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Abstract

Expression of the andrgogen receptor splice variant 7 (AR-V7) is frequently detected in castrate 

resistant prostate cancer and associated with resistance to AR-targeted therapies. While we have 

previously noted that homodimerization is required for the transcriptional activity of AR-V7 and 

that AR-V7 can also form heterodimers with the full-length AR (AR-FL), there are still many gaps 

of knowledge in AR-V7 stepwise activation. In the present study, we show that neither AR-V7 

homodimerization nor AR-V7/AR-FL heterodimerization requires cofactors or DNA binding. AR-

V7 can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage 

repair as a homodimer. While forming a heterodimer with AR-FL to induce nuclear localization of 

unliganded AR-FL, AR-V7 does not need to interact with AR-FL to drive gene transcription or 

DNA-damage repair in prostate cancer cells that co-express AR-V7 and AR-FL. These data 

indicate that AR-V7 can function independently of its interaction with AR-FL in the true castrate 

state or “absence of ligand”, providing support for the utility of targeting AR-V7 in improving 

outcomes of patients with castrate resistant prostate cancer.
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Introduction

The androgen receptor (AR) is a potent ligand-regulated transcription factor that regulates a 

comprehensive transcriptional program in prostate cancer cells. AR-targeted therapies either 

block the production of the ligand [1] or compete with the ligand for binding to AR [2-4]. 

Despite the advent of second-generation AR-targeted therapies, such as enzalutamide, 

apalutamide, and abiraterone, disease progression is common with maintained AR signaling 

[5].

Multiple mechanisms that contribute to continued AR activity in castrate resistant prostate 

cancer (CRPC) have been uncovered, including intratumoral androgen biosynthesis, AR 

gene and enhancer amplification, gain-of-function AR mutations, aberrant activation of AR 

with alternate drivers, and the emergence of constitutively active truncated AR splice 

variants (AR-Vs) that lack a functional ligand-binding domain (LBD) [5, 6]. Over 20 AR-Vs 

have been detected in clinical specimens [7, 8]. To date, AR splice variant-7 (AR-V7) has 

been studied in greatest detail owing to its relative abundance, frequency of detection [8, 9], 

and potential clinical utility as a marker for treatment selection in men with metastatic 

CRPC [10-15].

The AR-V7 protein is rarely expressed in primary prostate cancer but is frequently detected 

following androgen deprivation therapy, with further increase in expression following 

abiraterone or enzalutamide therapy [9, 15-19]. In CRPC, AR-V7 expression is 

predominantly nuclear, and its expression is correlated with androgen-independent cell 

proliferation and disease progression after abiraterone or enzalutamide therapy [10, 20-23]. 

AR-V7 expression in circulating tumor cells has been shown to be a negative predictive 

biomarker of response to AR-targeted therapies [10, 11, 14]. These studies establish that 

AR-V7 expression is an adaptive response to AR-targeted therapies and associated with 

endocrine resistance.

Structurally, AR-V7 contains the AR N-terminal transactivation domain, the DNA-binding 

domain, and a unique C-terminal 16-amino-acid sequence, resulting from the inclusion of a 

cryptic exon [7]. Since AR-Vs have the same DNA-binding domain and N-terminal 

transactivation domain as the full-length AR (AR-FL), they are able to bind to DNA and 

drive a transcriptional program, albeit in a ligand-independent manner [24-29]. We and 

others have shown that, while driving a similar transcriptional program and mediating DNA-

damage repair following radiation as AR-FL, AR-Vs also regulate a distinct set of genes/

pathways [18, 21, 24, 26-35]. In addition, we have noted that AR-V homodimerization is 

required for the transcriptional activity of AR-Vs [26, 36, 37]. AR-Vs can also form 

heterodimers with AR-FL, and nuclear-localized AR-Vs, such as AR-V7 and ARv567es, can 

induce nuclear localization of unliganded AR-FL [20, 36]. However, there are still many 

gaps of knowledge in AR-V stepwise activation, i.e., whether AR-V/AR-V 

homodimerization and/or AR-V/AR-FL heterodimerization requires other factors or DNA 

binding, whether AR-V/AR-V homodimerization is required for AR-V to translocate to the 

nucleus or to mediate DNA-damage repair following radiation, whether AR-V/AR-FL 

heterodimerization impedes AR-FL ligand binding, and whether heterodimerization with 
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AR-FL is required for AR-Vs to induce nuclear localization of unliganded AR-FL. Filling in 

these gaps of knowledge will allow a better understanding of the mechanism of action of 

AR-Vs in therapy-resistant prostate cancer.

In addition to a detailed characterization of AR-V stepwise activation, the present study 

tackled another unresolved critical issue in prostate cancer research - whether AR-Vs can 

function independently of AR-FL. In AR-null cell models and/or models with depleted AR-

FL, many AR-Vs have been shown to have the ability to regulate gene transcription in the 

absence of AR-FL [17-19, 25-27, 30, 34, 38-42]. In contrast, in models that express AR-FL, 

AR-V7 activity has been indicated to be largely dependent on AR-FL [29, 43]. For example, 

the expression of AR-V7 in AR-FL-overexpressing LNCaP xenograft tumors did not affect 

the growth-inhibitory efficacy of the AR-FL antagonist enzalutamide [43]. Moreover, in 

LNCaP95 cells that express both AR-FL and AR-V7, AR-V7 was shown to interact with 

AR-FL on the DNA to repress the transcription of a set of growth-suppressive genes [29]. 

Since AR-Vs are almost always co-expressed with AR-FL in the clinical setting, dissecting 

AR-FL-dependent and/or –independent functions of AR-Vs has significant clinical 

implications. We tackled this issue here using a mutant AR-V7 that is unable to dimerize 

with AR-FL. We show that AR-V7 can regulate transcriptional programs and mediate DNA 

damage repair after irradiation independently of its interaction with AR-FL.

Results

AR-V7/AR-FL and AR-V7/AR-V7 dimerization do not require other co-factors or DNA 
binding.

We first used purified recombinant proteins in an in vitro pull-down assay to assess whether 

AR-V7/AR-FL and/or AR-V7/AR-V7 dimerization requires other factors. We observed that 

purified AR-FL and His-tagged AR-V7 proteins were readily pulled down by GST-fused 

AR-V7, but not GST alone or GST-fused catalytic domain of JMJD2B (Fig. 1A). Consistent 

with the pull-down data, FLAG-tagged AR-FL and HA-tagged AR-V7 immuno-affinity 

purified from 293T cells hybridized with each other on far Western blots (Fig. 1B-E). Of 

note, the affinity-purified proteins were extensively washed to remove most of the proteins 

that were in complex. Moreover, the target protein was run on a denaturing gel, which would 

disrupt the interactions with any residual proteins. The target protein was renatured after 

being transferred to a PVDF membrane, allowing it to interact with the probe protein. With 

reciprocal binding of AR-FL and AR-V7 as either the target or the probe protein, the far 

Western results strongly support their direct interactions. Together, the data from these two 

assays indicate for the first time that AR-V7/AR-FL heterodimerization and AR-V7 

homodimerization can occur independently of cofactors and DNA binding.

AR-V7 does not affect androgen binding to AR-FL.

To evaluate whether the interaction with AR-V7 impacts the ability of AR-FL to bind to 

androgens, we performed a ligand-binding assay in cumate-inducible AR-V7-expressing 

LNCaP cells. Scatchard analysis showed that induction of AR-V7 expression did not alter 

the ligand-binding affinity of AR-FL (Fig. 2, KD). The ligand-binding capacity of AR-FL, 

however, displayed a trend of reduction after AR-V7 expression, although the reduction was 
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not statistically significant (Fig. 2, Bmax). These data indicate that AR-V7 expression has 

minimal impact on androgen binding to AR-FL.

FXXLF-motif is critical for AR-V7/-FL heterodimerization.

We have previously used the bimolecular fluorescence complementation (BiFC) and 

bioluminescence resonance energy transfer (BRET) assays to characterize AR-V7 and AR-

FL dimerization [36]. Both assays entail the expression of AR-V7 and AR-FL proteins fused 

with a bulky fluorescent and/or bioluminescent protein in AR-null cell models. To further 

delineate AR-V7 and AR-FL interactions, we performed proximity ligation assays (PLA) 

with endogenous AR-FL and inducibly expressed AR-V7 fused with a small FLAG tag in 

LNCaP cells. Consistent with our previous findings [36], robust androgen-independent 

interactions between AR-V7 and AR-FL were evident from the PLA results (Fig. 3). The 

interactions were detected in both the nucleus and the cytoplasm, although the majority of 

the signal was observed in the nucleus, possibly due to nuclear translocation of AR-V7 

(Supplementary Fig. S1). Interestingly, addition of 10 nM dihydrotestosterone (DHT) only 

modestly enhanced their interactions (Supplementary Fig. S2A).

Using the BiFC assay, we previously showed that the AR-V7 FXXLF motif and 

dimerization box (D-box) together mediate AR-V7/AR-FL dimerization [36]. To validate 

these dimerization interfaces, we generated LNCaP cells with cumate inducible expression 

of a mutant AR-V7 (AR-V7MT) with point mutations in either the FXXLF motif (F23A/

F27A/L26A AR-V7F), the D-box (A596T/S597T, AR-V7D), both the FXXLF motif and D-

box (F23A/F27A/L26A/A596T/S597T, AR-V7FD) [36, 44, 45], or the P-box (R585K, AR-

V7P), which mediates AR interaction with DNA [46]. We then evaluated AR-FL interactions 

with these AR-V mutants by PLA studies. While AR-V7D and AR-V7P retained the ability 

to interact with AR-FL, AR-V7F and AR-V7FD were unable to interact with AR-FL (Fig. 3). 

The expression of AR-V7MT was confirmed by Western blotting (Supplementary Fig. S2B). 

While these PLA studies indicate that mutating the FXXLF motif alone is sufficient to 

abolish AR-V7/AR-FL heterodimerization, the finding differs from our previous 

observations in the BiFC assay, where mutating both the FXXLF motif and the D-box was 

needed for disrupting AR-V7/AR-FL interactions [36]. The influence of the bulky 

fluorescent protein fused to AR-V7 and AR-FL in the BiFC assay may account for the 

discrepancy, and the PLA studies are more likely to be representative of AR-V7 and AR-FL 

interactions within a prostate cancer cell. This was supported by the inability of AR-V7F to 

form a complex with AR-FL in co-immunoprecipitation assay (Supplementary Fig. S3).

While AR-V7 can enter the nucleus as a monomer, heterodimerization with AR-FL is 
required for AR-V7 to mediate nuclear localization of unliganded AR-FL.

We have previously shown that AR-V7 induces AR-FL nuclear localization in the absence of 

androgen [20]. To determine whether the induced AR-FL nuclear localization is mediated by 

heterodimerization with AR-V7, we created LNCaP cells stably expressing cherry-tagged 

AR-FL and transiently transfected with either the mock vector or myc-tagged AR-V7WT or 

AR-V7MT (Western blots in Supplementary Fig. S4). Thus, while all cells express AR-FL, 

only a subset expresses AR-V7 (due to transfection efficiency), enabling direct comparisons 

between cells expressing AR-FL alone and cells expressing both AR-FL and AR-V7. The 
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cells were cultured under androgen-deprived condition. Cherry-tagged AR-FL was largely 

cytoplasmic in the mock-transfected cells (Fig. 4). Transfection of AR-V7WT significantly 

induced nuclear localization of unliganded cherry-tagged AR-FL (Fig. 4) in the transfected 

cells that express AR-V7WT (magnified image in Column 5). In adjacent untransfected cells 

that do not express AR-V7WT, cherry-tagged AR-FL is largely cytoplasmic (magnified 

image in Column 6). In contrast, transfection of AR-V7F or AR-V7FD did not impact the 

subcellular localization of cherry-tagged AR-FL (Fig. 4). These data were validated in 293T 

cells stably transfected with a GFP-tagged AR-FL and transiently transfected with these 

myc-tagged AR-V7 expression plasmids (Supplementary Fig. S5). It is of note that the 

differences observed were not due to altered subcellular localization of AR-V7MT, as AR-

V7F and AR-V7FD remained predominantly nuclear, no matter whether they are tagged (Fig. 

4A and Supplementary Figs. S1 and S5) or untagged (Fig. 5). Together, these data indicate 

that heterodimerization with AR-V7 mediates nuclear localization of unliganded AR-FL.

We also assessed the subcellular distribution of untagged AR-V7D and AR-V7P. While AR-

V7D was primarily nuclear, AR-V7P was more evenly distributed between the nucleus and 

the cytoplasm (Fig. 5). Since AR-V7D does not homodimerize [36] and the P-box mutation 

abolishes AR DNA binding [46], these data indicate that AR-V7 can enter the nucleus as a 

monomer and that interacting with DNA helps AR-V7 stay in the nucleus. Interestingly, co-

expression of AR-V7P with AR-FL or other AR-Vs, AR-V4 and AR-V6, which we 

previously showed to heterodimerize with AR-V7 [37], did not alter the mixed nuclear and 

cytoplasmic distribution of AR-V7P (Supplementary Figs. S1 and S6), indicating that DNA 

binding by its heterodimerization partner may not have a significant impact on AR-V7 

nuclear localization.

AR-V7 can drive gene transcription independently of interaction with AR-FL.

To assess whether heterodimerization with AR-FL is required for the trans-activating activity 

of AR-V7 in prostate cancer cells, we co-transfected PC-3 and LNCaP cells with the AR-

V7WT or AR-V7MT plasmid with a luciferase reporter construct driven by three copies of 

androgen response element (ARE-luc). Transfection of AR-V7WT or AR-V7F induced 

robust luciferase expression in both cell lines under androgen-deprived condition (Fig. 6A-

B). In contrast, AR-V7D, AR-V7P, and AR-V7FD were not able to induce luciferase 

expression. Since mutating the D-box and the P-box, respectively, abolishes AR-V7 

homodimerization [36] and DNA binding (Supplementary Fig. S7), these data support a 

critical role of homodimerization [36] and/or DNA binding in AR-V7 transactivation (Fig. 

6A-B). Notably, in addition to losing the ability to homodimerize, AR-V7D was unable to 

bind to DNA (Supplementary Fig. S7). Since AR-V7 homodimerization does not require 

DNA binding (Fig. 1), it is likely that homodimerization is a prerequisite for AR-V7 DNA 

binding and thereby transactivation.

In order to further elucidate the role of heterodimerization with AR-FL in AR-V7 

transactivation, we performed RNA-sequencing (RNA-seq) analyses of cumate-treated mock 

and cumate-inducible AR-V7WT-, AR-V7F-, or AR-V7FD-expressing LNCaP cells under 

androgen-deprived condition from replicate experiments. The analyses identified 140 genes 

that were upregulated and 31 genes that were downregulated upon AR-V7WT expression 

Roggero et al. Page 5

Oncogene. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. 6C and Supplementary Fig. S8, FDR < 0.05, listed in Supplementary Table S1). 

Comparison of this list of genes with published AR-V7-associated targets in LNCaP95 cells 

[29] and gene expression changes caused by knocking down all AR-Vs in AR-FL-deleted 

CWR22Rv1-AR-EK cells [47] demonstrated 45% and 39% overlaps respectively, suggesting 

significant conservation of AR-V function in different cell models. Gene Set Enrichment 

Analysis (GSEA) demonstrated that androgen response pathway was the most enriched 

pathway in AR-V7WT-expressing cells, followed by Myc, E2F, and G2M checkpoint 

pathways (Supplementary Fig. S9). In line with the reporter gene studies, the vast majority 

of these AR-V7WT-regulated genes were similarly modulated by AR-V7F, but not AR-V7FD 

(Fig. 6C). AR-V7WT and AR-V7F-induced expression clustered together in hierarchical 

clustering and principal component analyses (Fig. 6C and Supplementary Fig. S10A). For 

example, canonical AR-regulated genes such as KLK3, FKBP5, and TMPRSS2 were 

similarly upregulated in AR-V7WT- and AR-V7F-expressing cells but not in AR-V7FD-

expressing cells (Fig. 6D). These observations were validated by RT-qPCR (Supplementary 

Fig. S10B) and by AR-V7 chromatin immunoprecipitation (ChIP) analyses (Fig. 6E), 

indicating that transcription and AR promoter occupancy of these genes were similarly 

regulated by AR-V7WT and AR-V7F but not modulated by AR-V7FD. A small subset (10) of 

the 140 upregulated genes such as GNMT and FASN were differentially regulated by AR-

V7WT and AR-V7F, at both the DNA binding and expression level (Fig. 6D & E). Taken 

together, these data provide support that heterodimerization with AR-FL is not required for a 

majority of AR-V7 cistromic and transcriptomic activity in AR-FL-expressing prostate 

cancer cells.

Homodimerization and DNA binding, but not heterodimerization with AR-FL, is required for 
AR-V7 to mediate DNA-damage repair.

We and others recently demonstrated that AR-Vs could orchestrate DNA-damage repair 

after irradiation [35, 47]. In support of this notion, functional annotation of the 140 genes 

that were upregulated upon AR-V7WT expression in LNCaP cells showed that 6 of these 

genes regulate DNA damage response (CUL4B, NBN, NKX3-1, PIK3R1, PLK1, and 

USP43). To evaluate the importance of homodimerization, DNA binding, and/or 

heterodimerization with AR-FL to the DNA-damage repair function of AR-V7, we 

performed DNA-damage resolution studies in cumate-inducible AR-V7WT- or AR-V7MT-

expressing LNCaP cells (Fig. 7A). We noted that γ-H2Ax foci (within 0.5 hour) were 

induced by 2Gy radiation treatment in androgen-deprived mock control cells and had 

minimal resolution by 8 hours (Fig. 7A & 7B), suggesting that unliganded AR-FL alone in 

these cells is unable to mediate DNA-damage repair. Under these conditions, expression of 

AR-V7WT or AR-V7F enabled DNA-damage repair, as shown by resolution of γ-H2Ax foci 

within 8 hours (Fig. 7). However, the AR-V7D, AR-V7FD, and AR-V7P mutants are unable 

to mediate DNA-damage repair (Fig. 7). These data indicate that homodimerization and 

DNA binding, but not interaction with AR-FL, is critical for AR-V7 to mediate DNA-

damage repair. Supplementary Fig. S11 provides a summary of the impact of different 

mutations on various functions of AR-V7. Through inducible expression of these mutants in 

AR-FL-expressing cells, we show that, in prostate cancer cells that co-express AR-V7 and 

AR-FL, AR-V7 can largely function independently of the interaction with AR-FL in terms 

of regulating gene expression and inducing DNA-damage repair.
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Discussion

Our data, for the first time, show that neither AR-V7 homodimerization nor AR-V7/AR-FL 

heterodimerization requires cofactors or DNA binding. Together with our previous studies 

[26, 36], we have employed 5 different approaches, in vitro pull-down, far Western, BiFC, 

BRET, and PLA, to test AR-V homo- and/or hetero-dimerization. These approaches, 

through the use of recombinant proteins, transfected fusion proteins, to almost equivalent to 

endogenous proteins, have unequivocally established the direct interactions of AR-V7 with 

itself and with AR-FL. Further, using luciferase assay, RT-qPCR, DNA pull-down, 

electrophoretic mobility shift assay, ChIP, and DNA damage resolution assay in this and 

previous studies [26, 35, 36], we demonstrate that, although interacting with AR-FL is not 

required for AR-V7 to transactivate or to mediate DNA-damage repair, homodimerization 

and DNA binding are imperative for these functions of AR-V7.

Additionally, we note that mutating the dimerization interface of AR-V7 does not impact its 

nuclear localization, indicating that AR-V7 can enter the nucleus as a monomer, similar to 

AR-FL nuclear translocation upon androgen binding [45]. We also show that AR-V7-

induced AR-FL nuclear localization depends on their heterodimerization. This may be 

caused by either AR-V7 dimerizing with AR-FL in the cytoplasm and bringing AR-FL to 

the nucleus or their dimerization in the nucleus preventing cytoplasmic export of AR-FL. 

Based on the finding that both AR-V7 and androgen-bound AR-FL enter the nucleus as a 

monomer, it is tempting to speculate that the latter scenario might be more likely. In fact, our 

data on the lack of significant impact of AR-V7 on AR-FL ligand binding can be easily 

explained by unliganded AR-FL remaining as a monomer in the cytoplasm even in the 

presence of AR-V7, although other mechanisms are also plausible.

Cistromic studies have indicated that AR-V7 and AR-FL can bind to the same sites on the 

chromatin [18, 21, 24, 26-34]. Since AR-Vs are almost always co-expressed with AR-FL in 

the clinical setting, one of the key unanswered questions in the field was whether AR-Vs 

need the interaction with AR-FL to function. Using AR-V7 point mutations that disrupt its 

interaction with AR-FL, we show that, when AR-V7 and AR-FL are co-expressed in LNCaP 

cells under androgen-deprived condition, their heterodimerization results in altered AR-V7 

promoter occupancy and transcriptional regulation of only a small number of genes of 

unclear biological significance. AR-V7 regulation of the vast majority of the genes does not 

require interaction with AR-FL. This is also the case for AR-V7 to mediate DNA-damage 

repair following radiation under androgen-deprived condition. While requiring AR-V7 

homodimerization and DNA binding, the DNA-damage repair function of AR-V7 does not 

rely on interaction with AR-FL in cells co-expressing AR-V7 and AR-FL. Together, our data 

indicate that the transcriptional and DNA-damage repair functions of AR-V7 are largely 

independent of its interaction with AR-FL in the true castrate state or “absence of ligand”.

Intratumoral androgen biogenesis has been shown to be one mechanism of CRPC 

progression after AR-targeted therapy, leading to sufficient intraprostatic androgen levels to 

activate AR-FL [48]. Our finding that AR-V7 expression does not significantly affect AR-

FL ligand binding indicates that, in these CRPCs, AR-FL maintains the ability to bind to 

androgens despite the expression of AR-V7. In the PLA studies, we note that AR-V7 
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heterodimerizes with AR-FL regardless of the presence or absence of androgen. These data 

suggest that AR-V7 is likely to interact with both unliganded and liganded AR-FL. 

Interestingly, the transcriptional activity of liganded AR-FL has been shown to rely on its 

interaction with AR-V7 in LNCaP95 cells, the growth of which is known to be suppressed 

by androgens [29]. Future studies in CRPC cells that are growth-sustained by androgens are 

necessary to further delineate the role of AR-V7 in ligand-induced transcription driven by 

the AR-FL, since the progression of a significant proportion of CRPCs is driven by 

intratumoral androgens.

Overall, the present study helps generate a blueprint of AR-V7 stepwise activation. AR-V7 

can enter the nucleus as a monomer and drive a transcriptional program and DNA-damage 

repair as a dimer. AR-V7 dimerization does not require other factors or DNA binding. While 

forming a heterodimer with AR-FL to induce nuclear localization of unliganded AR-FL, 

AR-V7 does not need to interact with AR-FL to drive gene transcription or DNA-damage 

repair. CRPC evolves a mechanism to make sure that the AR-driven transcriptional program 

and DNA-damage repair are maintained. As an adaptive response to AR-targeted therapies, 

the expression of AR-V7 appears to be sufficient to drive AR function within CRPC cells. 

Thus, therapeutic strategies to target AR-V7 could be of utility in combatting CRPC.

Materials and Methods

Cell culture.

LNCaP, PC-3, and 293T cells were obtained from ATCC. LNCaP and PC-3 cells were 

grown in RPMI-1640 medium (Hyclone) with 10% fetal bovine serum (FBS, Gibco). 293T 

cells were cultured in DMEM medium (Corning) with 10% FBS. Cells used in all 

experiments were within 3 months of resuscitation of frozen cell stocks established within 3 

passages after receipt of the cells. Cell authentication was performed at the Genetica DNA 

Laboratories, and cells were evaluated monthly for mycoplasma contamination.

In vitro pull-down assay using recombinant proteins.

To generate the GST or His fusion construct of AR-V7, we cloned PCR-amplified coding 

region of AR-V7 into the pGEX-6p-1 or pET-28a vector (Millipore Sigma). These 

constructs were transformed individually into E. coli strain BL-21, and protein expression 

was induced using 0.4 mM IPTG. Fusion proteins were purified using glutathione-agarose 

beads (GE Life Sciences) or Ni-NTA resin (Thermo Fisher). For pull-down assays, 2 μg of 

His-AR-V7 or AR-FL recombinant protein (Creative Biomart) was incubated with 2 μg of 

GST-AR-V7 protein, GST alone, or GST-fused catalytic domain of JMJD2B that was 

immobilized on glutathione beads in 50 μl of binding buffer (25mM Tris, 0.1% TX-100, 0.5 

M NaCl in water, and proteinase inhibitor cocktail) for 2 hr at 4°C on a rotating platform. 

After centrifugation at 5000xg for 15 sec, the agarose beads were washed 4 times with the 

binding buffer. The proteins were then subjected to SDS-PAGE and Western blotting.

Far Western Blot Analysis.

The analysis was performed as detailed in [49]. In brief, 293T cells were transfected with 

FLAG-AR-FL or HA-AR-V7 using Fugene 6. At 48 hr following transfection, AR was 
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immuno-affinity purified with an anti-FLAG or anti-HA antibody and extensively washed. 

Proteins were resolved by SDS-PAGE, transferred to PVDF membrane, and denatured and 

renatured. After blocking, membranes were incubated with probes, washed, fixed, and 

quenched. Membranes were then blotted for an HA, FLAG, AR, or ERK1/2 antibody.

Plasmids.

The cumate-inducible 3xFLAG-tagged AR-V7 expression construct, in the pCDH-Cuo-

MCS-EF1α-CymR-T2A-Puro backbone (System Biosciences), was kindly provided by Dr. 

Stephen Plymate (University of Washington, Seattle, WA). The constitutive AR-V7 

expression lentiviral construct was generated by cloning PCR-amplified coding region of 

AR-V7 into the pGEM-T Easy vector (Promega), followed by subcloning into the pLVX-

puro lentiviral vector (Clontech). The AR-V7MT constructs were generated by site-directed 

mutagenesis. AR-V7 and mutants were subcloned into the pcDNA3.1-Myc plasmid to 

generate the Myc-tagged AR-V7 versions.

Cumate-inducible AR-V7-expressing LNCaP cells.

The cumate-inducible wildtype or mutant AR-V7 expression constructs were individually 

packaged into lentiviral particles in 293T cells, and the lentivirus particles were used to 

transduce LNCaP cells as described previously [50]. At 48 hr after transduction, 1 μg/ml 

puromycin was added to the medium to start selection, and the selection continued for two 

weeks to obtain polyclonal colonies of resistant cells. AR-V7 was expressed by exposing the 

cells to 1x cumate (System Biosciences).

Ligand-binding assay.
3H-Methyltrienolone R1881 (PerkinElmer) was added to cells grown on a 6-well plate in 

phenol red-free medium with 10% CSS to final concentrations of 0.25, 0.5, 1, 2.5, 5, 7.5 nM 

in the presence or absence of 200-fold excess unlabeled R1881 for 1 hr at 37°C in a CO2 

incubator. Cells were washed three times with ice-cold PBS, and the rinse solution was 

completely removed after each wash. 700 μl absolute ethanol was added to each well, and 

the plates were rocked for 30 min at room temperature. The cell lysates were collected and 

transferred to scintillation vials with 4 ml scintillation fluid for radioactivity counting.

PLA.

Cells grown on coverslips were fixed with 10% formalin for 20 min and permeabilized with 

0.5% Triton X-100 for 15 min at room temperature. AR-V7 and AR-FL were detected using 

an anti-FLAG (Sigma-Aldrich, F3165) and anti-AR-FL antibody (C19, Santa Cruz; against 

AR C-terminus), respectively. In situ proximity ligation was performed using a Duolink 

Detection Kit (Sigma-Aldrich). Nuclear foci were imaged using a Lionheart FX microscope 

(×40 magnification). The number of nuclear foci/cell was quantified using ImageJ with >50 

cells analyzed per experiment per condition.

AR-FL localization assessment.

LNCaP cells stably expressing Cherry-AR-FL or 293T cells stably expressing GFP-AR-FL 

grown on coverslips were transiently transfected with pcDNA-Myc AR-V7 wildtype or 
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mutants and continued to grow for 48 hr in phenol-red free RPMI-1640 with 3-5% CSS. 

Coverslips were fixed with methanol for 10 min at −20°C and permeabilized with 0.2% 

TX-100 for 30 min at room temperature. Cells were stained with an anti-Myc tag antibody 

(Cell Signaling, 9B11) and counterstained with DAPI. Cells were imaged using a widefield 

Delta Vision Fluorescence microscope, and nuclear/cytoplasmic localization of cherry-AR-

FL or GFP-AR-FL was quantified using ImageJ with >50 cells analyzed per experiment per 

condition.

Immunofluorescence staining and confocal fluorescence microscopy of AR-V7 
localization.

After fixation with 4% paraformaldehyde, cells were incubated with an anti-FLAG (for 

cumate-inducible AR-V7-expressing LNCaP cells; Sigma-Aldrich, F3165) or AR-441 pan-

AR antibody (for PC-3 cells transfected with AR-V7; Santa Cruz Biotechnology, sc-7305) 

overnight at 4°C and then washed and incubated with Alexa Fluor 488-conjugated secondary 

antibody (Thermo Fisher, A-11001) for 1 hr at room temperature in the dark and 

counterstained with DAPI. An average of 10 fields were captured for each group using a 

Nikon A1r confocal fluorescence microscope. The intensity ratios of nuclear and 

cytoplasmic fluorescence signals were quantitated using ImageJ.

Plasmid transfection and reporter-gene assay.

LNCaP, PC-3, and 293T cells were transfected by using the Lipofectamine 3000 (Thermo 

Fisher), TransIT-2020 (Mirus Bio LLC), and TurboFect (Thermo Fisher) reagent, 

respectively. Reporter gene assay was performed as previously described [51] with ARE-luc 

plasmid. To ensure even transfection efficiency, we conducted the transfection in bulk and 

then split the transfected cells for luciferase assay.

RNA-seq analysis.

Total RNA isolated using the TRIzol reagent (Thermo Fisher) was sent to Beijing Genomics 

Institute (BGI) for polyA-selected, 100-base paired-end RNA sequencing using an Illumina 

HiSeq 4000 system. Data analysis was performed using RSEM [52]. The transcripts per 

million (TPM) values from the RSEM output were used for transcript abundance 

measurement. Differential expression was assessed using the DESeq package [53] with R 

3.6.0. Genes were defined as differentially expressed between groups if having FDR < 0.05. 

The list of genes that were differentially expressed between the AR-V7-expressing group 

and the mock control group were used in hierarchical clustering analysis and principal 

component analysis to elucidate similarity among wildtype AR-V7 and AR-V7 mutants in 

ability to regulate target genes. GSEA was performed on compiled normalized count matrix 

with 1000 permutations, the gene-set permutation type, and weighted enrichment statistics. 

The genes were ranked using the Signal2Noise matrix, and the data were run against the 

hallmark gene sets in the Molecular Signatures Database.

Roggero et al. Page 10

Oncogene. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ChIP-qPCR.

ChIP analysis was performed as previously described [35] using an anti-FLAG (Sigma-

Aldrich, F3165) or anti-AR-FL antibody (C19, Santa Cruz) or normal rabbit IgG (Abcam). 

Purified ChIP and input DNA were analyzed by qPCR.

RT-qPCR and Western blotting analyses.

cDNA synthesis and qPCR analysis were performed as described [54, 55], and the primer-

probe sets were from IDT. The Western blotting procedure was described previously [55].

Double-strand break repair assay.

At each time point after 2 Gy radiation, cells were subjected to γH2AX 

immunofluorescence as previously described [35], and the number of γ-H2AX foci per cell 

was quantified using ImageJ. More than 200 γ-H2AX–positive cells were analyzed per 

experiment per condition.

Statistical analysis.

Sample size was selected based on the ability to achieve an overall significance level of P = 

0.05 and 80% power. The Student two-tailed t test was used to determine the mean 

differences between two groups. P < 0.05 is considered significant. Data are presented as 

mean ± SEM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. AR-V7/-FL or AR-V7/-V7 dimerization does not require other factors or DNA-binding.
A. In vitro pull-down assay with purified proteins demonstrating direct interactions of GST-

fused AR-V7 with His-tagged AR-V7 and with AR-FL. His-tagged AR-V7 and AR-FL 

recombinant proteins were pulled down using glutathione-bead-immobilized GST alone or 

GST-JMJD2B-catalytic-domain (GST-JMJD2B-CD) or GST-AR-V7 fusion protein and 

subjected to Western blotting with an anti-AR or anti-GST antibody. B. Schematic of far 

Western blot analysis. C-E. Reciprocal far Western blot analysis with purified proteins 

supporting direct interaction between HA-tagged AR-V7 and FLAG-tagged AR-FL. C: 

Input showing the expression of FLAG-tagged AR-FL and HA-tagged AR-V7. D&E: 

Extensively washed FLAG-tagged AR-FL (D) or HA-tagged AR-V7 (E) was run on a 

denaturing gel, transferred to a PVDF membrane, renatured, and hybridized to extensively-

washed HA-tagged AR-V7 (D) or FLAG-tagged AR-FL (E) probe protein. The interactions 

were detected using anti-HA and anti-AR antibodies (D) or anti-FLAG and anti-AR 

antibodies (E).

Roggero et al. Page 15

Oncogene. Author manuscript; available in PMC 2021 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. AR-V7 does not significantly affect AR-FL ligand binding:
A. Scatchard analysis of binding of [3H]R1881 with AR-FL in LNCaP extracts with or 

without cumate-induced AR-V7 expression in three independent experiments. B. KD and 

Bmax values calculated from the Scatchard analysis showing that AR-V7 expression does 

not have a significant impact on AR-FL ligand-binding affinity or capacity, although the 

capacity shows a trend of decrease. C. Western blotting confirming AR-V7 induction by 

cumate in these replicates.
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Figure 3. FXXLF motif is critical for AR-V7/-FL heterodimerization.
LNCaP cells stably expressing cumate-inducible FLAG-tagged AR-V7WT or AR-V7MT 

were evaluated for interaction between AR-FL and AR-V7 using proximity ligation assays 

(PLA) under conditions of vehicle control or cumate stimulation in androgen-deprived 

condition. An AR C-terminal antibody and a FLAG-targeted antibody were used to track 

AR-FL and AR-V7, respectively. DAPI was used to stain the nucleus. These data indicate 

that AR-V7WT, AR-V7D, and AR-V7P, but not AR-V7F or AR-V7FD, can interact with AR-

FL. The enlarged images in the inset show the interactions in a representative single cell. *, 

P < 0.001 from control.
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Figure 4. Dimerization with AR-FL is required for AR-V7 to induce nuclear localization of 
unliganded AR-FL.
A. LNCaP cells stably expressing cherry-AR-FL were evaluated using confocal microscopy 

for AR-FL distribution following transfection with the indicated myc-AR-V7 plasmid under 

androgen-deprived condition (first column). The second column shows the distribution of 

the transfected myc-AR-V7 protein detected by immunofluorescence staining using an anti-

myc antibody. The third column shows DAPI-stained nuclei of the cells. The fourth column 

is merged images of the first 3 columns. The fifth column is an enlarged view of a single 

transfected cell from the image in the first column, corresponding to the cell in the green box 

in the merge column. The sixth column is an enlarged view of a single untransfected cell 

from the image in the first column, corresponding to the cell in the white box in the merge 

column. B. Quantification of AR-FL nuclear and cytoplasmic signals in confocal images 

showing that only AR-V7WT is able to induce nuclear localization of unliganded AR-FL. *, 

P < 0.001.
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Figure 5. Subcellular localization of AR-V7 mutants.
A. Confocal microscopy images of PC-3 cells transfected with the indicated AR-V7WT or 

AR-V7MT plasmid under androgen-deprived condition. The cells were immunofluorescently 

stained with a pan-AR antibody or stained with DAPI for visualization of nucleus. B. 
Quantification of AR-V7 cytoplasmic and nuclear distribution showing that AR-V7WT, AR-

V7F. AR-V7D, and AR-V7FD are largely nuclear, whereas AR-V7P exhibits some 

cytoplasmic distribution. *, P < 0.001.
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Figure 6. AR-V7 retains the ability to drive transcription independently of heterodimerization 
with AR-FL.
A & B. Luciferase assays in PC-3 (A) or LNCaP cells (B) co-transfected with an ARE-

driven luciferase reporter construct and mock control or indicated AR-V7 expression 

plasmid showing that, in contrast to AR-V7D, AR-V7FD, and AR-V7P, AR-V7F retains the 

ability to transactivate. *, P < 0.001 from mock. C & D. RNA-seq analyses of LNCaP cells 

stably expressing cumate-inducible AR-V7WT or AR-V7MT showing that the transcriptional 

program induced by AR-V7WT is in general maintained in AR-V7F-expressing cells, but not 

in AR-V7FD-expressing cells. C: Clustering analysis was performed using genes that were 

differentially expressed between AR-V7WT-expressing cells and the mock control cells. D: 
Relative expression levels from the RNA-seq data showing that AR-V7F retains the ability to 

induce the expression of KLK3, FKBP5, and TMPRSS2 but loses the ability to induce 

GNMT and FASN expression. *, FDR < 0.01 from mock. E. ChIP assay showing that the 

similarity and/or difference between the wildtype and mutant AR-V7 in regulating target 

genes can be largely explained by their ability/inability to bind to the 5’-regulatory region of 

these genes. The results were from 3 independent experiments. *, P < 0.01 from mock.
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Figure 7. Homodimerization and DNA binding, but not dimerization with AR-FL, is required for 
AR-V7 to mediate DNA-damage repair.
Evaluation for double-stranded DNA breaks using γ-H2AX foci in LNCaP cells stably 

expressing cumate-inducible FLAG-tagged AR-V7WT or AR-V7MT construct at 0, 0.5, or 8 

hr after 2 Gy ionizing irradiation under androgen-deprived condition showing that AR-V7F, 

but not AR-V7D, AR-V7FD, or AR-V7P, retains the ability to mediate DNA-damage repair. 

A. Schematic of the experiment and images of γ-H2AX foci within the cells. B. 
Quantification of more than 50 nuclei per condition for the average number of γ-H2AX foci 

per cell. *, P < 0.01.
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