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Abstract: To reveal the influence of different substituents on the excited-state intramolecular proton
transfer (ESIPT) process and photophysical properties of 4′-N, N-dimethylamino-3-hydroxyflavone
(DMA3HF), two novel molecules (DMA3HF-CN and DMA3HF-NH2) were designed by introducing
the classical electron-withdrawing group cyano (-CN) and electron-donating group amino (-NH2).
The three molecules in the acetonitrile phase were systematically researched by applying the density
functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The excited-state hydrogen
bond enhancement mechanism was confirmed, and the hydrogen bond intensity followed the
decreasing order of DMA3HF-NH2 > DMA3HF > DMA3HF-CN, which can be explained at the
electronic level by natural bond orbital, fuzzy bond order, and frontier molecular orbital analyses.
Moreover, we found from the electronic spectra that the fluorescence intensity of the three molecules
in keto form is relatively strong. Moreover, the calculated absorption properties indicated that
introducing the electron-withdrawing group -CN could significantly improve the absorption of
DMA3HF in the ultraviolet band. In summary, the introduction of an electron-donating group -NH2

can promote the ESIPT reaction of DMA3HF, without changing the photophysical properties, while
introducing the electron-withdrawing group -CN can greatly improve the absorption of DMA3HF in
the ultraviolet band, but hinders the occurrence of the ESIPT reaction.

Keywords: excited-state intramolecular proton transfer; photophysical property; density functional
theory; intramolecular hydrogen bond; substitution effect

1. Introduction

Excited-state intramolecular proton transfer (ESIPT), as one of the most basic modes
of proton transfer in the photophysical and photochemical fields, is also a very common
and important hydrogen bond dynamics behavior [1–5]. Since Weller first proposed the
ESIPT mechanism in the middle of the last century [6], plenty of investigators have devoted
themselves to experimental and theoretical studies on the ESIPT reaction, and derived
various interesting research directions closely related to the ESIPT process [7–18]. The ESIPT
reaction is essentially a photoisomerization behavior of molecules, which makes molecules
exhibit double-fluorescence characteristics and a significant Stokes shift. Due to the large
Stokes shift, there is almost no overlap between the absorption and emission of ESIPT-type
molecules, which can avoid the interference of other fluorescent materials in the sample
and the internal filtering effect. Moreover, on the basis of the uniquely high sensitivity
of the ESIPT mechanism, it is easy to tune the fluorescence characteristics of ESIPT-type
molecules. Based on these special properties, the molecules with ESIPT characteristics have
been widely applied in fluorescent probes, ultraviolet filtering, chemosensors, etc. [19–24].

4′-N,N-dimethylamino-3-hydroxyflavone (DMA3HF)—an artificially synthesized flu-
orescent flavonoid derivative—has attracted wide attention in the fields of photophysics
and chemistry due to its ESIPT characteristics, specific photophysical properties, and
strong antioxidant activity [25–27]. Ghosh et al. [28] skillfully studied the ESIPT reaction
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of DMA3HF in sodium bis-ethylhexylsulfosuccinate (AOT), n-heptane, and water reverse
micelle solutions by changing the ratio of water to AOT around DMA3HF encapsulated
in nanovacuoles, and showed the influence of solvent polarity on the ESIPT process and
photophysical properties of DMA3HF. Moreover, Das et al. [29] researched the ESIPT
reaction efficiency of DMA3HF in the lyotropic liquid crystal (LLC) phase, thus explor-
ing the hydrogen-bonding effects and polarity of LLC water molecules. Simultaneously,
the effect of hydrogen bonds on the ESIPT reaction was clarified, and the slow ESIPT
behavior observed experimentally in LLC was confirmed. Furukawa et al. [30] studied
the effect of external electric fields on the ESIPT reaction and photophysical properties of
DMA3HF in rigid polymethyl methacrylate (PMMA) films, and found that the excited-state
dynamics of DMA3HF in a rigid environment are very different from those in solution.
Furthermore, Ushakou et al. [31] explored the energetic characteristics of 3-hydroxyflavone
(3-HF) and DMA3HF in enol and keto forms by comparing the spectroscopic properties
of the two compounds in acetonitrile and ethyl acetate at different temperatures, which
can provide reference for evaluating the reversibility of molecular proton transfer reactions.
Nevertheless, the effect of substitution of different functional groups on the ESIPT mecha-
nism and photophysical properties of the DMA3HF molecule is still lacking, and deserves
further study.

For solving this issue, we designed two novel molecules (DMA3HF-CN and DMA3HF-
NH2) by introducing the electron-withdrawing group cyano (-CN) and electron-donating
group amino (-NH2) on the side of the proton acceptor, respectively (as can be seen in
Figure 1). The -NH2 group as the classical strong electron-donating group with high
activity, and the -CN group as the excellent hydrogen bond acceptor and strong electron-
donating group, have been widely used in molecular modification. Since the stronger
electron-donating group -N(CH3)2 is located at one end on the proton donor side, the
introduction of functional groups at the other farthest end on the proton-acceptor side can
more significantly cause the push/pull effect of -N(CH3)2 and its substituents on electrons,
thereby tuning the ESIPT reaction of DMA3HF. The electron push/pull effect caused by
the substitution of other carbons on the aromatic ring on the proton acceptor side is not
as obvious as that of the carbon in the straight direction. Moreover, we predict that the
introduction of the -CN group may weaken the electronegativity of the proton acceptor and
inhibit the ESIPT process, while the introduction of the -NH2 group may promote the ESIPT
reaction. In this work, the density functional theory (DFT) and time-dependent DFT (TD-
DFT) methods were used to conduct comprehensive and detailed theoretical research on
the ESIPT behavior as well as the photophysical properties of DMA3HF, DMA3HF-CN, and
DMA3HF-NH2. The geometric parameters, corresponding infrared (IR) vibration spectra,
natural bond orbital (NBO), fuzzy bond order (FBO), reduced density gradient (RDG)
scatterplot, and topological parameters at the bond critical point (BCP) were obtained
to explore the intensity changes of the intramolecular hydrogen bonds (IHBs), and also
clarified the intensity relationships of the IHBs of DMA3HF, DMA3HF-CN, and DMA3HF-
NH2. Moreover, the potential energy curves (PECs) were plotted to intuitively illustrate
the degree of difficulty of proton transfer reaction, and the transition state (TS) structures
along with the corresponding single-point energy (SPE) were obtained to calculate the exact
values of the potential barriers. Furthermore, the corresponding electronic spectra of the
three molecules were simulated to explore the influence of functional group substitution
on the photophysical properties, and the frontier molecular orbitals (FMOs) associated
with major transitions were also shown. We hope that this theoretical study on the ESIPT
mechanism can provide some inspiration for the following purposeful search and synthesis
of novel, high-quality, ESIPT-type fluorescent materials.
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2. Computational Methods

In this study, the S0- and S1-state geometric configurations of the three molecules
were fully optimized by the DFT and TD-DFT methods with the B3LYP functional and
6-311++G(d) basis set [32–36]. For keeping consistent with the experimental conditions,
acetonitrile was selected as the solvent, and the polarizable continuum model (PCM) with
the integral equation formalism variant (IEFPCM) was applied [37,38]. To accurately
simulate the absorption and emission spectra, the fluorescence spectrum of DMA3HF in
acetonitrile was calculated using seven different functionals, and the obtained results were
compared with the experimental data [29], which indicated that the PBEPBE functional
was the most suitable (see Table 1) [39–44]. Therefore, in this work, the absorption and
fluorescence spectra for DMA3HF, DMA3HF-CN, and DMA3HF-NH2 were computed at
the TD-DFT/PBEPBE/6-311++G(d) level. Moreover, the principal geometric parameters,
IR vibration spectra, and NBO analysis were calculated based on the optimized geometric
configurations [45–47]. Moreover, the FBO values [48], topological parameters at BCP [49],
RDG scatterplots [50], IRI maps [51], and FMO maps of the three compounds were obtained
using Multiwfn software (Version: 3.7, Beijing Kein Research Center for Natural Sciences,
Beijing, China) and the VMD program (Version: 1.9.3, Theoretical and Computational
Biophysics Group, Beckman Institute of the UIUC, Champaign-Urbana, IL, USA) [52,53].
The PECs of the three molecules in the S0 and S1 states were scanned by increasing the
O1-H1 bond length with a fixed value. For the scans of the PECs, we performed restricted
geometric optimizations for the three compounds. Furthermore, in order to obtain the exact
values of the ESIPT reaction barriers, the corresponding TS structures of the three molecules
were searched based on the quasi-Newton and synchronous transit (QST3) approach, and it
was confirmed by vibration analysis that there was only one virtual mode corresponding to
the proton transfer behavior [54]. We also observed the intrinsic reaction coordinate (IRC)
curves to confirm that the TS structures we searched were correct [55]. All of the theoretical
calculations in this work were achieved using the Gaussian 16 package (Version: Revision
C.01, Gaussian, Inc., Wallingford, CT, USA) [56].

Table 1. Calculated fluorescence peaks (nm) of DMA3HF in acetonitrile, obtained via the TD-DFT
method with seven different functionals.

PBEPBE B3PW91 Cam-B3LYP B3LYP M062x mPW1PW91 ωB97XD Exp a

λflu 1 532.94 456.48 396.43 458.03 396.64 441.74 388.21 510
λflu 2 586.30 545.90 520.40 547.40 513.09 537.39 518.42 570

a Maximum fluorescence peaks in the experiment.

3. Results and Discussion
3.1. Optimized Geometric Structures and Infrared (IR) Vibrational Spectra Analysis

The geometric configurations of DMA3HF, DMA3HF-CN, and DMA3HF-NH2 in enol
and keto forms in different electronic states were optimized without any restrictions via
the DFT and TD-DFT methods, and the main IHB geometric parameters are presented
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in Table 2. The comparison of geometric parameters related to IHBs (bond lengths and
angles) can show the changes in IHBs’ intensity after the photoabsorption process. As
listed, for enol configurations of DMA3HF and its derivatives, the O1-H1 bond length and
∠(O1-O1· · ·O2) bond angle were all increased by the photoexcitation process, whereas the
H1· · ·O2 bond lengths were shortened. Concretely speaking, the O1-H1 bonds of the three
molecules were separately elongated by 0.011 Å (DMA3HF) from 0.977 Å (S0) to 0.988 Å
(S1), 0.009 Å (DMA3HF-CN) from 0.977 Å (S0) to 0.986 Å (S1), and 0.010 Å (DMA3HF-
NH2) from 0.978 Å (S0) to 0.988 Å (S1). Similarly, the H1· · ·O2 bonds were reduced by
0.116 Å, 0.111 Å, and 0.113 Å, respectively, from the S0 to S1 states. Meanwhile, the angles
∠(O1-H1· · ·O2) increased from 117.886◦, 117.187◦, and 118.153◦ in the S0 state to 122.179◦,
121.196◦, and 122.390◦ in the S1 state, respectively. These results indicate that the IHBs of
DMA3HF and its derivatives are all reinforced by the photoexcitation, which can promote
the occurrence of the proton transfer process.

Table 2. Calculated bond lengths (Å) and bond angles (◦) related to the IHBs of DMA3HF and its
derivatives in enol and keto forms in the S0 and S1 states, respectively.

State O1-H1 H1-O2 ∠(O1-H1· · ·O2)

DMA3HF-enol S0 0.977 2.025 117.886
S1 0.988 1.909 122.179

DMA3HF-keto S0 1.936 0.988 120.425
S1 2.009 0.981 117.761

DMA3HF-CN-enol S0 0.977 2.044 117.187
S1 0.986 1.933 121.196

DMA3HF-CN-keto S0 1.960 0.987 119.440
S1 2.018 0.981 117.213

DMA3HF-NH2-enol S0 0.978 2.019 118.153
S1 0.988 1.906 122.390

DMA3HF-NH2-keto S0 1.934 0.988 120.556
S1 2.004 0.981 118.011

Monitoring the movement of stretching vibrational peaks related to IHBs in IR spectra
is another available method to assess the changes in IHBs’ intensity [57,58]. Figure 2
depicts the calculated IR spectra of the three compounds at the S0 and S1 states, in the
spectral range from 3200 cm−1 to 3700 cm−1, which corresponds to the region of O1-H1
stretching vibration peaks. It should be noted that the vibrational peaks of DMA3HF,
DMA3HF-CN, and DMA3HF-NH2 all display redshifts (S0→S1) to varying degrees, and the
redshift magnitude of the three compounds is 188.89 cm−1, 165.14 cm−1, and 184.94 cm−1,
respectively. Therefore, the O1-H1 bond strength is weakened and the attraction between
H1 and O2 atoms is strengthened during the photoexcitation, which can promote the
occurrence of the ESIPT reaction. The above conclusions are in great agreement with the
results acquired from geometric structures.

3.2. Natural Bond Orbital (NBO) and Fuzzy Bond Order (FBO) Analysis

On the basis of the above discussion about geometric parameters and IR spectra,
we can note that the IHBs are strengthened in the S1 state. Hydrogen bonds, as a weak
interaction, are influenced by the charge over the correlation atoms, and the redistribution
of atomic charge leads to changes in the intensity of IHBs. Therefore, the NBO population
analysis was performed to quantitatively research the electronegativity of proton-donor
and -acceptor moieties (O1 and O2 atoms). The charge distribution on O1 and O2 atoms
of DMA3HF, DMA3HF-CN, and DMA3HF-NH2 in the S0 and S1 states was calculated,
and is summarized in Table 3. As shown, the negative charges located on the O1 atoms of
DMA3HF, DMA3HF-CN, and DMA3HF-NH2 decrease from the S0 to the S1 state, while
those on the O2 atoms increase. That is, the attraction of O1 atoms to hydrogen protons is
attenuated, while that of O2 atoms to protons is improved, corresponding to the elongation
of O1-H1 bonds and the shortening of H1· · ·O2 bonds under the photoexcitation.
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Table 3. Calculated distribution of NBO charges (a.u.) on the O1 and O2 atoms of DMA3HF,
DMA3HF-CN, and DMA3HF-NH2 in the S0 and S1 states.

DMA3HF DMA3HF-CN DMA3HF-NH2

State/∆ S0 S1 ∆ S0 S1 ∆ S0 S1 ∆
O1 −0.6917 −0.6580 −0.0337 −0.6860 −0.6540 −0.0320 −0.6947 −0.6639 −0.0308
O2 −0.6948 −0.7646 +0.0698 −0.6819 −0.7413 +0.0594 −0.7024 −0.7741 +0.0717

∆: Difference in NBO charges between the S0 and S1 states; positive values represent increases and negative
values represent decreases (S0→S1).

Moreover, FBO analysis was introduced to further quantitatively represent the char-
acteristics of O1-H1 bonds and H1· · ·O2 bonds. Based on the division of fuzzy atomic
space, FBO can directly reflect the degree of delocalization of electrons between two atomic
spaces [59]. It is well established that the larger the magnitude of the FBO, the greater the
bond strength. The FBO analysis results of O1-H1 bonds and H1· · ·O2 bonds in the S0 and
S1 states are exhibited in Table 4. We can see that, from the S0 to S1 states, the O1-H1 bond
order values of the three compounds in enol form decreased, while the H1· · ·O2 bond order
values all increased. This implies that the ability of O1 atoms to bind the protons is reduced,
while that of O2 atoms is enhanced, in the S1 state. Notably, the negative charge values
distributed on the proton-acceptor O2 atoms of the three compounds in the S0 and S1 states
can both be arranged in the following order: DMA3HF-CN < DMA3HF < DMA3HF-NH2.
Meanwhile, the order of the H1· · ·O2 FBO is the same. This means that, compared with
DMA3HF, the substitution of the typical electron-withdrawing group (-CN) can attract
away some electrons of the O2 atoms, thus weakening the ability of O2 atoms to capture
the protons. Conversely, introducing the typical electron-donating group (-NH2) has the
opposite effect.
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Table 4. Obtained fuzzy bond order related to the ESIPT process.

State FBO (O1-H1) FBO (H1· · ·O2)

DMA3HF-enol S0 0.75626 0.06129
S1 0.72953 0.07995

DMA3HF-keto S0 0.08263 0.72416
S1 0.07044 0.74092

DMA3HF-CN-enol S0 0.75760 0.05773
S1 0.73284 0.07482

DMA3HF-CN-keto S0 0.07747 0.72767
S1 0.06834 0.73979

DMA3HF-NH2-enol S0 0.75591 0.06242
S1 0.72957 0.08095

DMA3HF-NH2-keto S0 0.08309 0.72530
S1 0.07136 0.74132

3.3. Reduced Density Gradient (RDG) Scatterplot and Topology Analysis

Firstly, RDG analysis was selected to visually research the changes in the IHB strength
of DMA3HF, DMA3HF-NH2, and DMA3HF-CN. The sign (λ2)ρ function obtained by
multiplying the total electron density and the sign function of the second largest eigenvalue
of the Hessian matrix for electron density was projected onto the RDG isosurface, and the
intensity and type of weak interactions could be clearly seen [60]. When the RDG value of
the scatter point is close to 0, the point corresponds to a weak interaction. For the sign (λ2)ρ
function, the ρ-value can represent the strength of the interaction, and the sign (λ2) can
denote the type of interaction. When the sign (λ2) is equal to −1, it represents attraction,
while when the sign (λ2) is +1, it represents repulsion. By observing the molecular structure,
we can know that the IHB is the strongest weak attractive interaction in the molecule.
Therefore, we can confirm that the most negative spike corresponds to the IHB. In Figure 3a,
the spikes representing the IHB of each molecule are circled, and the other negative spikes
representing the other weak interactions are also marked (take DMA3HF-S0, for example).
We compared the sign (λ2)ρ-values of IHBs’ spikes in the S0 and S1 states. It was found
that the values of sign (λ2)ρ were decreased by 0.0067 a.u. (DMA3HF) from −0.0253 a.u.
(S0) to −0.0320 a.u. (S1), 0.0062 a.u. (DMA3HF-CN) from −0.0239 a.u. (S0) to −0.0304 a.u.
(S1), and 0.0066 a.u. (DMA3HF-NH2) from −0.0257 a.u. (S0) to −0.0323 a.u. (S1), implying
that the IHBs are indeed enhanced in the S1 state. In addition, we also found that the IHB
strength of DMA3HF-CN was weaker than that of the other two molecules. Incidentally,
all of the chemical bonds and weak interaction regions of the three compounds in the S0
and the S1 states are shown by the interaction region indicator (IRI) plane color filling map
and isosurface map, respectively, which can be seen in Figure 3b.

However, the sign (λ2)ρ-values of DMA3HF and DMA3HF-NH2 are very close, and
cannot be distinguished only by the spikes in the RDG maps. Hence, we selected the
atoms in molecules (AIM) theory to obtain the topological parameters at the bond critical
points (BCPs) of the IHBs, and directly calculated the hydrogen bond energy (EHB) of the
three compounds in the S0 and S1 states using empirical formulae [61,62]. The relevant
parameters are listed in Table 5. Therein, the Laplacian of electron density ∇2ρ(r) values
are positive, representing closed-shell interactions (corresponding to IHBs in this paper).
In addition, the corresponding hydrogen bond was considered to be strong when the
ρ(r) value at BCP was larger than 0.03 a.u., and the larger the value of ρ(r), the stronger
the IHB. All of the relevant parameters indicate that the IHBs of the three molecules
are strengthened in the S1 state. It is worth noting that the order of EHB for the three
compounds is DMA3HF-CN < DMA3HF < DMA3HF-NH2, whether in the S0 or S1 state.
This result directly illustrates that the substitution of the electron-donating group -NH2
on the proton-acceptor side can promote the ESIPT process; however, the substitution
of the electron-withdrawing group -CN is able to inhibit the ESIPT behavior. The RDG
and topology analysis provide proof for our previous conclusions acquired from FBO and
NBO analyses.
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3.4. Potential Energy Curves (PECs)

In order to further intuitively illustrate the degree of difficulty of proton transfer in the
S0 and S1 states for DMA3HF, DMA3HF-CN, and DMA3HF-NH2, we scanned the PECs of
the three molecules via lengthening the O1-H1 bonds from 1.0 Å to 2.0 Å, at a fixed step
of 0.1 Å, and allowing all other degrees of freedom to relax freely towards the minimum
energy [63,64], as shown in Figure 4. It can be seen that, for the three investigated molecules,
the energy barriers for the forward proton transfer process in the S0 state were significantly
larger than those in the S1 state, implying that the proton transfer behaviors are more likely
to occur in the excited state. Moreover, the order of barriers for the three compounds in the
S0 and S1 states are both DMA3HF-NH2 < DMA3HF < DMA3HF-CN, implying that the
substitution of the -CN group at the proton-acceptor side impedes proton transfer, while
the substitution of the -NH2 group promotes proton transfer, which is consistent with the
results of NBO, FBO, RDG, and topology analyses.
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Table 5. Calculated topological parameters at BCPs related to the IHBs of the three molecules in enol
and keto forms in the S0 and S1 states.

ρ(r) α ∇2ρ(r) β V(r) γ G(r) δ H(r) ε ELF ζ EHB
η

DMA3HF-enol-S0 0.0253 0.1026 −0.0204 0.0230 0.0027 0.0689 −4.9016
DMA3HF-enol-S1 0.0320 0.1209 −0.0270 0.0286 0.0016 0.0950 −6.3963
DMA3HF-keto-S0 0.0310 0.1133 −0.0254 0.0268 0.0015 0.0964 −6.1732
DMA3HF-keto-S1 0.0267 0.1009 −0.0212 0.0232 0.0020 0.0805 −5.2139

DMA3HF-CN-enol-S0 0.0239 0.1241 −0.0222 0.0266 0.0044 0.0439 −4.5893
DMA3HF-CN-enol-S1 0.0304 0.1168 −0.0253 0.0272 0.0020 0.0887 −6.0393
DMA3HF-CN-keto-S0 0.0294 0.1095 −0.0238 0.0256 0.0018 0.0899 −5.8163
DMA3HF-CN-keto-S1 0.0262 0.1000 −0.0207 0.0229 0.0022 0.0781 −5.1024

DMA3HF-NH2-enol-S0 0.0257 0.1035 −0.0207 0.0233 0.0026 0.0704 −4.9909
DMA3HF-NH2-enol-S1 0.0323 0.1215 −0.0272 0.0288 0.0016 0.0959 −6.4632
DMA3HF-NH2-keto-S0 0.0311 0.1137 −0.0255 0.0270 0.0015 0.0969 −6.1955
DMA3HF-NH2-keto-S1 0.0270 0.1017 −0.0214 0.0234 0.0020 0.0817 −5.2809

α: Density of all electrons (a.u.); β: Laplacian of electron density (a.u.); γ: potential energy density (a.u.); δ:
Lagrangian kinetic energy (a.u.); ε: energy density (a.u.); ζ: electron localization function (a.u.); η: hydrogen bond
energy (kcal/mol), EHB = –223.08ρ(r) + 0.7423.
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Nevertheless, due to the limitation of scanning step length, the above PECs cannot
accurately describe the reaction path of ESIPT. Therefore, it is necessary to search the
transition state (TS) structures of molecules during proton transfer, and to accurately
calculate the corresponding single-point energy (SPE). The SPE of all of the stable structures
in the S1 state was calculated, as can be seen in Figure 5. As shown, the energy barriers
for the ESIPT process were 7.1831 kcal/mol (for DMA3HF-NH2), 7.3212 kcal/mol (for
DMA3HF), and 8.4198 kcal/mol (for DMA3HF-CN). This result confirms once again that
the substitution of the -CN group on the proton-acceptor side hindered the ESIPT reaction,
and the substitution of the -NH2 group would have the opposite effect. Furthermore, we
drew the intrinsic reaction coordinate (IRC) curves based on the TS structures of the three
molecules. As shown in Figure 6, the two ends of the IRC curves correspond to the enol
and keto forms of the molecules, respectively, proving that the TS structures of the ESIPT
reaction for which we searched were correct.
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3.5. Electronic Spectra and Frontier Molecular Orbitals (FMOs)

In this section, we explored the effects of two classical types of functional groups (-CN
and -NH2) on the photophysical properties of DMA3HF. On the basis of the optimized
ground- and excited-stated structures, the absorption and emission spectra of DMA3HF,
DMA3HF-CN, and DMA3HF-NH2 were simulated at the IEFPCM/TD-DFT/PBEPBE/6-
311++G(d) level, and are displayed in Figure 7. Moreover, the transition properties
(e.g., transition composition and oscillator strengths f ) associated with the six low-lying
absorption transitions (S1–S6) in acetonitrile are summarized in Table 6, and the fluores-
cence properties are listed in Table 7. As shown in Figure 7, the calculated fluorescence
peaks of DMA3HF in the enol and keto forms are separately located at 532.94 nm and
586.30 nm, corresponding with the experimental values of 510 nm and 570 nm [29], and
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further indicating that the selected theoretical level is suitable for simulating the electronic
spectra of DMA3HF, DMA3HF-CN, and DMA3HF-NH2. This also indirectly proves that
the geometric structures optimized by the B3LYP functional are accurate. Notably, all
three molecules possess obvious double-absorption peaks. Compared with the absorp-
tion spectra of DMA3HF, introducing the electron-donating group (-NH2) induced the
absorption intensity of the dual peaks to increase to varying degrees, and the absorption
peak located in the long-wavelength band exhibits a tiny blueshift of 2.63 nm. Moreover,
the absorption peak of DMA3HF-CN in the long-wavelength band shows a redshift of
40.17 nm compared with that of DMA3HF, and the intensity of the absorption peak in
the short-wavelength band increased obviously—even as high as the absorption peak in
the long-wavelength band. As listed in Table 6, the absorption peaks of the three com-
pounds in the long-wavelength band were ascribed to the S0→S1 transition, which was
generated by the electronic transition from the highest occupied molecular orbital (HOMO)
to the lowest unoccupied molecular orbital (LUMO). Furthermore, the absorption peaks of
DMA3HF, DMA3HF-CN, and DMA3HF-NH2 in the short-wavelength band correspond
to the S0→S5 (HOMO→LUMO+2), S0→S4 (HOMO→LUMO+2), and S0→S3 transitions
(HOMO-2→LUMO and HOMO→LUMO+1), respectively. Based on the transition proper-
ties of the three molecules, the corresponding FMO and energy gap diagrams are plotted
in Figure 8. The occurrence of intramolecular charge transfer (ICT) behavior under the
photoexcitation can be visually observed [65,66]. Notably, for the transition (S0→S1), the
electronic cloud density distributed over the O1 atoms of the three compounds decreased,
while that over the O2 atoms increased. That is, the ability of O1 atoms to attract protons
was reduced, while that of O2 atoms is enhanced, which can advance the occurrence of
the ESIPT reaction. Moreover, the peak shift phenomenon in the absorption spectra can
be deduced from the energy gaps of the corresponding orbitals. It also can be seen that
all of the absorption peaks of the three molecules originated from the π→π* transition
of electrons.
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Table 6. Calculated transition properties of the three compounds in acetonitrile.

State λabs (nm) Contribution MO a Strength f

DMA3HF S1 506.63 (68.325%) H→L 0.5655

S2 369.48 (56.740%) H→L + 1
(34.285%) H→L + 2 0.1037

S3 366.37 (67.241%) H-1→L 0.0431
S4 344.55 (70.680%) H-2→L 0.0000
S5 344.03 (55.193%) H→L + 2 0.2958

S6 329.47 (45.859%) H-3→L
(46.421%) H→L + 3 0.0086

DMA3HF-CN S1 546.80 (67.535%) H→L 0.5329
S2 504.39 (69.415%) H→L + 1 0.0359
S3 383.18 (65.797%) H-1→L 0.0241
S4 359.31 (63.652%) H→L + 2 0.5336
S5 355.10 (70.573%) H-2→L 0.0000
S6 343.13 (66.814%) H-3→L 0.0040

DMA3HF-NH2 S1 504.00 (68.324%) H→L 0.5836
S2 445.18 (67.881%) H-1→L 0.0474

S3 353.16 (47.579%) H-2→L
(46.050%) H→L + 1 0.3820

S4 343.13 (69.751%) H-3→L 0.0051

S5 339.41 (45.346%) H-2→L
(45.640%) H→L + 1 0.1166

S6 336.45 (58.989%) H→L + 2
(31.026%) H→L + 3 0.0147

a: Molecular Orbitals; H: the highest occupied molecular orbital (HOMO); L: the lowest unoccupied molecular
orbital (LUMO).

Table 7. Calculated fluorescence properties of the three molecules in the enol and keto forms
in acetonitrile.

State Eflu (eV) λflu (nm) Contribution MO a Strength f

DMA3HF-enol S1 2.3264 532.94 H→L (68.670%) 0.6049
DMA3HF-keto S1 2.1147 586.30 H→L (71.559%) 0.7774

DMA3HF-CN-enol S1 2.1655 572.55 H→L (68.886%) 0.5805
DMA3HF-CN-keto S1 2.0561 603.01 H→L (70.403%) 0.7765

DMA3HF-NH2-enol S1 2.3439 528.97 H→L (68.663%) 0.6291
DMA3HF-NH2-keto S1 2.1173 585.59 H→L (71.017%) 0.7374

a: Molecular Orbitals; H: the highest occupied molecular orbital (HOMO); L: the lowest unoccupied molecular
orbital (LUMO).
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Furthermore, we can see from Figure 7 and Table 7 that, compared with DMA3HF, the
dual-fluorescence signals of DMA3HF-CN redshifted by 39.61 nm (enol form) and 16.71 nm
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(keto form). Similarly, the fluorescence peak of DMA3HF-NH2 in enol form blueshifted
by 3.97 nm. It is noteworthy that the fluorescence intensities of the three molecules in the
keto form were very strong. Moreover, the fluorescence peaks of the three molecules in
keto form exhibited Stokes shifts of 79.67 nm (DMA3HF), 56.21 nm (DMA3HF-CN), and
81.59 nm (DMA3HF-NH2). The above results indicate that the substitution of the -CN
group causes obvious redshift phenomena in the absorption and fluorescence spectra, and
significantly enhances the absorption in the short-wavelength (ultraviolet) band. However,
the substitution of the -NH2 group had no obvious effect on the photophysical properties
of DMA3HF.

4. Conclusions

In this work, the influences of the electron-donating group -NH2 and electron-
withdrawing group -CN on the ESIPT mechanism and photophysical properties of DMA3HF
were comprehensively studied via DFT/TD-DFT methods. Based on the results obtained
from the relevant geometric parameters, IR spectra, NBO charge population, FBO, RDG
isosurface, and topology analysis, the excited-stated IHB strengthening mechanisms of
DMA3HF and its two derivatives were confirmed. Moreover, according to the calculated
PECs and TS structures corresponding to the ESIPT process, it was found that the sub-
stitution of -NH2 on the proton-acceptor side can promote the ESIPT process, while the
substitution of -CN shows the opposite effect. In addition, from the simulated electronic
spectra, it can be seen that DMA3HF and its two derivatives show strong fluorescence in
the keto configuration compared with that in the enol configuration, and the introduction
of -CN can greatly enhance the absorption intensity of DMA3HF in the ultraviolet band. In
conclusion, the introduction of electron-donating and electron-withdrawing groups can
regulate the ESIPT process of flavonoids and, thus, affect their optical properties. This
theoretical investigation can provide valuable guidance in the experimental design and
synthesis of efficient ESIPT-based fluorescence materials.
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