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Abstract

Mutation analysis of circulating tumor DNA (ctDNA) has recently been introduced as a non-

invasive tumor monitoring method. In this study, we tested the mass spectrometric-based

MassARRAY platform for multiplexed gene mutation analysis of plasma samples from colo-

rectal cancer (CRC) patients. A total of 160 patients, who underwent curative resection of

either primary or metastatic CRC harboring KRAS mutations between 2005 and 2012, were

included. Circulating DNA was isolated from plasma was analyzed on the MassARRAY plat-

form with or without selective amplification of mutant DNA fragments. Tumor-specific KRAS

mutations were detected in 39.6% (42/106) of patients with distant metastasis, and in 5.6%

(3/54) of patients without distant metastasis. Selective amplification of the mutant allele

increased sensitivity to 58.5% (62/106) for patients with distant metastasis, and 16.7%

(9/54) for patients without distant metastasis. These mutation detection rates were no less

than those of droplet digital polymerase chain reaction. Among patients with distant metas-

tasis, detectable plasma KRAS mutations correlated with larger primary tumors and shorter

overall survival rate (P = 0.014 and P = 0.003, respectively). In addition, activating PIK3CA

mutations were detected together with KRAS mutations in two plasma samples. Taken

together, massARRAY platform is a cost-effective, multigene mutation profiling technique

for ctDNA with reasonable sensitivity and specificity.

Introduction

Colorectal cancer (CRC) is the third most common cancer and the major cause of cancer-

related mortality in South Korea [1]. Activating mutations in the RAS family genes, such as
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KRAS, NRAS, and BRAF, are known to be associated with resistance to anti-EGFR monoclonal

antibodies, such as cetuximab or pannitumumab [2–5]. KRAS mutations can also be acquired

during anti-EGFR therapy, leading to regrowth of initially KRAS wild type CRCs [6–8]. Detec-

tion of mutations that lead to acquired resistance to anti-EGFR therapy is clinically important

but is limited in most cases by the unavailability of the metastatic tumor tissue. Thus, the anal-

ysis of circulating tumor markers, such as of circulating tumor DNA (ctDNA) and circulating

tumor cells (CTCs), has emerged as an attractive alternative.

Recently, CTCs are known to predict prognosis of metastatic CRC patients [9, 10] and vari-

ous genomic analysis techniques have been tried on isolated CTCs. However, the utility of

CTCs is limited because of low CTC numbers. Only 52.5% of advanced cancer patients had

more than three tumor cells per 7.5 mL blood and the mutational concordance rate between

CTCs and the primary tumor tissue was only 50% [11]. As another circulating tumor marker,

ctDNA is known to be useful for investigating intratumoral heterogeneity, prognosis and pre-

diction of treatment response [12]. CtDNA refers to extracellular DNA fragments in plasma

that are released by malignant neoplasms [13–15] and its levels are known to correlate with the

total tumor burden [16]. Therefore, it has been suggested that ctDNA could be used as a poten-

tial marker of residual disease or recurrence [17].

Unfortunately, the detection of tumor-specific mutations in ctDNA requires extremely sen-

sitive methods because of the low amount of ctDNA in patients’ plasma [16, 18, 19]. Therefore,

standard sequencing approaches, including Sanger sequencing or pyrosequencing, are not suf-

ficiently sensitive [17] and only extremely sensitive methods such as digital polymerase-chain-

reaction (PCR) or tagged amplicon deep sequencing could successfully detect mutations in

ctDNA samples [20]. In addition, an ideal ctDNA analysis technique should be able to detect

genetic evolution of tumors over the treatment course. To do this, multiple genes should be

analyzed in parallel. Ultra-deep NGS can achieve both sufficiently high sensitivity and multi-

plexing, it costs too much.

Matrix-assisted laser desorption/ ionization (MALDI) time-of-flight (TOF) mass spectrom-

etry (MS) combined with iPLEX GOLD chemistry has facilitated higher-throughput analysis

of SNPs [21, 22]. Since this technology can easily analyze up to 40 SNPs in a single reaction

with reasonable sensitivity and specificity and can give relative abundance of each SNP [22],

we evaluated the clinical utility of this platform as a non-invasive method for CRC monitoring

by analyzing plasma samples from CRC patients whose tumors have known KRAS mutations

by using a multigene format MALDI-TOF MS platform.

Materials and methods

Patients and samples

A total of 160 participants were selected from patients who underwent curative surgical resec-

tion of primary and/or metastatic CRC at the Asan Medical Center (AMC) between 2005 and

2012. All resected tumors were pathologically confirmed adenocarcinomas harboring KRAS
mutations, detected by Sanger sequencing. No patient received pre-operative chemotherapy or

radiotherapy. Among 106 patients with distant metastases at the time of initial plasma sam-

pling, 103 patients had distant metastases at the time of diagnosis and had primary tumors and

metastases resected at the same time. The remaining three patients did not have distant metas-

tases at the time of diagnosis but later developed metachronous metastases, and plasma sam-

ples were obtained upon the diagnosis of distant metastases. The 54 patients without distant

metastases underwent curative surgical resection only for the primary CRC (Table A in S1

File). Medical records were reviewed for clinical, radiological, laboratory, and pathological

findings and clinical outcomes.

Circulating DNA in colorectal cancer
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From the 160 patients enrolled in this study, 177 plasma samples were collected. Among

these samples, 157 samples were obtained on the day before initial surgical resection of the pri-

mary CRC with or without metastasectomy and three samples were collected on the day before

metachronous metastasectomy. In 17 patients, plasma samples were again obtained at a fol-

low-up visit after the initial diagnosis. All plasma samples in this study were collected, stored,

and provided by the Asan Bio-Resource Center, Korea Biobank Network (2014–14 (83)). For

non-tumor controls, blood samples were collected from 17 healthy volunteers. Healthy volun-

teers comprised eight men and nine women, with a mean age of 34 years (range, 26~48 years).

Study protocols were compliant with the World Medical Association Declaration of Helsinki

recommendations and were approved by the Institutional Review Board of AMC (S2014-

0860-0002). Since we used plasma samples that had been collected and stored by the Asan

Bio-Resource Center, all CRC patients agreed that they donate their samples to the Bio-

Resource Center by signing a written consent form. All written consent forms were securely

stored in the Bio-Resource Center and a copy of the original form was given to each patient.

We received CRC patient plasma samples from the Bio Resource Center by submitting the

Institutional Review Board approval protocols. For healthy volunteers, we obtained a separate

written informed consent whose form had been approved by the Institutional Review Board.

The signed consent forms are securely stored in the researcher’s locker.

Processing of plasma

For each enrolled patient, 4 mL of blood was collected in EDTA-containing tubes, and sent to

and processed at the Asan Bio-Resource Center 1 h after collection. The supernatant was col-

lected and centrifuged at 1,520 × g for 5 min at 4˚C to separate plasma from peripheral blood

cells. Plasma were samples were transferred to several 1.5-mL tubes and stored at -80˚C at the

Asan Bio-Resource Center, South Korea. We obtained 200-μL aliquots of blood plasma from

the Asan Bio-Resource.

Blood samples of healthy volunteers were also collected in EDTA-containing tubes. Within

1 h after collection, 4 mL of blood was centrifuged at 1,520 × g at 4˚C for 10 min, and the

supernatant was centrifuged again at 16,000 × g at 4˚C for 10 min. The clear supernatant was

stored at -80˚C until DNA extraction.

Extraction of circulating DNA

Circulating cell-free DNA (cfDNA) was extracted from 200 μL of plasma, using QIAamp Cir-

culating Nucleic Acid Kit (Qiagen), following the manufacturer’s instructions. Extracted DNA

was quantified using Quant-iT™ PicoGreen dsDNA Assay kit (Invitrogen, Carlsbad, CA), and

kept at −20˚C until use.

Mutation analysis by MassARRAY iPLEX system

For total cfDNA samples, multiplex mutation analysis was performed using the Asan Colon

Panel Version 2.0 (OncoMap_C1) on the Sequenom MassARRAY and iPLEX-Pro chemistry

technology platform (Sequenom, San Diego, USA). OncoMap_C1 comprises five pools of

iPLEX panels for detecting 73 unique mutations in four genes, including KRAS, NRAS, BRAF,

and PIK3CA (Table B in S1 File). Multiplex PCR amplification was performed using 5 ng of

genomic DNA (in 2 μL) per pool and 0.5 U of Taq polymerase (Qiagen), 1.25X PCR buffer,

1.625 mM MgCl2, 500 μM deoxynucleotide triphosphates, and 120 nM of primers (Table B in

S1 File). The following thermocycler program was used for amplification: 94˚C for 15 min, fol-

lowed by 45 cycles of (94˚C for 20 s, 56˚C for 30 s, and 72˚C for 1 min), and a final extension

step of 72˚C for 3 min.

Circulating DNA in colorectal cancer
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After multiplex PCR amplification reactions were completed, residual deoxynucleotides

were inactivated by treatment with shrimp alkaline phosphatase (Cat # 10142–2, Sequenom) at

37˚C for 40 min and 85˚C for 5 min. Single-base extension reactions were then performed in a

total reaction volume of 9 μL containing 0.222X iPLEX buffer plus, 0.5X iPLEX termination

mix, extension primer mix (0.93 μM: 1.86 μM), and 0.5X iPLEX enzyme (Thermo sequenase),

and using the following nested thermocycler programs: 94˚C for 30 s, followed by 40 cycles of

[94˚C for 5 s, 52˚C for 5 s, and 80˚C for 5 s]. The annealing and extension steps were repeated

five times within the 40 cycle program (i.e., 40 × 5 = 200 short cycles), before a final extension

step of 3 min at 72˚C. After spotting of the desalted product onto a 384-format SpectroCHIP

II, spectrum profiles generated by matrix-assisted laser desorption/ionization time-of-flight

mass spectrometry were acquired and interpreted using the TYPER 4.0 software (Sequenom).

Raw data were further manually reviewed by two independent researchers to reinterpret

uncertain calls resulting from clustering artifacts if necessary.

Mutation analysis by mutant allele-specific enrichment technology

We have developed an ultrahigh sensitive (UHS) assay, which combines modified Amplifica-

tion Refractory Mutation System (ARMS) and conventional iPLEX chemistry. Selective ampli-

fication of shorter mutant-specific amplicons was performed by combining mutant allele-

specific primer sets (Table C in S1 File) with common outer primer sets. The two primer sets

share the same reverse primer. The sequence at the 30 end of the mutation-specific primers

was designed to be completely complementary to the target mutation sequence (e.g., GT-30 for

G12V and GA-30 for G12D), and a single mismatch sequence was introduced at a position 2

bp upstream of the 30 end to prevent non-specific allele amplification. Subsequent procedures,

including shrimp alkaline phosphatase treatment and single-base extension, were identical to

those performed with conventional iPLEX chemistry. To determine the gain in sensitivity pro-

vided by the UHS method, we examined specific KRAS mutations that occurred with high fre-

quency (G13D and G12D/V) in CRC patients (n = 135).

Determination of detection limits of conventional iPLEX and UHS

methods

Genomic DNA from H1975 carrying a defined EGFR L858R mutation was serially diluted into

Beas2B (wild type control) genomic DNA to the following mutant-to-wild type allele fractions:

100%, 10%, 5%, 1%, 0.5%, 0.1% and 0%. Five ng of each diluted DNA sample was used to esti-

mate the analytical detection limit of the UHS assay, and compared to that of conventional

iPLEX chemistry using the same sample.

Mutation analysis by digital droplet PCR

To investigate whether the relatively low tumor-specific mutation recovery rate is attributable

to technical limitation or to pre-analytical issues such as actual scarcity of tumor DNA in

patients’ plasma, we performed droplet digital PCR analysis in 23 plasma samples with avail-

able leftover. We used the Droplet Digital PCR System Bio-Rad, Hercules, CA, USA, http://

www.bio-rad.com) which generates 20,000 droplets by water-oil emulsion droplet technology

and PCR amplification occurs in each individual droplet. ddPCR reagents were prepared by

mixing 20 μL include the specific primer, probes labeled with FAM and HEX reporter fluoro-

phores, QX200 ddPCR superrmix, and template DNA. The mixture was subjected to 20,000

nanoliter-sized droplet used the QX200 Droplet generator (Bio-Rad), followed by PCR with

the following parameters: 95˚C × 10 minutes (1 cycle); 40 cycles of 94˚C × 30 s and 60˚C × 1

minute; 98˚C × 10 minutes. After thermal cycling, plates were transferred to a QX200 droplet

Circulating DNA in colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0176340 May 1, 2017 4 / 13

http://www.bio-rad.com
http://www.bio-rad.com
https://doi.org/10.1371/journal.pone.0176340


reader (Bio-Rad) and the fluorescence signal of each individual droplet was measured in two

optical channels. Each droplet in samples were plotted the graph of fluorescence intensity vs.

droplet number using the QuantaSoft v1.7.4 software (Bio-Rad). The number of positive

droplets above the threshold was calculated in units of copies/ μL input DNA by Poisson

Algorithm.

Cost analysis of various mutation profiling techniques

To assess the potential economical benefit of our MassARRAY-based method, relative costs of

various mutation profiling techniques, including out MassARRAY iPLEX system, ddPCR, and

ultra-deep NGS, were compared. Since each method has its own throughput, i.e. a 384 well

plate for MassARRAY, a flow-cell for ultra-deep NGS, and a 96 well plate for a ddPCR run,

costs were calculated according to the most efficient testing environment where a test run

accommodates as many samples as possible. All primers, reagents, library preparation kits,

and other consumables were included for cost analyses. For calculation of NGS cost, we

assumed that the Illumina platform with amplicon-based target enrichment will be used. Since

the extended RAS testing which includes all hotspot mutations involving KRAS, NRAS,

PIK3CA, and BRAF is used to assess potential candidates for anti-EGFR therapy in CRC, we

took those genomic regions as analysis target of MassARRAY or ultra-deep NGS. For ddPCR,

only hotspot mutations involving KRAS were included considering typical throughput of

ddPCR technology. All other costs, such as equipment maintenance fee or depreciation, labor

costs, or costs for other non-consumables, were excluded for analysis. Costs for DNA extrac-

tion were also excluded.

Statistical analysis

Statistical analyses were performed using SPSS software (version 18.0; SPSS, Chicago, IL,

USA). Differences between groups were compared by either the χ2 test or Fisher’s exact test,

and Student’s t-test or Mann-Whitney U test. The Kaplan-Meier method with log-rank test

and multivariate Cox proportional hazards regression models were applied for survival analy-

ses. Two-sided P-values < 0.05 were considered statistically significant.

Results

Patient characteristics

All 160 CRC patients had KRAS mutations in their surgically resected CRC tissue samples, and

all those mutations were located at well-characterized hotspot positions. The most common

KRAS mutation was G12D (58/160, 36.3%), followed by G12V (42/160, 26.3%) and G13D (35/

160, 21.9%). The relative frequencies of KRAS mutation types were not different between cases

with distant metastasis at the time of diagnosis and those without distant metastasis (Table D

in S1 File). Patients in the non-metastasis group lived longer than those in the metastasis

group (median survival time: 70.3 months vs 26.1 months, respectively, P<0.001).

Concentrations of circulating DNA in plasma

CRC patients, both metastasis and non-metastasis groups, had higher plasma DNA concentra-

tions than healthy volunteers (P<0.001; Mann-Whitney U test) and patients in the metastasis

group had a tendency towards higher plasma DNA concentrations than those in the non-

metastasis group (P = 0.277, Mann-Whitney U test). Plasma DNA concentrations were not

affected by the presence of regional lymph node metastasis (P = 0.463, Mann-Whitney U test)

(Fig 1).

Circulating DNA in colorectal cancer
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Detection of tumor-specific mutations in circulating DNA by multi-gene

MassARRAY analysis with iPLEX chemistry

Among the 160 patients with known KRAS mutations in the resected CRC tissue, we detected

tumor-specific KRAS mutations in the plasma of 39.6% (42/106) of metastasis group and 5.6%

(3/54) of the non-metastasis group. All KRAS mutations detected in plasma samples were con-

cordant with those confirmed in patient-matched tumor tissue samples. In addition, both the

PIK3CA H1047R and KRAS G12D mutations were detected together in two samples. In con-

trast, no mutations were detected in plasma samples from the 17 healthy control subjects

(Table E in S1 File).

Fig 1. Box and whisker plots of concentrations of circulating DNA. The concentration of DNA was

significantly higher in patient groups (metastasis and non-metastasis groups) than in healthy volunteers

(P<0.001). There was no significant difference between patient groups. (Horizontal line in the middle of each

box, median; boxes, 25 percentile ~ 75 percentile; whiskers, 1.5 x interquartile range from each boundary of

the boxes; circles, outlier values with corresponding case number; P-value by Mann-Whitney U test, two-

tailed).

https://doi.org/10.1371/journal.pone.0176340.g001
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Increased sensitivity with ultra-high sensitivity assay

A total of 135 plasma samples from patients with CRC, whose tissue harbored the KRAS
G12D/V or G13D mutation, were tested with the ultra-high sensitivity (UHS) method and we

could detect tumor-specific KRAS mutations in additional 26 plasma samples in which tumor-

specific KRAS mutations had not been detected in multiplex iPLEX analysis. In addition, signal

amplitudes of mutations were higher in the UHS method than in multiplex iPLEX analysis

(Fig 2). Consequently, KRAS mutations were detected in 58.0% (51/88) of patients in the

metastasis group and 14.9% (7/47) of patients in the non-metastasis group (Table 1). KRAS
mutations detected in plasma were concordant with those confirmed in patient-matched

tumor tissue in most cases but, in one patient, KRAS G13D mutation was detected in plasma

but KRAS G12D mutation was in matched tumor tissue. The KRAS G13D mutation in the

plasma sample was not detected by conventional iPLEX analysis.

The combination of multiplex iPLEX analysis and the UHS method retrieved tumor-spe-

cific KRAS mutations, which had been found in the patient tumor tissue, in plasma samples

from 58.5% (62/106) of metastasis group and 16.7% (9/54) of non-metastasis group (Table 1).

The presence of detectable tumor-specific KRAS mutations in the plasma correlated with

Fig 2. Representative Sequenom outputs. Sequenom output for the KRAS G13D mutation is shown. (A) Conventional iPLEX analysis

shows a smaller mutant peak revealing relative allelic fractions. (B) The amplitude of the mutant peak is taller in UHS analysis than in

conventional iPLEX analysis. (A, adenine; T, thymine; G, guanine; C, cytosine; A on the right side represents the mutant peak and G on the

left side represents the wild type peak; the wild type peak in conventional iPLEX analysis is marked with blue color (panel A)).

https://doi.org/10.1371/journal.pone.0176340.g002

Circulating DNA in colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0176340 May 1, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0176340.g002
https://doi.org/10.1371/journal.pone.0176340


heavier tumor burden. Even within the metastasis group, detectable plasma KRAS mutations

correlated with larger primary tumor sizes (P = 0.014, Table 2) and shorter overall survival

rates (P = 0.003, Fig 3). Among the 54 patients in the non-metastasis group, patients with

detectable plasma KRAS mutations developed metachronous metastasis more frequently (8/9,

88.9% vs. 35/45, 77.8%) and at earlier time points (median time to progression: 17.1 months

vs. 20.6 months) than those without detectable plasma KRAS mutations, although the

Table 1. Tumor-specific mutation detection rates in groups classified according to the presence of distant metastasis at the time of blood

sampling.

UHS method (n = 135, G12D/V or G13D mutated case) P-valuea

Plasma KRAS mutation Metastasis group (n = 88) Non-metastasis group (n = 47) <0.0001

Detected 51 (58.0%) 7 (14.9%)

Not detected 37 (42.0%) 40 (85.1%)

Combination of iPLEX and UHS method (n = 160)

Plasma KRAS mutation Metastasis group (n = 106) Non-metastasis group (n = 54) <0.0001

Detected 62 (58.5%) 9 (16.7%)

Not detected 44 (41.5%) 45 (83.3%)

a P-values were calculated using the χ2 test.

https://doi.org/10.1371/journal.pone.0176340.t001

Table 2. Comparison of clinicopathological features between patient subgroups with or without detectable plasma tumor-specific KRAS muta-

tions within the metastasis group (n = 106).

Clinicopathological features KRAS mutation in plasma P-value

Detected (n = 62) Not detected (n = 44)

Mean age, years (range) 57 (27–84) 59 (26–78) 0.302a

Sex 0.285

Male 33 (53.2%) 28 (63.6%)

Female 29 (46.8%) 16 (36.4%)

Median primary tumor volume, cm3 (range) 23.6 (3.02–323.98) 12.6 (1.65–167.55) 0.014a

pT stage 0.202

2 0 (0%) 1 (2.3%)

3 45 (72.6%) 36 (81.8%)

4 17 (27.4%) 7 (15.9%)

pN stage 0.777

0 13 (21.0%) 11 (25.0%)

1 31 (50.0%) 19 (43.2%)

2 18 (29.0%) 14 (31.8%)

Lymphovascular invasion 0.786

Absent 35 (56.5%) 26 (59.1%)

Present 27 (43.5%) 18 (40.9%)

Perineural invasion 0.786

Absent 35 (56.5%) 26 (59.1%)

Present 27 (43.5%) 18 (40.9%)

Median plasma concentration, ng/μL (range) 0.39 (0.05–11.81) 0.43 (0.02–17.28) 0.666a

Multiple metastasis 0.313

No (single metastasis) 48 (78.7%) 38 (86.4%)

Yes 13 (21.3%) 6 (13.6%)

a P-values were calculated using the Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0176340.t002
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differences were not statistically significant. (Table F in S1 File). No mutations were detected

in plasma samples from the 17 healthy volunteers by the UHS method (Table E in S1 File).

Comparison of sensitivity to digital droplet polymerase chain reaction

(ddPCR) assays

Since tumor-specific KRAS mutations were detected in only 58.5% of plasma samples from

metastatic CRC patients whose tumors had known KRAS mutations, we investigated whether

this low detection rate was due to technical limitations of our methods or due to low abun-

dance of tumor DNA in plasma. We first determined the analytical sensitivity of our methods

by analyzing different fractional mixtures of genomic DNA extracted from cell lines with or

without confirmed EGFR L858R mutations. The limit of detection was 5% for conventional

iPLEX chemistry and 0.1% for UHS assay (S1 Fig). We then analyzed 23 available plasma sam-

ples with ddPCR which is known to be the most sensitive method [23, 24]. No additional

KRAS mutations were detected by ddPCR and the detection rate of tumor-specific mutations

in samples, where both MassARRAY and ddPCR analyses were done, was higher with the

Fig 3. Comparison of survival rates of patients in the metastasis group with or without detectable

plasma tumor-specific KRAS mutations. Overall survival rates are poorer for patients with detectable

plasma KRAS mutations than patients without detectable plasma KRAS mutations.

https://doi.org/10.1371/journal.pone.0176340.g003
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MassARRAY technique (10/19, 52.6% for iPLEX, 14/19, 73.7% for UHS) than with ddPCR (8/

19, 42.1%) (Table G in S1 File).

Diagnostic utility of the MassARRAY technique in longitudinal follow up

plasma samples of CRC patients

Post-resection follow-up blood samples were available for 17 patients. Once again, all patients

had known KRAS mutations in their resected tumor tissue. Nine patients were in the non-

metastasis group and 8 of them (88.9%) developed distant metastases at the time of the second

blood sampling. Among 9 patients in non-metastasis group, KRAS mutations were newly

detected in follow-up plasma samples of 3 patients whose plasma were initially negative for

KRAS mutations (Table H in S1 File). Among 8 patients in the metastasis group, follow-up

samples were obtained at the time of additional curative metastasectomy after cytoreductive

chemotherapy or radiotherapy. One patient showed positive conversion of KRAS mutations

and her disease had considerably worsened at the time of the second blood sampling (Table H

in S1 File). Negative conversions of KRAS mutations were observed in 4 patients whose tumor

burdens were significantly reduced (data not shown).

Discussion

In the present study, MassARRAY analysis of plasma samples from CRC patients, by either the

traditional multiplex iPLEX method or the UHS method, detected tumor-specific mutation

with reasonable sensitivity and minimal background noise. The detection of tumor-specific

KRAS mutations in plasma samples correlated with systemic tumor burden and earlier tumor

recurrence. We also detected a coexisting oncogenic mutation, PIK3CA H1047R, with a

known KRAS mutation by the multiplex iPLEX method, demonstrating the potential utility of

the MassARRAY technique as a multigene mutation profiling method for plasma samples of

CRC patients. Although further validation is required, the MassARRAY technique represents

a promising method to monitor tumor burden and genomic changes in CRC.

We detected tumor-specific KRAS mutations in plasma samples from 58.5% of stage IV

CRCs with known tissue KRAS mutations. Although this mutation detection rate was lower

than that of a previous report (97% by BEAMing) [25], it was no less than that of ddPCR per-

formed in parallel in our study. Considering high sensitivity of the UHS method shown by our

cell line mixing experiment, the low detection rate might be due to pre-analytical issues,

including plasma isolation technique and low amount of plasma samples. Since plasma sam-

ples distributed by our Bio-resource center had been processed by a one-step centrifugation

protocol, which can disrupt white blood cells, considerable non-tumor DNA contamination

might have occurred. Furthermore, we used a 200 μL plasma aliquot, which is only 10% of the

typical volume used in most published studies [25]. Processing larger amount of plasma with

optimized DNA extraction method might improve the detection rate of our assays.

The detection of tumor-specific mutations from low input ctDNA requires a very sensitive

method, such as allele-specific quantitative PCR [26], ultra-deep NGS [20, 27], BEAMing [16],

or ddPCR [23, 24, 28]. Among them, only ultra-deep NGS offers both sufficient sensitivity and

multiplexing but it is prohibitively expensive. In this regards, MassARRAY technology might

be a compromise between fair performance and affordable cost (Table I in S1 File). Indeed, we

detected a coexisting PIK3CA H1047R mutation together with a KRAS G12D mutation in two

plasma samples, demonstrating its utility as a multi-gene assay.

The detection of tumor-specific KRAS mutations in plasma correlated with tumor burden

in this study. We also inferred mutant KRAS copy number from the relative signal heights in

the iPLEX method, and input DNA amount. However, mutant DNA copy numbers did not
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correlate with the estimated tumor volumes on computed tomography (data not shown). It

might be that degrees of tumor DNA shedding into the bloodstream are different among

tumors. Thus, quantitation of ctDNA might be useful for longitudinal studies of the same

patient. One of the limitations of the MassARRAY technique is that quantitation is only avail-

able in the iPLEX mode. Because the UHS method involves selective, biased amplification of

the mutant allele, mutant peak heights do not mean mutant allelic fraction.

In one particular case, we detected two different KRAS mutations, G13D and G12D, from

the same patient: G13D from plasma sample by the UHS method and G12D from patient-

matched tumor tissue by Sanger sequencing. Neither of these mutations was detected by the

multigene iPLEX method. Triplicate repeats of both analyses with plasma and the patient-

matched tumor tissue sample yielded the same result. This result may be attributable to the

presence of a subclonal tumor population carrying the G13D mutation, or artifacts associated

with cytosine deamination [29].

In conclusion, the MassARRAY platform is a cost-effective, multigene mutation profiling

method with reasonable sensitivity and specificity for detecting ctDNA. Since the multigene

panel used in this study included all currently known predictors of anti-EGFR therapy resis-

tance, including oncogenic mutations in KRAS, NRAS, BRAF and PIK3CA [30], the multigene

MassARRAY analysis platform might be useful for monitoring genetic changes in the tumor

population of metastatic CRC patients receiving anti-EGFR therapy. Furthermore, the UHS

method might be useful for the early detection of relapse in CRC patients whose tumors harbor

mutations examined in this study. We propose that MassARRAY analysis of ctDNA represents

a promising potential for the non-invasive disease monitoring and molecular tracking of CRC.

Supporting information

S1 Fig. Mutant allele peaks detected in variable fractional mixtures of mutant-to-control

samples either by conventional iPLEX method or by the UHS method. UHS assay offers

ultra-high sensitivity detection of oncogenic mutations. Serially diluted H1975 gDNA with

Beas2B gDNA was used to evaluate the detection sensitivity of conventional iPLEX chemistry

(limit of detection: ~5%) and the UHS assay (limit of detection: 0.1~0.5%). Blue and red aster-

isks indicate signals for the mutant and wild type allele, respectively.

(TIF)

S1 File. Supporting tables (Tables A-I).
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