference in c-index of the (full) model and the corresponding simple model.
† For multivariable models, the LR test compares goodness of fit of the nested (full) model to that of the simple model.
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patients with intermediate-level C4 (3.8–31.5 nmol/L), thus
supporting the prognostic value of C4 in PSC.

To obtain a linear functional form, we modelled C4 as a
multiplicative marker (log2). Increasing C4 associated with a
lower crude hazard for reaching an endpoint in both cohorts
(Table 2), corresponding to a 37% (95% CI 20–56%) and 47% (95%
CI 27–67%) increased crude hazard when reducing the C4 con-
centration by 50% in the discovery and validation cohorts,
respectively. C4 appeared linearly and negatively correlated with
both Mayo PSC score (rs = -0.69 and -0.55 in discovery and
validation cohorts, respectively, both p <0.0001) and
Amsterdam–Oxford PSC score (rs = -0.60 and -0.40, both p
<0.0001). Holding the Mayo PSC score constant, C4 remained
associated with a reduced hazard for reaching an endpoint in
both cohorts (Table 2). In the discovery cohort, a 50% reduction in
C4 was then consistent with up to a 43% increase in the adjusted
hazard for liver transplantation, with a hazard ratio (HR) point
estimate corresponding to 1.23 (95% CI 1.06–1.43). The HRs and
CIs were largely similar in the validation cohort (adjusted HR =
1.23, 95% CI 1.03–1.56), and replacing the Mayo PSC score with
the Amsterdam–Oxford model (AOM) risk score yielded com-
parable results in both cohorts (Table 2).

Adding C4 to a simple model consisting of Mayo PSC score
alone improved the goodness of fit significantly (at an alpha level
of 0.05), with likelihood ratio v2 statistics of 8.10 (p = 0.004) and
4.98 (p = 0.026) in the two cohorts, suggesting that C4 may add
value to predict future events. Adding C4 did not translate into
any notable increments in the less sensitive c-index (Table 2).
The added value of C4 was, however, more apparent when
nested with the AOM score in both cohorts. Of note, there was no
clear evidence of an interaction between C4 and UDCA treatment
in neither the univariate nor nested (multivariable) Cox models
in either cohort (pinteraction >0.15).

Upon resampling (internal) validation of our full model,
there was a negligible decrease in the optimism-corrected c-
index (0.687 vs. apparent c-index of 0.694) of the full model
(C4 + Mayo PSC score), indicating that the model was not overly
optimistic. The predicted survival probabilities of the full
model calculated in the external validation cohort corre-
sponded well with the observed survival rates (Fig. 3C and D).
The smoothed calibration curves at the relevant 5- and 8-year
time horizons indicated that the model, when applied to the
JHEP Reports 2022
external validation cohort, underestimated the fraction of pa-
tients experiencing the outcome where the estimated pre-
dicted risks were high. Calibration improved at higher
predicted event-free probabilities, where most of the estimated
probabilities were.

In sensitivity analyses, we found that ignoring hepatobiliary
cancer diagnoses made during the follow-up and censoring these
patients at their dates of death yielded estimates well compa-
rable with the main analyses (discovery cohort, n = 167 with 79
events: adjusted HR for C4 = 0.83, 95% CI 0.73–0.95, p = 0.006;
validation cohort, n = 135 with 44 events: adjusted HR for C4 =
0.82, 95% CI 0.69–0.97, p = 0.020). Excluding patients with hep-
atobiliary cancer diagnoses made during follow-up also gave
similar estimates (discovery cohort, n = 150 with 62 events:
adjusted HR for C4 = 0.81, 95% CI 0.70–0.94, p = 0.006; validation
cohort, n = 131 with 40 events: adjusted HR for C4 = 0.81, 95% CI
0.68–0.97, p = 0.022). Finally, we specifically tested whether the
association of C4 with survival was constant between UDCA
users and nonusers by fitting interaction terms in the full Cox
models. The interaction terms were not statistically significant at
an alpha threshold of 0.05 (pinteraction = 0.86 in the Norwegian
cohort and 0.19 in the Swedish cohort).
Discussion
In the present study, we show in 2 large independent cohorts
that as PSC becomes more advanced, bile acid synthesis is
increasingly suppressed. From the apparent log-linear relation-
ship between C4 and total bile acids, which appeared to be in-
dependent of UDCA use, it follows that the absolute increase in
suppression of bile acid synthesis tapers with increasing accu-
mulation of systemic bile acids. Hence, patients with PSC pro-
gressing beyond a tipping point where bile acid synthesis, in
reality, is fully suppressed are unlikely to benefit from further
pharmacological stimulation of the FXR–FGF19 axis. We find that
low C4 associates with shortened liver transplantation-free sur-
vival also when modelled together with other, established
prognostic factors in multivariable prediction models and show
that these models generalise well in an independent patient
cohort.

Apart from the preliminary data from a UDCA-naïve subset of
the discovery cohort of the present study,13 the prognostic value
6vol. 4 j 100561
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Fig. 3. C4 associates with liver transplantation-free survival. Liver transplantation-free survival curves of patients with PSC in the (A) discovery cohort and (B)
validation cohort, calculated using the Kaplan–Meier method. Patients were categorised by the boundaries determined by quartiles of C4 in the discovery cohort.
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of C4 in cholestatic liver diseases is largely unexplored. C4 was
reduced in a study of bile acid homeostasis in 12 patients with
PSC, out of whom 5 had intermediate to high Mayo risk scores
and fully suppressed C4.21 In primary biliary cholangitis (PBC),
another progressive cholestatic disease, the concentration of C4
was also reduced compared with that in healthy controls,
particularly in patients with cirrhosis.22,23 In the present study,
we show that C4 adds value to predict future events on top of
established risk scores in PSC. Furthermore, the satisfactory
JHEP Reports 2022
calibration and discrimination in an external cohort indicates
that our model is likely to both perform and generalise well in
unseen patient cohorts.

Ongoing and previously performed drug trials with agents
stimulating the FXR–FGF19–CYP7A1 axis have found drug-
induced decreases in bile acids and C4.11 However, these
studies did not include patients with PSC with advanced liver
disease and intrinsically depressed bile acid synthesis.11,24,25 In
such patients, further reduction of C4 following FXR–FGF19
7vol. 4 j 100561
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activation is likely impossible,21 and the likelihood of a beneficial
effect may be reduced, whereas the risk of adverse events may
increase.26 Therefore, we propose to explore the use of C4 as a
selection criterion to predict treatment response by drugs tar-
geting FXR–FGF19 and also to monitor the effect of inhibitors of
apical sodium-dependent bile acid cotransporters (ASBTs)
expressed on ileal enterocytes (so-called ileal bile acid trans-
porter [IBAT] inhibitors). Available C4 data of healthy Scandina-
vian populations,13,19 including this study, suggest that C4 values
below their fifth percentile, that is, less than �5–9 nmol/L, reflect
practically fully suppressed intrinsic bile acid synthesis and
hence possibly a tipping point, whereby any additional means to
suppress bile acid synthesis further will be futile. This should be
further explored in carefully designed studies.

Of note, we found no evidence of an association between C4
and total bile acids among healthy controls, likely reflecting a
steady state of bile acid synthesis. This appeared to also be the
case among patients with PSC with total bile acids within the
normal range (i.e. below 10 lmol/L), where the log-linear nega-
tive relationship tapered off. In line with a previous study,27 we
did not see significant differences in C4 when comparing fasting
and non-fasting individuals, which is useful for clinical
implementation.

In our cohorts with PSC, patients treated with UDCA had
elevated levels of circulating bile acids, mainly explained by in-
creases in conjugated UDCA. There was, however, no difference
in C4 concentrations in patients with PSC taking or not taking
UDCA, providing no sign of a clinically relevant FXR-antagonistic
effect, as has been suggested in obese individuals.20 Despite this,
we cannot rule out the possibility that the C4 level in patients
being administered UDCA was confounded by characteristics not
possible to identify systematically by patient chart review (e.g.
the indication for starting UDCA therapy).

Other limitations include the retrospective design, potential
sampling bias at tertiary care centres, and the lack of data on
JHEP Reports 2022
fasting status for patients in the validation cohort. Although the
predictive model generalised well to the external validation
cohort, the model may not perform equally well on patients
from other geographic regions or different care settings where
additional confounders may need to be added to improve cali-
bration. End-stage liver disease and disease complications with
poor quality of life (e.g. recurrent cholangitis) were equally
important as the main indications for PSC-related liver trans-
plantation in Norway in 2013, although end-stage liver disease
associated with higher model for end-stage liver disease
(MELD) scores.17 Thus, our choice to use the composite
endpoint of the earlier of either liver transplantation or death
should be carefully interpreted. Still, the high degree of
discrimination and calibration in 2 independent cohorts using
distinct analytical instruments support the validity of the re-
sults. Finally, the lack of disease controls, which limits the
generalisability of our observations to other cholestatic and
non-cholestatic liver diseases, warrants similar studies also in
such conditions.
Conclusions
Taken together, we show that C4 may have clinical utility both as
a sensitive marker of disease stage and to guide treatment
strategies. Measuring blood C4 levels may, aside from moni-
toring treatment responses and serving as a potential counter-
indication for certain drugs, help identify patients with PSC who
may need closer follow-up. As a response to cholestasis, many
patients with PSC with advanced disease will have progressed
beyond a ‘tipping point’, whereby bile acid synthesis is fully
suppressed and any further therapeutic activation of the FXR–
FGF19 axis will be futile. In contrast to complex bile acid pro-
files,8 C4 is easy to measure and interpret, and it is not impacted
by the use of UDCA. Therefore, its clinical utility should be
further explored in PSC and other cholestatic diseases.
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