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Nonalcoholic fatty liver disease (NAFLD) has become a major health issue in western countries in parallel with the dramatic
increase in the prevalence of obesity and all obesity related conditions, including respiratory diseases as obstructive sleep apnea-
hypopnea syndrome (OSAHS). Interestingly, the severity of the liver damage in obesity-relatedNAFLDhas been associatedwith the
concomitant presence of OSAHS. In the presence of obesity, the proinflammatory state in these patients together with intermittent
episodes of hypoxia, characteristic of OSAHS pathogenesis, may lead to an enhanced inflammatory responsemediated by a positive
feedback loop mechanism that implicates HIF-1 and NF𝜅𝐵. Thus, the severity of liver involvement in obese NAFLD patients with a
concomitant diagnosis of OSAHS could be explained. In this review, we focus on themolecular mechanisms underlying the hepatic
response to chronic intermittent hypoxia and its interaction with innate immunity in obesity-related NAFLD.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) encompasses a
wide spectrum of liver damage ranging from simple steatosis
to different grades of lobular inflammation, hepatocellular
ballooning, and fibrosis (nonalcoholic steatohepatitis;
NASH) that may eventually lead to an end stage liver disease
[1, 2]. Over the past decade, NAFLD has become a growing
medical problem and the main cause of liver disease in
industrialized countries [3, 4].This increase in the prevalence
of NAFLD mirrors the emerging epidemic of obesity and
metabolic syndrome in this setting [5, 6], which turns into
a rise in all obesity-related comorbidities [7], with special
interest in different respiratory conditions including the
obstructive sleep apnea-hypopnea syndrome (OSAHS) [8].
According to different prevalence studies, in up to 90% of
cases of obesity, understood as a body mass index (BMI)

higher than 30 kg/m2, exists a concomitantNAFLDdiagnosis
[7, 9, 10].

Recently, the severity of obesity-relatedNAFLD andmore
specifically in cases of morbid obesity (BMI higher than
40 kg/m2) has been associated with the concomitant diag-
nosis of OSAHS [11, 12]. But this association is not obesity
specific and has been described in population with a BMI
lower than 35 kg/m2 and in pediatric population, irrespective
of the concomitant presence of insulin resistance [13, 14].
The prevalence of OSAHS is higher in men than women
and has a direct correlation with the BMI and the hip-waist
index [15]. It is estimated that up to 60% of patients with
a BMI higher than 30 kg/m2 will develop OSAHS [16, 17].
One of the pathophysiological hallmarks of OSAHS is the
presence of intermittent episodes of sleeping hypoxia due
to the apnea-hypopneas [18]. Intermittent hypoxemia is cur-
rently considered a potential major factor contributing to the

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 319745, 8 pages
http://dx.doi.org/10.1155/2015/319745

http://dx.doi.org/10.1155/2015/319745


2 BioMed Research International

pathogenesis of OSAHS-related comorbidities. In the long
term, these intermittent episodes of hypoxia involve the
development of different cellular adaptive mechanisms, in
which hepatocytes are included [19–25]. These mechanisms
involve the hypoxia-inducible factor (HIF) transcription
factors, which are master regulators of the cellular response
to the hypoxia and coordinate a transcriptional program that
guarantee an adequate metabolic, vascular, and functional
response to oxygen deficiency [26]. Moreover, recently how
HIF transcription factors can be key elements also in the
control of immune cell metabolism and functionality has
been described [27].

Therefore, the aim of this review is to go through the
molecular mechanism underlying the hepatic response to
chronic intermittent hypoxia and to discuss its interaction
with innate immunity in the setting of obesity-related
NAFLD.

2. Cellular Consequences of Hypoxia

2.1. Hypoxia-Inducible Factor. The cellular adaptation to
hypoxia lies on the HIF transcription factor that is made up
of the HIF-1𝛽 subunit, which is constitutively expressed, and
two 𝛼 subunits: HIF-1𝛼 and HIF-2𝛼 [28]. This transcription
factor regulates the expression of multiple genes involved
in oxygen transportation, angiogenesis, proliferation, and
metabolism, enabling a cell to counteract a hypoxic environ-
ment [26].

Under normoxic conditions, the iron-dependent
enzymes prolyl hydroxylases (PHDs) present in the cyto-
plasm are active and hydroxylate HIF-𝛼, leading to its prote-
osomic degradation mediated by von Hippel-Lindau (VHL)
dependent ubiquitination. Contrary to this mechanism,
when oxygen levels decrease, PHDs are inactive and there-
fore HIF-𝛼 can accumulate, stabilize, and, eventually, translo-
cate to the nucleus. Another level of regulation is constituted
by the factor inhibiting HIF (FIH). FIH hydroxylates aspar-
aginyl residues in HIF-1𝛼 and HIF-2𝛼, reaching the blockade
of protein interactions between HIF-𝛼 and different coac-
tivators like P300 that form the transcriptional complex.
Oxygen acts as a cofactor of FIH and therefore when oxygen
is scarce, the ability of FIH to hydroxylate HIF residues
decreases leading again to HIF-𝛼 accumulation, stabilization,
and nuclear translocation [29, 30].

2.2. HIF and Innate Immunity: Association with Toll-
Like Receptors. Besides this posttranscriptional and oxygen-
dependent HIF regulation, there are other mechanisms of
HIF regulation at a transcriptional level that are oxygen-
independent and work under inflammatory, infectious, or
oxidative stress conditions [31]. In this sense, how bacterial
lipopolysaccharide (LPS), a cell membrane component of
Gram-negative bacteria, can increase HIF-1𝛼 transcription
has been previously shown [32]. Bacterial products are rec-
ognized by Toll-like receptors (TLRs) expressed on myeloid
cells. The downstream signaling of TLR involves NF𝜅B,
which plays a central role in regulating the immune response
to infection and inflammation, and also induces a HIF-1𝛼

mRNA transcriptional response. Moreover, key inflamma-
tory cytokines, as tumor necrosis factor alpha (TNF-𝛼), can
induce HIF-1𝛼 expression in innate immune cells [33]. Under
oxygen shortage conditions, the expression and signaling
transduction of TLRs increase, resulting in an amplification
of the NF𝜅B pathway [34].Thus, the innate immune response
is enhanced and amplified.

3. The Role of Hypoxia in Obesity-Related
Nonalcoholic Fatty Liver Disease

3.1. Effect of Hypoxia in the Liver. The repercussion of
intermittent hypoxia in the liver has been assessed in different
animal models addressing its consequences mainly in terms
of hepatocyte injury [22, 24], lipid accumulation [21], and
endothelial dysfunction [20]. First, Savransky et al. demon-
strated in animal models that intermittent hypoxia is able to
induce mild liver injury, being its main effect to predispose
the liver to the hepatocellular damage seen in different set-
tings, as alcohol intake, drug-induced hepatotoxicity, or the
low-grade inflammation present in the metabolic syndrome
[25].

Regarding NAFLD and NASH, how literature supports
a key role of hypoxia in lipid metabolism is of interest [35].
Importantly, Piguet and collaborators showed in mice mod-
els of nonalcoholic steatohepatitis how hypoxia upregulates
genes involved in lipogenesis, like SREBP-1c (sterol-regula-
tory-element-binding protein-1c), PPAR-gamma (peroxi-
some-proliferator-activated receptor-gamma), ACC1 (acetyl-
CoA carboxylase 1), or ACC2 (acetyl-CoA carboxylase
2), whereas genes involved in lipid metabolism as PPAR-
alpha (peroxisome-proliferator-activated receptor-alpha)
and CPT-1 (carnitine palmitoyltransferase-1) were downreg-
ulated [23]. Moreover, hypoxia has been also associated with
upregulation of genes involved in lipid uptake and lipid
droplet formation [36, 37]. Several works have focused on the
role of HIF signal-transduction pathway in lipid metabolism
and liver damage under hypoxic conditions. Thus, Rankin
et al. showed in different animal models that HIF-2𝛼 acts
as a key regulator of hepatic lipid metabolism, as it impairs
fatty acid 𝛽-oxidation, increases lipid storage capacity, and
decreases lipogenic gene expression, all of these resulting in
the development of severe hepatic steatosis [38]. Later, Qu
and collaborators working with animal models that over-
expressed HIF through VHL-disruption demonstrated that,
besides a time-dependent effect of HIF on lipogenic gene
expression, a rapid increase in proinflammatory cytokines
and fibrogenic gene expression was also observed in hypoxia
[39].

Nevertheless, conflicting results have been observed
regarding HIF-1𝛼 downstream signaling in the liver. More
than a decade ago, Yun et al. [40] elegantly showed in an
animal model how hypoxia inhibits adipogenesis via HIF-
1 through repression of PPAR𝛾2 promoter activation by the
HIF-1-regulated geneDEC1/Stra13. More recently, Nishiyama
et al. have suggested thatHIF-1𝛼may act as a protective factor
against lipid accumulation in ethanol-induced liver damage
through activation of DEC1 [41]. These results are in agree-
ment with different studies that have shown beneficial effects
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of short-term intermittent hypoxia in terms of endothelial
function, mitochondrial activity, and steatosis development
[42, 43]. In contrast, Nath and collaborators [22] showed that
alcohol intake leads to hepatic fat accumulation throughHIF-
1𝛼 activation in mice engineered with hepatocyte-specific
HIF-1𝛼 activation, whereas hepatocyte-specific deletion of
HIF-1𝛼 conferred protection from alcohol. Moreover, how
the coexistence of alcohol and lipopolysaccharide (LPS)
mediated liver damage enhanced hepatic steatosis through
induction of monocyte chemoattractant protein 1 (MCP1) via
HIF-1𝛼 activation was demonstrated.

The effect that hypoxia exerts on insulin signaling is
also of great interest, as insulin resistance is a characteristic
hallmark in fatty liver development. In this sense, previous
studies in liver specific Phd3 (an isoform of prolyl hydrox-
ylases) knockout mice have suggested that stabilization of
hepatic HIF-2𝛼 turns out into improved insulin sensitivity
[44]. In line with this study, Wei et al. [45] demonstrated a
link between HIF-2𝛼 expression, but not HIF-1𝛼 in murine
liver, and an increase in hepatic insulin sensitivity through
the induction of insulin receptor substrate 2. This study
also pointed out the distinct roles in hepatic metabolism for
HIF-1𝛼, which promotes glycolysis, versus HIF-2𝛼, which
suppresses gluconeogenesis.

Finally, hypoxia is a major feature in many solid tumors,
including hepatocellular carcinoma (HCC). It can promote
tumor progression in amechanism at least partially promoted
by HIF-1 that activates hypoxia-responsive genes that will
interplay in the natural history of HCC. These genes will
mediate in multiple aspects of proliferation, metabolism,
angiogenesis, invasion, metastasis, or therapy resistance [46–
48].

3.2. Consequences of Hypoxia in Adipose Tissue. Expanded
subcutaneous and visceral fat is a hallmark of obesity. As
a result of this, the enlarged adipose tissue produces and
releases different proinflammatory cytokines and adipokines
that will be, at least in part, responsible for the low-grade
proinflammatory state associated with obesity [49–51].
Recently, it has been suggested that fat inflammation can
also be triggered by hypoxic conditions [52]. The reduction
in oxygen availability in adipose tissue of obese patients,
irrespective of concomitant respiratory conditions, responds
to different factors. When adipocytes get bigger, the oxygen
diffusion can be impaired, oxygen supplymay be reduced due
to a decrease in capillary density, and finally and as shown
in a recent study obesity and high-fat diet can also increase
oxygen consumption in adipocytes, probably due to uncou-
pled respiration induced by free-fatty acids [53–56]. More-
over, oxygen shortage in adipose tissue will lead not only to
the production of adipokines and proinflammatory cytokines
[57], but also to an impaired glucose homeostasis and lipid
metabolism [58, 59]. Furthermore, hypoxia also inhibits adi-
pogenic differentiation, which favors adipocyte enlargement,
with the perpetuation of the situation [40]. Taking together
all this data, it can be assumed that adipose tissue hypoxia is a
major driver of cardiovascular and metabolic entities associ-
ated with obesity and mediated by inflammation. According

to this, how the deletion of HIF-1𝛼 in adipocytes enhances
glucagon-like peptide-1 secretion and reduces adipose tissue
inflammation has been shown, improving glucose tolerance.
This points out a potential new target in obesity-related
comorbidities [60].

4. Innate Immunity in Nonalcoholic Fatty
Liver Disease: Role of Toll-Like Receptors

The high prevalence of cardiovascular comorbidity in NASH
patients is assumed to be associated with a low-grade
proinflammatory state [61], initiated mainly in the expanded
visceral fat and at least partially perpetuated in the liver
[62, 63]. Activation of inflammatory pathways in both fat
tissue and liver includes those dependent on TLRs and
merges mainly in the activation of NF𝜅Β [64–66]. TLRs are
pattern recognition receptors that characteristically perceive
pathogenicmicroorganisms and bacterial-derivedmolecules,
leading to the production of different proinflammatory
cytokines [67, 68]. Among the thirteen different TLRs that
have been described in mammals, only TLR2, TLR4, TLR5,
and TLR9 have been documented to clearly associate with
NAFLD pathogenesis and progression [69–74].

The role of TLR4 has been extensively assessed in both
animal models and humans. TLR4 forms a complex with
MD2 on the cell surface that specifically binds and responds
to bacterial LPS [75, 76]. Circulating LPS levels appear
increased in animal models and patients with a diagnosis
of NAFLD, but also in patients with insulin resistance [77–
79]. This endotoxemia may be explained by different factors
associated with gut microbiota, gut permeability, and high-
fat diet [80–84]. Furthermore, LPS can also be increased in
patients undergoing intestinal bypass or in patients with total
parenteral nutrition, resulting in the development of steatosis
that can occur irrespective of the presence of other features
of the metabolic syndrome [85–87]. The determinant role
of this TLR4-LPS interaction and downstream signalling in
NAFLD pathogenesis has been documented in TLR4 mutant
mice in which, besides the presence of similar plasmatic
levels of LPS compared to wild type animals, the expression
of proinflammatory cytokines was suppressed and neither
NAFLD nor insulin resistance was developed [70, 88].

Additionally, it is important to note that TLR4 can also
respond to free-fatty acids (FFA). In this line, a recent study
in humanmonocytes has demonstrated that FFA can activate
TLR4 in the presence of high levels of glucose [89]. This
phenomenon can be explained due to the fact that lauric
acid, a medium chain fatty acid also present in LPS, can exert
downstream signaling dependent on TLR4 in macrophages
[90, 91]. Thus, saturated fatty acids, whose levels are fre-
quently increased in plasma of obese patients, can play a key
role in the development of diet-induced IR, as has been pre-
viously reported [92].

Different studies have implicated TLR4 in the pathogen-
esis of HCC in NAFLD [93, 94]. In the last decade, a number
of studies have addressed the implication of proinflammatory
signaling transduction and carcinogenesis [95–97]. In this
line, Dapito et al. established in a recent study the impor-
tance of the LPS-TLR4 pathway in hepatocarcinogenesis
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in several genetically different mouse lines in which HCC
was induced following different protocols. This way, they
could demonstrate that inactivating TLR4 had no effect on
HCC incidence but significantly reduced tumor size and
number. Additionally, in wild type mice intoxicated with
DEN/CCl4, they found that continuous administration of
LPS increased tumor number and size [93]. Although in this
study no association between TLR4 pathway and incidence
was observed, previously Yu et al. did find this association
[98]. This discrepancy might be explained by the different
source of the LPS used as TLR4-agonist implicated in HCC
development.

Regarding other TLRs implicated in NAFLD pathogene-
sis, TLR2 is also a cell surface receptor, which is involved in
the recognition of a wide range of pathogen-associated
molecular patterns (PAMPs) including peptidoglycan, a com-
ponent of the cell surface of Gram-positive bacteria [75].
These subtypes of bacteria include Firmicutes, whose increase
has been reported in animal models and humans subjected
to a high-fat diet [99]. Furthermore, this dysbiosis has also
been associated with NAFLD [100]. The connection between
gut microbiota and NAFLD has been previously addressed
in different studies. Thus, research on mice on a high-fat
diet has shown that the blockade of TLR2 signaling prevents
the development of insulin resistance [80]. Moreover, TLR2
deficient mice with a dietary-induced NASH do not develop
steatohepatitis and display lower expression of proinflamma-
tory cytokines [101, 102].

Briefly, according to TLR5 and TLR9, whereas TLR5 is
another cell membrane receptor, TLR9 is the only intracellu-
lar TLR implicated inNAFLDpathogenesis. TLR5 recognizes
the flagellin protein component of bacterial flagella and has
not been directly associated with NASH but with dysbiosis
and related metabolic syndrome [74, 103, 104]. Thus its
role in NAFLD pathogenesis remains to be clarified. TLR9
recognizes unmethylated DNA motifs that are frequently
present in bacteria and viruses but rare in mammalian
cells. Studies in TLR9 (−/−) mouse models of NASH have
shown that TLR9 downstream signaling is associated with
NASH severity and fibrosis by the production of IL-1𝛽 [105].
Finally, in animal models of colitis with high portal levels of
LPS, an increase in hepatic TLR9 mRNA levels associated
with hepatic steatosis, inflammation, and fibrosis has been
documented [106].

5. Interaction between Hypoxia
and Inflammatory Pathways in
the Development of Obesity-Related
Nonalcoholic Fatty Liver Disease

Lipid accumulation in the form mainly of triglycerides is the
distinctive trait of NAFLD. In less than 25% of cases, this
deposit leads to a variable degree of lobular inflammation
and hepatocellular injury and, consequently, a higher risk of
disease progression [1, 107]. The reasons why liver diseases
eventually progress to more severe forms only in some
patients remain to be fully elucidated and are subject of
study and debate. Thus, in 1998 Day and James expound the

classic “two-hit” hypothesis of NAFLD pathogenesis [108].
According to this hypothesis, the disease pathogenesis is
sequential, with a first hit consisting in an excessive intra-
hepatic lipid accumulation, which can be followed by a
second hit, resulting in inflammation, hepatocellular damage,
and, therefore, NASH. A decade later, Tilg andMoschen pro-
posed the so-called “multiple parallel hits” hypothesis [109]
where it was suggested that disease pathogenesis may not
be sequential. According to this work, inflammation could
precede steatosis in certain scenarios andNASHdevelopment
could be the consequence of different parallel hits derived
from the gut and/or the adipose tissue. Interestingly, in
this setting, many cytokines, adipokines, and inflammatory
signaling networks mainly regulated by innate immunity
emerged as key elements in the disease progression.

As previously mentioned, the activation of inflammatory
pathways in NAFLD, not only in the liver, but also in the
adipose tissue, with eventual reflection in the liver, includes
those dependent onTLRs andmergesmainly in the activation
of NF𝜅Β [64–66]. Importantly, it has been demonstrated
that NF𝜅Β is a critical transcriptional activator of HIF-1𝛼
and basal NF𝜅Β activity is required for HIF-1𝛼 protein
accumulation under hypoxic conditions [110]. Moreover,
hypoxiamaymodulate innate immune response in the setting
of an infection or inflammation by transcriptional regulation
of TLRs expression and function via HIF-1𝛼 [34, 111]. Thus,
the inflammatory scenario present in NASH may boost and
possibly perpetuates the consequences of hypoxia in both
the liver and adipose tissue. This overexpression of HIF-
1𝛼 under inflammatory conditions can possibly explain the
divergences seen in previously mentioned studies assessing
its role in NAFLD, since the consequences of hypoxia may
differ in the setting of simple steatosis compared to NASH
[22, 41]. Furthermore, proinflammatory cytokines as IL-6, IL-
1, and TNF-𝛼 will also contribute to the “vicious circle” of
steatosis and inflammation by increasing the lipid deposits
through a mechanism that implicates TLRs and leads to
insulin resistance [49, 105, 112, 113].

Summarizing, as previously suggested by Savransky et al.
[25], chronic intermittent hypoxia can be considered to
predispose to liver injury sensitizing the liver to a second
insult. In the presence of obesity, the proinflammatory state in
these patients together with intermittent episodes of hypoxia
may lead to an enhanced inflammatory response mediated
by a positive feedback loop mechanism that implicates HIF-1
and NF𝜅Β, which could explain the presence of more severe
forms of liver involvement in obesity-related NAFLD in the
presence of OSAHS [11]. Thus, hypoxia could be considered
as another “hit” among the “multiple parallel hits” that have
been suggested as responsible for disease pathogenesis.

6. Concluding Remarks

Obesity and obesity-related comorbidities, including respi-
ratory conditions as OSAHS, are dramatically increasing in
the last decades. In this scenario, different pathogenicmecha-
nisms coexist with a complex molecular signaling network in
which inflammation plays a preeminent role. In line with this,
it is important to better define and understand the interaction
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of different etiologies in the same individual that eventually
may lead to insulin resistance, metabolic syndrome, and liver
injury. In this review, we have focused on the molecular
mechanism underlying inflammatory pathways in insulin
resistance and NAFLD triggered by hypoxic conditions, so
frequent in obesity. These two elements are modulated by
multiple factors like diet, microbiota, or genetic background
that can intensify and even perpetuate the inflammatory
response. Importantly, inflammation mediated by innate
immunity and hypoxia may lead to the development of HCC,
among other tumors. From a further and deeper understand-
ing of the molecular basis underlaying HCC pathogenesis
new approaches and molecular targets will be developed.
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