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Prostate cancer is the second most diagnosed cancer among men worldwide. Androgen
deprivation therapy, the most common targeted therapeutic option, is circumvented as
prostate cancer progresses from androgen dependent to castrate-resistant disease.
Whilst the nuclear receptor transcription factor, androgen receptor, drives the growth of
prostate tumor during initial stage of the disease, androgen resistance is associated with
poorly differentiated prostate cancer. In the recent years, increased research has
highlighted the aberrant transcriptional activities of a small number of transcription
factors. Along with androgen receptors, dysregulation of these transcription factors
contributes to both the poorly differentiated phenotypes of prostate cancer cells and
the initiation and progression of prostate carcinoma. As master regulators of cell fate
decisions, these transcription factors may provide opportunity for the development of
novel therapeutic targets for the management of prostate cancer. Whilst some
transcriptional regulators have previously been notoriously difficult to directly target,
technological advances offer potential for the indirect therapeutic targeting of these
transcription factors and the capacity to reprogram cancer cell phenotype. This mini
review will discuss how recent advances in our understanding of transcriptional regulators
and material science pave the way to utilize these regulatory molecules as therapeutic
targets in prostate cancer.

Keywords: prostate cancer, transcription factor, epigenetic, ubiquitin-proteasome system, protein-protein
interactions, targeting approaches
INTRODUCTION

Prostate cancer is the second most diagnosed cancer in men worldwide, with approximately 1.4
million cases in 2020 alone (1). Prostatic intraepithelial neoplasia (PIN) is a premalignant lesion
characterized by the uncontrollable cell growth within the prostate gland (2). This unchecked
proliferation precedes the development of localized prostate adenocarcinoma, whereby the tumor
increases in volume and cells begin to infiltrate through the basement membrane. The initial
pathogenesis of this disease is largely dependent on the activity of the transcriptional factor,
androgen receptor (AR) (3). However, once the disease progresses to a more aggressive phenotype, the
tumor becomes androgen resistant, evolving into castrate-resistant prostate carcinoma (CRPC) (4).
April 2022 | Volume 12 | Article 8541511

https://www.frontiersin.org/articles/10.3389/fonc.2022.854151/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854151/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.854151/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:matthew.naylor@sydney.edu.au
https://doi.org/10.3389/fonc.2022.854151
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.854151
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.854151&domain=pdf&date_stamp=2022-04-25


Xie et al. Targeting Transcription Factors
Metastatic CRPC (mCRPC) is the advanced/final stage of the
disease, with cancer cells undergoing metastasis to distal organs
such as bone, liver and lungs (5). In addition to androgen
resistance, phenotypic changes such as alteration to chromatin
structure and nucleus enlargement also occur during the
malignant transformation in prostate cells (6, 7).

AR is a ligand activated transcription factor and it functions
through the binding of androgens, such as testosterone and 5-a-
dihydrotestosterone, which releases AR from its chaperone heat
shock protein (HSP) 90. Similar to many steroid hormone
nuclear receptors, this results in translocation of AR to the
Frontiers in Oncology | www.frontiersin.org 2
nucleus to regulate the expression of genes associated with
growth and maintenance of the prostate epithelium (8). AR,
along with a small number of other transcription factors, have
been well established as regulatory molecules that govern
prostate cell phenotype and are implicated in the initiation and
progression of prostate cancer (Table 1, also see reviews (2, 36).
As the same transcription factor has the ability to bind to
regulatory regions of different genes (37), targeting
transcription factors provides a direct target in developing
effective treatments for prostate cancer and allows for the
coordinated inhibition of various oncogenic genes and
TABLE 1 | Identified transcription factor targets and their implications in prostate cancer.

Target Types Transcription
Factors/Proteins

Biological Functions & Implications in Prostate Cancer References

Nuclear hormone
receptors

AR Drives prostate cancer cell proliferation; maintain prostate cancer cell survival; mutation and amplification
of AR in prostate cancer contributes to androgen deprivation therapy resistance.

(3)

ERs ERa stimulates prostate cancer cell proliferation and promotes the development of prostate malignancy;
ERb downregulates AR signaling and acts as tumour suppressor.

(9)

Glucocorticoid
receptor

Promotes prostate cancer cell proliferation; contributes to androgen deprivation therapy resistance. (10)

Progesterone
receptor

Prevents prostate cancer cell migration and invasion. (10)

Vitamin D receptor Promotes cell differentiation and apoptosis; inhibits cell growth, prostate cancer cell migration and
angiogenesis.

(10)

Retinoic acid
receptors

Suppresses AR signaling; reduces prostate cancer cell proliferation. (10)

ERRa Regulates energy homeostasis in prostate cells; regulates prostate cancer cell proliferation (11)
Tumour protein p53 p53 Responds to cellular stress; regulates the expression of genes that are involved in DNA repair, cell

arrests and apoptosis; inactivation of p53 is associated with poor clinical outcome.
(12)

ETS fusions TMPRSS2-ERG
fusion

Common chromosomal translocation observed in prostate cancer; increases incidence of prostatic
intraepithelial neoplasia development.

(13–15)

Histone methyltransferase EZH2 Acts as transcription regulators for genes such as PD-1; often overly expressed in advanced stage of
prostate cancer.

(16)

MYC c-Myc Remodels chromatin structures to stimulate prostate cancer cell growth; promotes oncogenic signaling
via hyperacetylation.

(17, 18)

n-Myc Maintains prostate tumour cell survival; promotes poorly differentiated aggressive prostate cancer
phenotype; drives the development of neuroendocrine prostate cancer.

(19)

BET proteins BRD2 Regulates by androgen; interacts with YY1 to co-activate downstream oncogenic genes; promotes
prostate cancer cell growth.

(20)

BRD4 Regulates the expression of oncogenic transcription factor MYC; regulates prostate cancer cell
proliferation; drives ETM transition in CRPC.

(21, 22)

Ubiquitin-proteasome
system

MDM2 Regulates prostate cancer cell growth, apoptosis, and the expression of tumour suppressor p53. (23–25)
USP2a Regulates the expression of p53 indirectly by deubiquitinating MDM2. (26)
USP5 Acts as a DUB for p53; regulates the expression of p53. (27)
USP9X Acts as DUB for ERG; regulates the expression of transcription factor ERG. (28)

Core binding factor
transcription complex

RUNX proteins Promotes prostate cancer cell growth and increases metastatic potential via matrix metalloproteinase
signaling.

(24)

Molecular chaperone HSP90 Interacts with oncogenic transcription factors include AR, p53 and HIF-1a (29, 30)
Hypoxia inducible factor
transcription complex

HIF-1a Induces angiogenesis; promotes cancer cell proliferation and survival; facilitates the development of
CRPC and metastasis

(31)

Tumour suppressing
phosphatase

PTEN Regulates the PI3K-Akt signaling pathway; loss of PTEN increases the aggressiveness of prostate
cancer.

(32)

Prostate specific
homeobox gene

NKX3.1 Regulates prostate epithelial cells differentiation and growth; reduced level of NKX3.1 increases the
aggressiveness of prostate cancer.

(33)

NF- kB NF- kB Promotes prostate tumour invasion; increases metastatic potential; inhibits prostate cancer cell death;
contributes to chemotherapy resistance.

(34)

FOX protein family FOXA1 Drives prostate cancer cell proliferation; maintain prostate cancer cell survival; regulates ETM transition. (35)
April 2022 | Volume 12 | A
AR, androgen receptors; ER, estrogen receptor; ERRa, estrogen related receptor alpha ETS, E-twenty-six; TMPRSS2, transmembrane-protease-serine 2; ERG, ETS related gene; EZH2,
enhancer of zeste homolog 2; PD-1, programmed cell death protein 1; BET, bromodomain extra-terminal enhancer; BRD, bromodomain-containing protein; YY1, transcription factor Ying
Yang 1; ETM, epithelial to mesenchymal; CRPC, castrate resistant prostate cancer; DUB, deubiquitinase; MDM2, murine double minute 2; USP, ubiquitin-specific peptidase; RUNX, runt-
related transcription factor; HSP, heat shock protein; HIF-1a, hypoxia inducible factor 1 alpha; PTEN, phosphatase and tensin homolog; PI3K, phosphoinositide-3-kinase; Akt, protein
kinase B; NF- kB, nuclear factor kappa B; FOX, Forkhead box.
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signaling pathways. Whilst several direct approaches to alter
transcription factor expression such as siRNA loaded
nanoparticles and lentiviruses are under development, this
mini review will focus on indirect approaches such as
modulation of epigenetic mechanisms, manipulation of the
ubiquitin-proteasome system, targeting the molecular
chaperone network and exploitation of proteins in
transcriptional complexes, with the discussion of some recent
successful attempts (Figure 1).
THERAPEUTIC TARGETING OF
TRANSCRIPTION FACTORS

Historically, many transcription factors have been considered as
‘undruggable’ targets, owing to their ‘intrinsically disordered’
interaction network formed with their functional partners (38,
39). In cells, transcription factors regulate gene expression through
protein-protein interactions (PPIs) with their co-activators and
co-repressors as well as via direct sequence specific DNA binding
(40). As a result, the lack of enzymatic activities and catalytic sites
presents a major blockade in the development of transcription
factor inhibitors and modulators (41). In addition, the
Frontiers in Oncology | www.frontiersin.org 3
transcription factor-DNA binding interfaces are often positively
charged and structurally convex, whereas the sites for
transcription factor-co-regulator interactions are much flatter
than the typical enzyme ligand binding pockets (42, 43).
Together, these properties further exacerbate the challenges in
developing small molecule inhibitors and modulators with
desirable ADME (Absorption, Distribution, Metabolism and
Excretion) indices (42, 43). In recent years, a plethora of studies
have demonstrated success in targeting transcription factors in
prostate cancer, showcasing the feasibility of this approach, and
challenging previous dogma. In particular, chemical inhibitors
targeting the AR ligand binding domains such as bicalutamide and
enzalutamide, have been developed (44, 45). Whilst the use of AR
inhibitors are now amongst the primary options for androgen-
targeted therapies in early-stage prostate cancers (45, 46), these
options become ineffective once the tumor becomes castrate-
resistant, as they are able to circumvent androgen targeted
treatments via various mechanisms which include AR
amplification, point mutation, splicing variants and replacing
AR functions with glucocorticoid receptors (4, 47, 48). As there
is a profound paucity of effective treatments for mCRPC patients
(49), research into methods of targeting non-AR transcription
factors in prostate cancer is critical.
FIGURE 1 | Current indirect methods for targeting transcription factors for prostate cancer therapy. Transcription factor (TF) activity may be indirectly modulated by
targeting enzymatic and non-enzymatic proteins involved in epigenetic signaling, through repurposing and manipulating aspects of the ubiquitin-proteasomal system
for control of transcription factor degradation, by targeting the molecular chaperone network and by exploiting co-activator and co-repressors associated with a
transcriptional complex. Using these methods, transcription factor activity can be favorable modified to decrease cancer cell survival, overall tumour growth and the
potential for metastatic dissemination.
April 2022 | Volume 12 | Article 854151
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MODULATION OF EPIGENETIC
MECHANISMS

Modulating epigenetic signaling pathways is one approach used
to target oncogenic transcription factors within prostate cancer.
As enzymes are druggable targets with relatively high tractability,
epigenetic writers and erasers such as acetyl transferase,
methyltransferase, deacetylases and demethylases provide a
direct target for inhibitor development (50). Enhancer of zeste
homolog 2 (EZH2) is an important epigenetic regulator and in
prostate cancer, it was found that EZH2 negatively regulates the
expression of interferon stimulated genes (ISGs) such as
programmed cell death protein 1 (PD-1) and major
histocompatibility complex, creating an immunosuppressive
tumor microenvironment and increasing resistance to immune
checkpoint blockade (ICB) therapies (16). In a recent study by
Morel and colleagues, inhibition of EZH2 restored the expression
of ISGs and reversed the resistance to ICB treatments,
highlighting the therapeutic potential of EZH2 inhibitors in
prostate cancer (51). The clinical applicability of EZH2
inhibitors was reinforced by Bai and colleagues, where EZH2
inhibition with GSK126 prevented prostate specific antigen
expression and overcame enzalutamide resistance in CRPC
(52). Furthermore, the development of neuroendocrine
prostate cancer (NEPC), an aggressive subtype of CRPC, was
also found to be associated with dysfunctional EZH2 activity
(53). Using GSK126, Dardenne and colleagues showed that
NEPC cells were more sensitive to EZH2 inhibition than
androgen sensitive LNCaP cells (54), however, the clinical
efficacy of EZH2 inhibitors against NEPC warrants further
investigation. Whilst EZH2 represents a major target for
prostate cancer, alternative targets include histone acetyl
transferase E1A binding protein (p300) and CREB binding
protein (CBP). In prostate cancer, p300 and CBP interact with
numerous oncogenic transcription factors, including p53, MYC
and AR, to drive tumour progression (55). These epigenetic
enzymes can be inhibited by a CellCentric developed compound,
CCS1477, where administration of CCS1477 was shown to
downregulate the expression of AR and MYC, resulting in
decreased tumor growth in a 22Rv1 xenograft model of CRPC
(56, 57).

Alternatively, targeting regulators that do not possess enzymatic
activities in the epigenetic signaling pathway have also proven
successful. MYC is one of the most dysregulated transcription
factors in human cancers (17). In prostate cancer, MYC remodels
the chromatin structure to stimulate cell growth and promote
oncogenic signaling via hyperacetylation (17, 18) and it has been
shown that these oncogenic effects are partly mediated by the
epigenetic reader protein, bromodomain extra-terminal (BET)
(58). As a result, targeting the BET family of proteins provides a
potential avenue to indirectly regulate the expression of MYC,
ultimately regressing prostate tumor progression. Indeed, I-
BET762, a BET inhibitor, has been shown to reduce MYC
expression. This was associated with decreased prostate cancer
cell proliferation, increased programmed cell death and reduced
in vivo prostate tumour burden, highlighting the possibility of
Frontiers in Oncology | www.frontiersin.org 4
targeting BET proteins as a treatment for prostate cancer (59).
The therapeutic potential of BET inhibition is further accentuated
by JQ1, an inhibitor that targets bromodomain containing protein
(BRD) 4 (60). BRD4 is a member of the BET family of proteins, and
it has been shown to interact with transcription factors such as AR
and MYC to mediate oncogenic effects (21). More recently, it has
been suggested that BRD4 also plays a role in regulating tumor
immune microenvironments. This is supported by Mao and
colleagues, where BRD4 inhibition with JQ1 reduced PD-1
expression and promoted CD8-mediated lysis of prostate tumor
cells both in vitro and in vivo (61). In addition, JQ1 was found to
mediate anticancer effect by downregulating the expression of
Achaete-scute homolog 1 (ASCL1) in small-cell lung cancer (62).
With recent evidence suggesting that ASCL1 as a key driver for
NEPC (63), JQ1 along with other BET inhibitors may have potential
as NEPC therapeutics. The BET inhibitors, BMS-986158 and
RO6870810 are now also in various phases of multicancer clinical
trials, with the pan-BET inhibitor ZEN-3694, showcasing
therapeutic efficacy in a Phase Ib/IIa mCRPC study (64–66).
MANIPULATION OF THE UBIQUITIN-
PROTEASOME SYSTEM

Another way to target transcription factor in prostate cancer is
utilizing the ubiquitin-proteasome system (UPS). Appropriate
levels of transcription factor expression in cells is key in
maintaining cellular homeostasis (67). Aberrant transcription
factor expression or failure in the expression of regulatory
circuits may lead to catastrophic effects and result in
pathophysiological states. Ubiquitin ligases (E3 ligases) are
enzymes in the UPS that catalyze the cellular process of
ubiquitylation, in which ubiquitin covalently attaches to the
substrate protein for proteasomal degradation as a method to
regulate transcription factor expression (68, 69). This unique
degradation pathway provides a potential platform for
controlling transcription factor expression in prostate cancer.

In several human cancers, including prostate cancer, the
expression of transcription factor and tumor suppressor p53, is
known to be highly dysregulated (70). This dysregulation can
arise from the increased activity of murine double minute 2
(MDM2), an E3 ligase, which decreases the expression of p53
and ultimately results in poor clinical outcomes for the patient
(12, 23). Thus Nutlins, a novel class of MDM2 inhibitors, were
developed by Vassilev and colleagues. The use of these inhibitors
increased cellular expression of p53 and its target gene p21 (71),
whilst further research using in vivo mouse xenograft models
with androgen dependent LNCaP and androgen independent
22Rv1 cell lines, demonstrated increased apoptosis and reduced
tumor burden in both cell types following Nutlins treatment (72,
73). To further improve the potency and selectivity of these
Nutlins, a second-generation compound Idasanutlin (RG7738/
RO5503781), was developed (74). Research shows that use of this
compound induces cell death via a combined mechanism of cell
cycle arrest and cytotoxic insult in LNCaP cells (75). The clinical
applicability of E3 ligase inhibition has recently been assessed in
April 2022 | Volume 12 | Article 854151
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a Phase I clinical trial for prostate cancer patients who have not
received docetaxel treatment previously (76). Whilst the trial was
terminated due to safety concerns and financial withdrawal from
Roche, promising preliminary results highlight the potential for
this class of compound, and E3 ligases in general, to be further
investigated as a prostate cancer therapy.

The utilization of the UPS (more specifically E3 ligase) to
target transcription factors within prostate cancer was taken
further with the discovery of proteolysis targeting chimeras
(PROTACs). PROTACs are bifunctional molecules comprised
of a protein interacting ligand, as well as an E3 ligase recruiting
ligand (77). The two ligands in PROTACs are linked in a
covalent manner, with protein interacting ligand binding with
the protein of interest such as a transcription factor, whereas E3
ligase recruiting ligand facilitates the process of ubiquitylation
and subsequent protein degradation (78). PROTACs generate a
‘knocked-down’ effect in cells, abrogating the cellular function of
the protein of interest (79). Furthermore, it was discovered that
this process is highly catalytic, where a single PROTAC molecule
can eliminate multiple protein of interest (80). As discussed
above, BET proteins regulate the expression of many pro-
oncogenic transcription factors such as AR and MYC, and
pharmacological inhibition of these regulatory molecules
results in an anticancer effect. Therefore, the use of PROTACs
could represent another avenue of pharmacological modification
on dysregulated transcription factor expression in prostate
cancer. WWL0245 is a highly selective and potent PROTAC-
based degrader of BRD4 and has been shown to function by
inducing cell cycle arrest of the androgen sensitive prostate
cancer cell lines, LNCaP and VCaP, in vitro. This was
simultaneously associated with the downregulation of
oncogenic transcription factors AR and c-Myc, which
highlights the therapeutic potential and clinical feasibility of
this approach in prostate cancer (81). Such notion was further
supported by Raina and colleagues, where they demonstrated
that pan-BET PROTAC, ARV-771, induced cell apoptosis and
tumour regression in a mouse xenograft model of CRPC (82).
Excluding BET, most of the current research is focused on the
PROTAC-based approached on targeting AR (83–85), whereas
attempts to target other dysregulated transcription factors in
prostate cancer via PROTACs is limited. Thus, identifying a
wider variety of protein interacting ligands should be the topic of
prospective research.

Another way to alter transcription factor expression is to inhibit
the activities of deubiquitinases (DUBs). DUBs are enzymes that
remove ubiquitin proteins in the UPS, terminating the ubiquitin-
mediated proteasomal degradation process (86). Ubiquitin-specific
peptidase (USP) 2a act as a DUB for MDM2, in which it positively
regulates the expression of MDM2 (26). Since MDM2 is an E3 ligase
for transcription factor p53, inhibition of USP2a would promote the
proteasomal degradation of MDM2 and indirectly regulate the
expression of p53 (23, 86). This was supported by Stevenson and
colleagues, where siRNA inhibition of USP2a led to the
accumulation of p53 protein in vivo, highlighting the therapeutic
potential to inhibit DUBs in prostate cancer (87). Inhibition of DUBs
in the context of prostate cancer is not limited to the p53 signaling
Frontiers in Oncology | www.frontiersin.org 5
pathway. The gene fusion product transmembrane-protease-serine-2
(TMPRSS2)-ETS-related gene (ERG) as a result of chromosomal
translocation is observed in 20 to 50% of prostate cancer patients
with different ethnicities (13, 14). The TMPRSS2-ERG fusion protein
was showed tomediate prostate cancer cell invasion and activation of
transcriptional programs for invasion-associated genes (15). The
expression of ERG is regulated by E3 ligase tripartite-motif-
containing-25 (TRIM25), whereas USP9X acts as DUB for ERG
deubiquitylation (28, 88). Thus, target inhibition of ERG or
TMPRSS2 may be beneficial in prostate cancer. WP1130 is a small
molecule inhibitor comprised of two protein reactive moieties, a 2-
bromo-pyridine functional group as well as an a,b-unsaturated
amide moiety that is able to undergo Michael addition reactions
(89). This enables WP1130 to interact with proteins in a partly
selective manner and exerts inhibitory effects onmultiple DUBs such
as USP5, USP9X and USP14 (90). It has been shown that WP1130
reduces the level of ERG in vitro by inhibiting the enzymatic function
of USP9X. This was associated with a decrease in tumour volume in
murine xenografts with VCaP cells, highlighting the clinical
feasibility to target DUBs in prostate cancer (28).
TARGETING THE MOLECULAR
CHAPERONE NETWORK

The molecular chaperone network is responsible for various
biological processes such as appropriate protein folding,
intracellular localization, and degradation, thus maintaining
protein homeostasis in cells (29). Chaperone protein such as
HSP90 exert these functions by interacting with a diverse range
of client proteins, and amongst them, many are oncogenic
transcription factors. They include AR, p53 and hypoxia
inducible factor (HIF)-1a (29, 30). As a result, disrupting
HSP90-transcription factor interactions via small molecule
inhibitors provide a potential pathway to rectify the
dysregulated mechanisms that cause prostate malignancy. 17-
AAG is the first-in-class HSP90 inhibitor developed by Schnur
and colleagues. However, the weak potency and poor
bioavailability of this compound has sparked further
optimization (30). Ganetespib is a second-generation HSP90
inhibitor with improved potency. It has been shown that
Ganetespib induced cell cycle arrest in LNCaP and LAPC4
cells and resulted in tumor regression in a PDX model of
CRPC (91), highlighting the feasibility and clinical applicability
of HSP90 inhibition as an anticancer treatment. This notion was
reinforced recently by SU086, another novel HSP90 inhibitor
that was found to reduce the proliferation of PC3 and DU145
prostate cancer cells in vitro and inhibit tumor growth in a
preclinical murine model of prostate cancer (92). In addition to
HSP90, other emerging targets from the molecular chaperone
network include HSP70 and HSP90 co-chaperone CDC37,
however, drug-like inhibitors targeting these two proteins are
yet to be developed (93). Whilst targeting chaperone proteins
other than HSP90 in prostate cancer are not well understood and
requires further investigation, it represents a novel strategy for
prostate cancer treatment.
April 2022 | Volume 12 | Article 854151
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EXPLOITING OTHER PROTEINS IN A
TRANSCRIPTIONAL COMPLEX

Another approach to modulate transcription factor expressions
can be achieved via the exploitation of proteins in a
transcriptional complex. HIF is a transcriptional complex that
plays a key role in inducing angiogenesis, an essential
requirement for prostate tumour growth and the CRPC
development. Prior to sufficient vascular development by the
prostate tumour, cancer cells must adapt to the low oxygen
concentration to fulfil their large energy expenditure (31).
Estrogen related receptor alpha (ERRa) is involved in the
regulation of prostate energy homeostasis (11). It has been
shown that ERRa can interact with hypoxia inducible factor 1
(HIF) transcription factor complex to prevent HIF-1a from
undergoing proteasomal degradation and augments the cellular
adaptive response to hypoxia generated by the prostate tumour
cells (94, 95). As a result, interference of this indispensable PPI
is a lucrative approach to develop prostate cancer therapeutics.
XCT790 is an inverse agonist of ERRa (94). It was
demonstrated that administration of XCT790 attenuated
ERRa-HIF-1 interactions and reduced the expressions of
HIF-1 (95). This was associated with a decrease in LNCaP
prostate cancer cell proliferation in vitro (95), outlining the
clinical applicability of this approach to disrupt transcription
factor interactions.

The heterodimeric transcription factor complex core binding
factor (CBF) is another emerging target. CBF consists of two
proteins: DNA binding runt-related transcription factor (RUNX)
and its non-DNA binding beta subunit (CBFb) (96). The CBFb
functions as a co-activator to RUNX, resulting in RUNX being
relieved from its autoinhibited state, facilitating the CBF complex
binding to DNA and regulation of target gene expression (97). In
recent years, there has been growing recognition of RUNX
transcription factors in promoting cell growth and metastatic
potential of prostate cancer via matrix metalloproteinase
signaling (24). Therefore, targeting such essential PPIs may
disrupt the transcription process of oncogenic genes, resulting
the anticarcinogenic effects. Successful targeting of this modality
was achieved using a monovalent derivative of the AI-10-49
scaffolds, a bivalent inhibitor that was originally developed to
target CBFb-smooth muscle myosin heavy chain interactions
(98). This novel monovalent inhibitor interferes the binding
Frontiers in Oncology | www.frontiersin.org 6
between wildtype CBFb and the RUNX1 protein by altering
their conformational dynamics (99). In a study on triple negative
breast cancer, CBFb-RUNX1 inhibition was shown to abolish
colony formation and alter the expression of epithelial-
mesenchymal transition genes, a characteristic cancer hallmark
associated with metastasis (99). With regards to prostate cancer,
this finding highlights the therapeutic potential to disrupt RUNX
interaction circuity, which may be applicable for developing
prostate malignancy therapeutics.
CONCLUSION

This mini review briefly summarized the recent success in
targeting non-AR transcription factors. However, it is worth
noting that possible approaches to modulate non-AR
transcription factors are not restricted to the ones mentioned
above, and these successful discoveries only mark the starting
point of further transcription factor research. Nevertheless, the
newly discovered inhibitors and modulators represent an
encouraging potential to develop effective treatment options
for mCRPC by targeting non-AR transcription factor.
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