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Systems biology and omics has provided a comprehensive understanding about the
dynamics of the genome, metabolome, transcriptome, and proteome under stress. In
wheat, abiotic stresses trigger specific networks of pathways involved in redox and
ionic homeostasis as well as osmotic balance. These networks are considerably more
complicated than those in model plants, and therefore, counter models are proposed
by unifying the approaches of omics and stress systems biology. Furthermore, crosstalk
among these pathways is monitored by the regulation and streaming of transcripts and
genes. In this review, we discuss systems biology and omics as a promising tool to
study responses to oxidative, salinity, and drought stress in wheat.
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INTRODUCTION

Bread wheat (Triticum aestivum L.) is cultivated globally on 200 million ha, with a production
of 650 million tons per annum, ranking third after maize and rice (Akpinar et al., 2015). Bread
wheat fulfills 20% of the human dietary energy requirement, and is therefore considered a vital
component of human diet (Kurtoglu et al., 2014). About 82–85% of the global population depends
on wheat for basic food ingredients, i.e., protein, dietary fiber, vitamins, phytochemicals, sugar,
and free amino acids (Akpinar et al., 2015). Steady but sustainable increase in wheat yield is
an obligatory requirement for future food security (Mochida and Shinozaki, 2013). Every year,
environmental stresses such as drought and salinity cause a substantial loss in crop productivity
(Wang et al., 2003). Abiotic stresses are a major hindrance to worldwide crop production, and are
projected to affect roughly 20% of the total irrigated area worldwide, causing waste to 50% of the
land by the mid-21st century (Mahajan and Tuteja, 2005). Of the total available cultivated area of
1.5 billion ha, 20% is irrigated, whereas 60% is rain-fed, contributing to 40 and 60%, respectively,
of total food production (Kosová et al., 2014). Wheat, an important crop worldwide, is severely
affected by drought stress under both rain-fed and irrigated conditions.
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Climatic and various environmental constraints severely
influence the production of wheat crop (Semenov et al.,
2014). Limited water supply, thermal alterations and high
salinity significantly impair the grain yields in wheat (Porter
and Semenov, 2005). Potential yield losses associated with
these stresses could be combated through the selection and
adaptation of cultivars with improved genetic traits (Lobell
and Gourdji, 2012; Reynolds et al., 2012). Nevertheless, abiotic
stresses not only affect the yield, but also the quality of a
crop product, i.e., nutritional value, aroma, color, flavor, and
processing properties (Reynolds et al., 2012). Understanding
the biochemical pathways, physiological impacts, and molecular
mechanisms is highly important to combat these abiotic
stresses through the genetic improvements in plants against
stress tolerance, yield, and food quality (Hrmova and Lopato,
2014).

Stress biology is a multidisciplinary, integrated, and systematic
study of biological systems that utilizes modern omics
approaches to analyze genome, metabolome, transcriptome,
and proteome under stress (Akpinar et al., 2015). The whole
interactome for drought and salinity stress is obtained by
the integration of data from relative gene expression, pools
of metabolites, and the subsequent production of proteins
under stress (Kosová et al., 2014; Kurtoglu et al., 2014).
Plants have evolved intricate mechanisms by allowing optimal
responses to enable adaptation or avoidance of the stress
under such conditions (Hrmova and Lopato, 2014). These
intricate mechanisms are usually regulated at the cellular
level, such as changes in cell cycle regulation and cell division,
membrane adjustments, cell wall modifications, synthesis
of endogenic and low-molecular-weight molecules such
as abscisic acid, ethylene, jasmonic acid, and salicylic acid
(Hrmova and Lopato, 2014; Noctor et al., 2014). All elements
that trigger specific mechanisms in response to abiotic stress
signals are studied under the scope of stress systems biology
(Table 1).

Over the course of time, systems biology has appeared
as a promising field that integrates massive amounts of data
from genome-wide technologies and involves the use of
computational models to help understand the topology and
dynamical function of the molecular systems that constitute
and sustain an organism (Noctor et al., 2014; Pandey et al.,
2017). A large number of collaborating networks of responses
have been constructed for model plants under abiotic stresses.
The main objective of this review is to elucidate the molecular
dynamics of wheat under drought and salinity stress, as well
as to develop comprehensive stress-signaling models that
can integrate stress systems biology with omics. Various
cellular processes and antioxidant mechanisms operate
inside the cell system to counter the alterations induced
in cellular homeostasis by drought and salinity (Pandey
et al., 2017; Zang et al., 2017). Therefore, before discussing
how various mechanisms act under such circumstances, we
need to understand the basic dynamics of working systems
to address the homeostatic alterations in wheat systems
biology.

ANTIOXIDANT SYSTEMS: DEFENSE,
SIGNALING, AND STRESS REGULATION

The production of intracellular ROS (reactive oxygen species)
under optimal growth conditions are reactive chemical species.
Under abiotic stress conditions, the CO2 uptake is limited,
which causes stomatal closure and favors the photorespiratory
production of superoxides, singlet oxygen, and H2O2 in
the peroxisome due to over reduced photosynthetic electron
transport chain (Noctor et al., 2014). Plasma membrane and
the apoplast are the main sites for ROS generation in response
to various exogenous environmental stimuli and endogenous
signals. Hyper production of ROS under abiotic stresses cause
extensive deregulation of cellular energetics and inhibition of
physiological processes in plants, which further effects plant
growth and yield. These overproduced ROS are highly reactive
and toxic for the breakdown of proteins, lipids, and nucleic
acids with a result in cell death and could also work as
signals for the activation of stress response pathways (Gill
and Tuteja, 2010; Baxter et al., 2014; You and Chan, 2015).
To protect these cellular damages in plants against these
overproduced ROS, an efficient enzymatic and non-enzymatic
antioxidative system exists to modulate these ROS at low
levels for signal transduction pathways. A dynamic equilibrium
between ROS production and scavenging is usually disturbed
when ROS production overwhelms the cellular scavenging
capability (Pandey et al., 2017). This disequilibrium results in a
sudden excess of ROS, commonly called oxidative stress (Zang
et al., 2017). In these circumstances, antioxidative mechanism
would be an instantaneous endogenic choice for the plants to
counter ROS hyper production, under abiotic stresses which
cause high ROS concentration and cellular damage inside the
cell.

Plants possess antioxidant machinery for ROS scavenging
and the protection of cells from oxidative damage. To sustain
growth, production, metabolism, and development, as well as
to overcome the potential damage by ROS to cellular parts, the
balance between ROS generation and scavenging should be firmly
regulated (Tang et al., 2014; Zang et al., 2017). This balance is
maintained by both enzymatic and non-enzymatic antioxidants
(Tang et al., 2014). Enzymatic antioxidants include glutathione
reductase (GR), peroxidase (POX), glutathione peroxidase
(GPX), ascorbate peroxidase (APX), catalase (CAT), superoxide
dismutase (SOD), dehydroascorbate reductase (DHAR) and
mono dehydroascorbate reductase (MDHAR) (Varga et al., 2012;
Tang et al., 2014), whereas non-enzymatic antioxidants include
phenolic compounds such as glutathione (GSH), carotenoids,
tocopherol and ascorbate (Varga et al., 2012). Antioxidant
enzymes work together to detoxify ROS and located at different
sites within plant cells. Initially, the SOD antioxidant convert
O2 into H2O2 and later on, CAT, APX, and GPX enzymes
detoxify the H2O2 generated in the first step. Unlike CAT,
APX needs non-enzymatic antioxidants such as GSH and
ascorbic acid to reduce H2O2 with the help of MDHAR,
DHAR, GR, GPX, and GST (Varga et al., 2012; Keunen
et al., 2013). Conversely, PRX and organic hydroperoxides
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TABLE 1 | Specific dynamics of stress systems biology associated with abiotic stress signaling.

Molecular
processes

Sensing activities Signaling factors and
Receptors

Accessory proteins Reference

Signaling pathways Fluctuation in turgor of stomatal guard
cells as well as alteration in the levels of
cellular K+, ABA and pH

PYLs, RCARs, PYR1
(regulatory components
of ABA receptors)

MAPK, CIPK Pizzio et al., 2013; Kosová
et al., 2014

Genetic expression
and regulation

Rise in the concentration of enzymes
responsible for JA biosynthesis
Enhanced production of salicylic acid

ABF, AREB, NAC, CBF
CBF4, MYB, NAM,
MYC, DREB1, REB2
(transcription factors)

(ROS) scavenging enzymes, PR
proteins, 12-oxophytodienoate
reductase

Alvarez et al., 2014; Kosová
et al., 2014, 2015

Protein metabolism Alterations in complete translational
machinery along with protein
biosynthesis

Elongation factor
eEF-1α

E1 to E3 components ubiquitin
ligase complex

Ghabooli et al., 2013;
Kosová et al., 2015

Amino acid
metabolism

Increased S-adenosylmethione,
Phenylalanine, γ-aminobutyric acid
(GABA), proline, tryptophan, tyrosine,
phenylalanine, leucine, isoleucine, and
valine

Methylation of
monolignols

SAMS, PAL. Bowne et al., 2012;
Faghani et al., 2015;
Shankar et al., 2016

Hormone
metabolism

Upregulation of
abiotic-stress-associated hormones
such as JA, ABA, and SA

GA2OX1 (involved in
gibberellin signaling),
GID1L2 (gibberellin
receptor involved in
gibberellin signaling)

DELLA proteins, 9-cis-
epoxycarotenoid-dioxygenase

Krugman et al., 2011;
Kosová et al., 2015;
Shankar et al., 2016

Energy metabolism Rise and fall in the levels of various
proteins related to respiration,
ATP-biosynthesis, and respiration

RubisCO LSU, PSI
Fe-S, PSII LHC protein,
and SSU
(photosynthesis related
transcripts)

PGK, PRK, RubisCO activase,
pyruvate kinase, alcohol
dehydrogenase, and
2,3-bisphosphoglycerate-
independent phosphoglycerate
mutase.

Kosová et al., 2015;
Vítámvás et al., 2015

Stress-responsive
proteins

Increased deposition of hydrophilic
proteins and osmolytes with chaperone
functions

GABA and polyamines,
dehydrin protein DHN5

HSP70, HSP90, HSP100, PDI,
P5CS

Vítámvás et al., 2015;
Bevan et al., 2017

Cellular transport Variation in protein ingredients
determining both membrane and
cytoplasmic transport

Actin, Annexins Zhang et al., 2014;
Vítámvás et al., 2015

Metabolic activities
monitoring the cell
wall

Disruption in the metabolism of lignin
and polyglucan, which is associated
with reduced cell wall extensibility

Extensin, ABA,
glycine-rich protein,
and germin

XET, PAL, COMT, caffeoyl-CoA, Krugman et al., 2011;
Alvarez et al., 2014;
Shankar et al., 2016

Recovery after
stress

Transcripts of many drought-associated
genes such as sugar transporters and
protein kinases show downregulation

Cytochrome P450,
COR410 SDi-6,
HCF136, tubulin α-2,
and OEE2

Polyubiquitin, peroxidases,
P5CS, HSP60, and CCOMT

Ford et al., 2011; Hao
et al., 2015

Mechanisms during
grain-filling phase

Chlorophyll degradation in spike organs
indicates a reduced oxidative owing to
decreased rates of photosynthesis

Chlorophyllase, pheophorbide a
oxygenase

Shankar et al., 2016;
Vu et al., 2017

Abbreviations for accessory proteins XET, 1,4-β-endo-transglycosylase; PAL, phenylalanine ammonia lyase; COMT, caffeic acid O-methyltransferase; P5CS, pyrroline-
5-carboxylase synthase; PGK, phosphoglycerokinase; PRK, phosphoribulokinase; SAMS, S-adenosylmethionine synthetase; MAPK, mitogen activated protein kinase;
CIPK, CBL-interacting protein kinase; HSP, heat shock proteins; CCOMT, Caffeoyl-CoA O-methyltransferase; GABA, gamma-aminobutyric acid; DHN5, Wheat dehydrin
protein.

use the GSH, thioredoxin (TRX), or glutaredoxin (GRX)
as nucleophiles through ascorbate-independent thiol-mediated
pathways (Keunen et al., 2013). Non-enzymatic antioxidants
are also crucial for ROS homeostasis in plants and include
carotenoids, flavonoids, GSH, AsA, and tocopherols (Tang
et al., 2014). Besides traditional enzymatic and non-enzymatic
antioxidants, soluble sugars, including raffinose, fructose, glucose
including various disaccharides and oligosaccharides, also have a
role with respect to ROS detoxification (Keunen et al., 2013). The
production rates of ROS are directly linked with soluble sugars,
which regulate mitochondrial respiration or photosynthesis
metabolic pathways to detoxify ROS (Pandey et al., 2017). On

the other hand, they also feed NADPH-producing metabolic
pathways to contribute to antioxidative progressions (Kong et al.,
2013; Caverzan et al., 2016).

Avoiding ROS production under abiotic stress conditions
might also be more important to maintain ROS homeostasis
than the antioxidative system (You and Chan, 2015). In the
electron transport chains of mitochondria, the excess generation
of ROS can be prevented by alternative oxidases (AOX) (Niu
and Liao, 2016). AOX pathway can also decrease the electron
leaking possibility to O2 to generate super-oxide by diverting the
electrons flowing through electron-transport chains. Additional
mechanisms, such as the rearrangement of the photosynthetic
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apparatus, leaf movement, and curling might also signify an
effort to avoid the over-reduction of ROS by harmonizing the
amount of energy absorbed by the plant as well as CO2 availability
(Mittler, 2002). In wheat, alterations in the activity of antioxidant
enzymes POX, SOD, CAT, APX, and GR (Caverzan et al., 2016),
and in the level of ROS (Kong et al., 2013) during abiotic
stress have been reported to counter oxidative stress (Talaat and
Shawky, 2014). Correspondingly, these findings reveal activation
of the ROS scavenging processes in wheat. The alteration in
the antioxidant activity of these enzymes in wheat is a defense
mechanism to avoid oxidative damage under abiotic stress (Xu
et al., 2013). High concentrations of ROS are deleterious to the
plant, and therefore, the activation of both enzymatic and non-
enzymatic entities triggers redox homeostasis to eliminate toxic
levels of ROS (Varga et al., 2012). However, studies have revealed
that different genotypes of wheat show differential responses
to the same stress condition. The higher antioxidant ability of
tolerant genotypes is related to their genetic architecture and
protects them from severe oxidative damage. Furthermore, the
complexity of ROS production and scavenging mechanisms in
wheat is determined by the length and intensity of stress, as well
as the developmental stage and tissue type.

Similarly, the stress type, intensity, and duration also regulate
the production of H2O2, and its concentration differs across
various cellular compartments (Talaat and Shawky, 2014). In
biological systems, H2O2 is one of the most abundant ROS;
it causes high toxicity due to its high reactivity (Xu et al.,
2013). It is a signaling factor that triggers various responses in
plant cells to counter abiotic stresses. Several factors such as
production site, type of stress, and exposure time, as well as
concentration, determine the biological effect of H2O2 (Petrov
and Van Breusegem, 2012; Xu et al., 2013). At low concentrations,
H2O2 serves as a signaling molecule, owing to its ability to
diffuse across plasma membranes and its compartmentalization
in cellular organelles, and thus elicits the stress response in
crop plant (Petrov and Van Breusegem, 2012). Recent studies
have revealed that, in wheat, early H2O2 treatment improves
tolerance to abiotic stresses; however, these responses are not
completely elucidated in adult plants at their final growth
stages (Petrov and Van Breusegem, 2012; Talaat and Shawky,
2014). Studies conducted on the stress physiology of biological
systems have demonstrated varying physiological responses at
different developmental stages. Ge et al. (2013) have reported
that H2O2 acts as both a signaling molecule and a deleterious
agent in wheat seedlings under stress. Correspondingly, the
concentration of H2O2 determines its beneficial or toxic role in
plants. Following H2O2 signaling, various signaling entities such
as miRNAs, transcription factors, and MAP-kinases participate
in transduction networks (Petrov and Van Breusegem, 2012).
Moreover, H2O2 production sites, concentrations, and crosstalk
with other signaling pathways also play an important role in
determining the subsequent response (Ge et al., 2013). Hence, the
processes by which ROS scavenging counters different stresses
need to be investigated further as several other biochemical,
genetic, and molecular pathways could be involved in and
contribute to this tolerance (You and Chan, 2015).

SALINITY TOLERANCE: SIGNALING,
GENE EXPRESSION, AND REGULATION
PROTOTYPE

Wheat plants utilizes phenotypic plasticity to mitigate the
effects of salinity stress by upregulating of various stress
responsive genes including ion transporters, transcriptional
factors, signaling pathway modifiers, osmolytes production and
antioxidative enzymes (Ge et al., 2013). Numerous pathway
responses that altered due to the salinity mark the salt-responsive
genes in tolerant plants which facilitate to understand the
expression prototype of existing genes during the whole span of
stress (Darko et al., 2017). Many genes are implicated in salinity
tolerance; however, a comprehensive investigation is needed to
resolve the complexity of the response to salinity stress at the
genomic level (Abogadallah, 2010; Darko et al., 2017). Unification
of systems biology and omics could specifically elucidate the
genomic and metabolic responses of cells in a precise manner,
providing better insights into various interconnecting signaling
process that regulate cellular homeostatic machinery during
stress.

High salinity level creates ionic imbalance and hypertonic
effects, which inhibit crop yield at the molecular, biochemical,
and physiological levels, either directly or indirectly
(Abogadallah, 2010). Moreover, salinity stress is predicted
to hamper photosynthesis, enhance photorespiration, deactivate
enzymes, increase ROS damage, and ultimately lead to
chloroplast damage. Hence, plants have developed various
processes, including salt exclusion and compartmentalization
(Zhang et al., 2016), to effect the successive biological and
physiological changes that mitigate the harmful effects of salt
stress (Darko et al., 2017). This phenotypic plasticity is governed
by the upregulation and downregulation of different genes to
decrease or protect from ROS damage, reformulate osmotic and
ionic balance, and resume growth during high levels of salinity
stress (Liu et al., 2014).

To elucidate the molecular dynamics of salt tolerance and
increase the productivity of crops, substantial efforts has been
made to develop genetic model systems. ROS scavenging is an
efficient means mitigate oxidative damage and manipulate the
expression of associated genes such as those encoding SOD,
APX, and GRs, which provide salt tolerance (Abogadallah, 2010).
Vacuolar compartmentalization maintains Na+/K+, and thereby
also enhances salt tolerance.

Zhang et al. (2016) reported three pathways governing the
salinity counter mechanisms in cotton. However, we proposed
a salinity counter model for wheat that demonstrates how
various genetic determinants are regulated via different pathways,
ultimately leading to cellular homeostasis (Figure 1). The cell
membrane is equipped with proteins serving as Na+ receptors,
which receive stress signals and elicit the production of signaling
entities like Ca2+, ROS, and hormones (Liu et al., 2014). The
elevated levels of these entities trigger three pathways that
ultimately activate SOS1 to pump out Na+ from the cytosol. All
the genes determining these pathways are upregulated. However,
in this salinity counter mechanism, the photosynthesis process is
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FIGURE 1 | Model depicting the regulation of genes during different pathways to counter the effects of salinity in wheat leaf cells. (→) Indicting first pathway involved
in the activation of SOS1, (→) Indicating second pathway involved in the activation of SOS1, (→) indicating third pathway involved in the activation of SOS1, (→)
Indicating the occurrence of systematic processes in cytosol, chloroplast and vacuole under salt stress. RBOH, respiratory burst oxidase homologs; SOS, salt overly
sensitive; SCaBP8, SOS3-like calcium binding protein8; GST, glutathione S-transferase; CAT, Catalase; POD, peroxidase; GRX, glutaredoxins; CDPK,
calcium-dependent protein kinase; MPK6, mitogen-activated protein kinase6; PA, phosphatidic acid; PLD, Phospholipase D.

inhibited, as RuBisCO and NADPH are deactivated (Zhao et al.,
2014) owing to the down regulation of genes like LHC, PSB, PEI,
and PSA (Liu et al., 2014).

However, an excess of Na+ hinders the uptake of K+ and
cytosolic enzymes (Chao et al., 2013). The activity of Na+ and K+

transporters and H+ pumps and SOS2 and SOS3 protein kinase
pathways coordinates with SOS1 to trigger the sequestration and
secretion of toxic Na+ in the cell (Figure 1). Therefore, salt-
tolerant genotypes resume growth at a slow rate when subjected
to salt stress, owing to regulation by hormones and cell-division
related genes. Increased deposition of ABA in response to salt
stress is thought to upregulate cyclin-dependent protein kinase
inhibitor (ICK1), which inhibits cell division (Wilkinson and
Davies, 2010; Lee and Luan, 2012; Liu et al., 2015). Hence, these
interconnected features constitute a breeding target for breeders
to improve the potential range of adaptability of their germplasm
to salt stress. The salinity tolerance of crop plants such as wheat is
a multigenic trait, which is more complicated than in the model
plant Arabidopsis, in addition to a high sensitivity to salinity
(Shankar et al., 2016). Therefore, it is logical to conclude that
wheat employs a more complicated system in response to salinity
than Arabidopsis (Table 1).

Various genes have been reported to play a significant role
in response to salt stress in wheat. For example, SRO (Similar

to Rcd-One) mediates ROS deposition and scavenging by
regulating the expression prototype of NADPH dehydrogenase
and NADPH oxidase, together with GSH-peroxidase and
ascorbate-GSH. Dynamic expression of these genes authenticates
their inevitability and sufficiency in enhancing salt tolerance
(Liu et al., 2014; Zhao et al., 2014). Nevertheless, the processes
mediating the genome-wide gene expression in wheat to control
the deleterious effects imposed by salinity are still not completely
understood. Moreover, it has been reported, using a microarray
approach, that out of 32,000 detected ESTs in wheat, 19% were
either up- or down-regulated (Kawaura et al., 2006, 2008).

The adaptability of plants to unfavorable environments
has been also explained through polyploidization (Dubcovsky
and Dvorak, 2007). For instance, tetraploid Arabidopsis has
a greater tolerance to salt stress, via the homeostasis of
K+ and Na+, than diploid Arabidopsis (Chao et al., 2013).
However, the molecular mechanisms determining adaptability to
environmental stresses via this route are still poorly understood.
It has recently been hypothesized that the expression of
homologous genes is responsible for increased tolerance to salt
stresses in polyploid plants. For example, in allopolyploid cotton
(Gossypium hirsutum), one copy of the alcohol dehydrogenase
A gene (AdhA) is upregulated under cold conditions, while the
other responds to water stress (Liu and Adams, 2007). Moreover,
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FIGURE 2 | Systematic model showing the operational hierarchy of signaling pathways in wheat leaf cells that counter the effects of drought stress. (→) Indicating
ABA mediated signaling pathway for protein synthesis, (→) Indicating Ca2+ mediated signaling pathway for protein synthesis, (→) Indicating systematic changes
involved in ROS production and scavenging pathway. PUFA, polyunsaturated fatty acids; HPUFA, hydroxy polyunsaturated fatty acids; ROS, reactive oxygen
species; Fe-SOD, Fe-superoxide dismutase; CC-GNs, CC type glutaredoxins; TNs, thioredoxins; APX, ascorbate peroxidase; MDAR, monodehydroascorbate
reductase; POXN, peroxiredoxin; SnRPKs, SNF1-related protein kinases; MAPK, mitogen-activated protein kinase; RC, regulatory component; PP2Os,
Phosphatases type-2C; TFs, transcription factors.

transcriptomic studies have reported that allohexaploid wheat
manifests intensive partitioned expression of homeologs in
response to drought and heat stress (Liu et al., 2015).

DROUGHT TOLERANCE: SIGNALING,
GENE EXPRESSION, AND REGULATION
PROTOTYPE

Wheat, with its large genome, is a genetically complex entity,
and is hypothesized as an ideal system to investigate the
signaling processes involved in mediating stress response
(Kang and Udvardi, 2012). Successful chromosome-based draft
sequencing in hexaploid wheat has facilitated the mining of
genes that regulate these complex processes during drought
signaling, further accelerating the breeding programs. Current
developments in omics and systems biology would further help
researchers to better understand the mechanisms that operate
at a cellular level to mitigate drought stress (Wang et al., 2014).
To date, many researchers have comprehensively described some
of the molecular and physiological phenomena that help to
mitigate drought stress in plants (Table 1). However, in wheat, the
activation of various regulatory mechanisms, owing to different

mediatory agents, leads toward the homeostasis of plant cell
system.

Abscisic acid (ABA)-mediated signaling during drought stress
leads to rapid stomatal closure that inhibits the loss of water
from leaves (Wilkinson and Davies, 2010; Lee and Luan, 2012).
Moreover, under drought conditions, reduced water potential
leads to increased accumulation of ABA, which regulates
stress-related downstream responses (Aprile et al., 2013). Two
major responses, osmotic adaptation and an increase in the
concentration of osmolytes such as glycine betaine, glutamate,
proline, and sugars (trehalose, sorbitol, and mannitol), appear
at the cellular and molecular level to nullify drought effects
by preventing membrane deterioration and enzyme inactivation
(Slama et al., 2015). Furthermore, many drought-responsive
genes and specific protective proteins are regulated for drought
resistance (Ford et al., 2011). Signal transduction pathways
regulate drought-stress-associated transcripts, proteins, reactive
oxygen species (ROS) scavengers, and antioxidants (Faghani
et al., 2015). ROS scavenging pathways protect the cell from
oxidative damage under drought stress. Antioxidant enzymes,
such as glutathione S-transferase (GST), APX, SOD, GR, GPX,
and CAT, participate in ROS scavenging (Ford et al., 2011;
Faghani et al., 2015). THz upregulation of these enzymes under
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drought stress indicates the presence of a potential system in plant
cells to cope with drought stress.

In wheat, drought stress activates ROS generation and
scavenging pathways and the Ca2+ and ABA signaling pathways,
as depicted in (Figure 2). Under stress, genes manifest both
induced and conserved expression. However, upregulation of
ferritin plays an important role in ROS scavenging (Pizzio et al.,
2013; Alvarez et al., 2014), as oxidation of Fe (II) to Fe (III)
consumes H2O2 and oxygen (O2) (Kosová et al., 2015) during
Fe sequestration.

Although, extensive research has been conducted on plants
to better understand the induction of drought responsive
mechanisms (Kosová et al., 2015), the process is still poorly
understood, owing to the complicated nature of this quantitative
trait (Ashoub et al., 2013). Until now, limited knowledge is
available on the molecular mechanisms of drought tolerance
in wheat genotypes. Drought-inducible proteins isolated from
different wheat organs, such as roots, seedling, leaves, stem, and
grains, have been revealed to be differentially expressed, and this
differential expression is responsible for the drought resistance of
tolerant genotypes (Vítámvás et al., 2015). Proteome regulation
in wheat takes place in three phases (Kosová et al., 2014) that are
indicated in along with their categories, potential consequences,
and signaling proteins (Table 2).

Pioneering transcriptome studies have documented that the
drought-sensitive and tolerant genotypes of wheat are equipped
with different molecular mechanisms to mitigate drought stress
(Mohammadi et al., 2007; Aprile et al., 2013). A number
of drought-related genes showing constitutive expression in
tolerant wheat genotypes are also known to be triggered in

drought-sensitive genotypes, and such expression is a limiting
attribute in the understanding of response mechanisms induced
by drought (Aprile et al., 2013). Moreover, hormonal and
enzyme-based regulation pathways show variations in different
wheat genotypes (Ergen and Budak, 2009). When tolerant
genotypes are affected by drought stress, prompt activation
of signal transduction pathways triggers downstream elements.
Differential response of specific transcription factors in different
wheat genotypes indicates the presence of different signaling
pathways mediated by hormones. The induction of transcription
factors that bind to ethylene-responsive elements has been
reported in a sensitive wheat genotype, whereas the induction
of bZIP and HDZIP genes transcription factors related t to
ABA regulation has also been reported in tolerant wheat
genotypes under drought stress (Ergen and Budak, 2009). To
date, these studies have provided a significant evidences about
signaling dynamics in response to drought stress; however, the
transcriptional responses are not sufficient to estimate post-
transcriptional and post-translational modifications (Pradet-
Balade et al., 2001). Moreover, little is known about the functional
outputs of these detected genes, and hence, it is difficult to
establish the relationship between transcriptome and proteome
in drought-sensitive and tolerant wheat genotypes under stress.

Currently proteomics is becoming the most dynamic and
direct accessory to unravel the function of expressed proteins
under drought stress (Ford et al., 2011; Ghabooli et al., 2013).
It can be complemented by transcriptome studies to generate
a global expression profile of proteins encoded by the genome
(Bowne et al., 2012; Vu et al., 2017). Comparative proteome
profiling of tolerant and sensitive genotypes could also help to

TABLE 2 | Phases of proteome regulations in wheat under drought stress with their categories, potential consequences, and signaling.

Proteome phase Categories Consequences Signaling proteins Reference

Alarm phase Stress signaling and
gene Expression

Alterations in physiochemical characteristics of
plasma membrane. Phytohormones like ABA,
JA, SA, and others show upregulation

G-proteins, PLC, PLD,
MAPK, CDPK, PP2C,
Aquaporins

Alvarez et al., 2014; Kosová
et al., 2015; Montenegro
et al., 2017

Acclimation phase Protein metabolism Regulatory changes in cell cycle and
programmed cell death (PCD). Metabolic
activities associated with protein degradation
and biosynthesis show continuous alterations

eIF5A, TCTP, SAM, IDI2,
IDS2, IDS3

Kosová et al., 2014, 2015

Energy metabolism Changes in various protein metabolisms have
direct impacts on energy metabolism. A fall in
the levels RuBisCO as well as Calvin cycle
enzymes PRK, PGK, and transketolase.

OEE1, OEE2, CPN60-α,
CPN60-β, TPI, 20-kDa,
GAPDH, Enolase,
β-conglycinin

Kosová et al., 2015;
Mostek et al., 2015; Cheng
et al., 2016

Resistance phase Stress-protective
proteins

Improper protein folding of HSPs due to the
absence of hydration envelopes. Upregulation
of Protein disulfide isomerase. Rise in
ROS-scavenging enzymes increases the risks
of protein damage

HSP110, HSP90, HSP70,
HSP60, GDC, NADP-
ME3,NADP-ME4,TSI-1
protein

Fercha et al., 2014; Kosová
et al., 2015; Mostek et al.,
2015

Structural proteins Cellular transport and cytoskeleton get impaired
profoundly. An increase in aquaporin proteins
and its differential phosphorylation. Rate of cell
division and plant growth decrease significantly.
Increased cell wall lignification

VDAC, SAM, CCOMT,
COMT.

Witzel et al., 2014; Kosová
et al., 2015; Cheng et al.,
2016

PL, phospholipases; MAPK, mitogen activated protein kinase; CDPK, calcium-dependent protein kinase; PP, protein phosphatase; 5A/eIF5A, eukaryotic translation
initiation factor; TCTP, translationally controlled tumor protein homolog; SAM, S-adenosylmethionine; OEE, oxygen evolving enhancer (protein); CPN, Chaperonin; TPI,
triose phosphate isomerase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GDC, glutamate decarboxylase; ME, malic enzyme; VDAC, voltage-dependent anion
channel.
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explain the complexity of induced molecular processes in wheat
during drought stress (Krugman et al., 2011). To date, only
a few studies have been conducted to examine the proteomic
alterations under stress in wheat genotypes (Bevan et al., 2017;
Vu et al., 2017).

CONCLUSION

Exploitation of the mysterious genomic attributes that impart
tolerance to abiotic stresses in wheat is a potential challenge
for scientists. Although substantial efforts have been made
in this direction, several research gaps need to be fulfilled.
Therefore, integration of stress systems biology with recent
omics approaches would be helpful in unraveling the potential
mechanisms involved in countering abiotic stresses. This would

provide a robust and focused dimension to crop improvement
programs.
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