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ABSTRACT

Motivation: Biological data generation has accelerated to the point
where hundreds or thousands of whole-genome datasets of various
types are available for many model organisms. This wealth of
data can lead to valuable biological insights when analyzed in an
integrated manner, but the computational challenge of managing
such large data collections is substantial. In order to mine these
data efficiently, it is necessary to develop methods that use storage,
memory and processing resources carefully.
Results: The Sleipnir C++ library implements a variety of machine
learning and data manipulation algorithms with a focus on
heterogeneous data integration and efficiency for very large
biological data collections. Sleipnir allows microarray processing,
functional ontology mining, clustering, Bayesian learning and
inference and support vector machine tasks to be performed for
heterogeneous data on scales not previously practical. In addition
to the library, which can easily be integrated into new computational
systems, prebuilt tools are provided to perform a variety of common
tasks. Many tools are multithreaded for parallelization in desktop
or high-throughput computing environments, and most tasks can
be performed in minutes for hundreds of datasets using a standard
personal computer.
Availability: Source code (C++) and documentation are available
at http://function.princeton.edu/sleipnir and compiled binaries are
available from the authors on request.
Contact: ogt@princeton.edu

1 INTRODUCTION
Whole-genome assays have now become pervasive, and the
resulting wealth of data represents a new opportunity for biological
discovery. A single genome-scale dataset can capture a snapshot of
cellular function; integrative analysis of hundreds or thousands of
genome-scale datasets can provide even more extensive systems-
level insights regarding gene interactions under diverse conditions
(Troyanskaya, 2005). Integrated approaches have already resulted
in important biological discoveries (Hong et al., 2008; Myers and
Troyanskaya, 2007), and the breadth and depth of possible analyses
will only increase as additional experimental data is collected.

As the amount of data to be analyzed continues to increase,
computational efficiency becomes a greater concern. Specialized
resources exist to enable very high-throughput computing for
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specific applications (Pekurovsky et al., 2004; Swindells et al.,
2002), but few computational options exist allowing researchers to
quickly mine large collections of genome-scale datasets.

To address this need, we have created the Sleipnir library for
computational functional genomics. The library contains algorithms
and data types for efficiently manipulating and mining very large
biological data collections. The core C++ library can be integrated
into computational systems to provide rapid analysis of functional
genomic data. Additionally, a variety of tools are provided that
use the library to perform common tasks: microarray processing,
Bayesian and support vector machine (SVM) learning and so forth.
Even when analyzing individual datasets, Sleipnir often outperforms
existing utilities in processing time, memory usage or both (Table 1).
Tools provided with Sleipnir address common data manipulation
requirements, in many cases processing hundreds of datasets on a
standard desktop computer. Additionally, the core Sleipnir library
can be easily employed to efficiently apply new algorithms to
complex biological data.

2 METHODS
The Sleipnir library contains a wide variety of tools for consuming
standard biological data formats, manipulating and normalizing data
and performing machine learning and prediction. These are discussed
extensively in the user and developer documentation included with the library
(http://function.princeton.edu/sleipnir) and are presented here in summary.

Sleipnir provides C++ classes to parse pairwise interaction data and
standard microarray file formats. Microarray data can be converted into
pairwise similarity/distance scores using a variety of measures, discretized,
normalized, randomized for bootstrapping or synthetic data production, split
or merged, imputed or clustered.

To facilitate functional enrichment analysis, gene function prediction
and gold standard generation from known gene functions and relationships,
Sleipnir provides a uniform interface to several organism-independent
function annotation catalogs. Information from organism-specific
annotations can be merged with these functional annotations. Sleipnir also
includes collections of data structures for dealing with common biological
entities: gene identifiers, sets of genes, groups of related files, etc. Other
utility classes include resources for multithreading, a ready-made network
client/server class and a variety of mathematical and statistical tools.

Sleipnir provides several tools for rapid machine learning and data mining.
The SMILE Bayesian network library (Druzdzel, 1999) and the SVM Light
(Joachims, 1999) library are used to learn and evaluate Bayesian or SVM
models from very large collections of biological data. Arbitrary Bayesian
structures are allowed, with parameters learned either discriminatively or
generatively (Greiner and Zhou, 2005) from data in a context-specific
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Table 1. Sleipnir efficiency on integration and single dataset tasks

Implementation Peak RAM (KB) Time (s)

Bayesian learning (500 genes, 15 datasets)
Sleipnir 1376 <1
GeNIe 6832 4
BNT 593 180 15

Bayesian inference (500 genes, 15 datasets)
Sleipnir 1216 1
BNT 273 992 >600

Missing value estimation (10% missing, k =10)
Sleipnir 27 232 195
knnimpute 115 708 368

Hierarchical clustering
Sleipnir 83 188 156
Cluster 3.0 176 836 154
MeV 198 292 361

K-means clustering (k =100)
Sleipnir 8780 114
Cluster 3.0 28 544 102
MeV 198 292 361

Memory usage and runtimes for Sleipnir and a number of other common tools for
Bayesian analysis and biological data manipulation (de Hoon et al., 2004; Druzdzel,
1999; Murphy, 2001; Saeed et al., 2003; Troyanskaya et al., 2001). All microarray
operations were performedon the 300 conditions and 6153 genes of (Hughes et al.,
2000) using Euclidean distance. Bayesian operations were performed on simulated
data using a binary gold standard and five randomly distributed values per dataset.
Tests were run in a single thread on a 2 GHz Intel Core 2 Duo. In every case, Sleipnir
demonstrates a substantial advantage in speed, memory usage or both.

manner (Huttenhower et al., 2006); extremely fast-customized learning and
evaluation implementations are used for naive structures.

3 RESULTS
While Sleipnir’s efficiency in integrating and mining biological
datasets is most critical for very large data collections, it is
also practical for single dataset tasks and smaller analyses
(Table 1). When compared to several common tools for
microarray manipulation or Bayesian learning, Sleipnir consistently
demonstrates a substantial advantage in runtime, memory usage or
both. These improvements arise from a variety of optimizations
but are broadly attributable to the flexibility allowed by C++
in manipulating large quantities of individual data (microarray
values, interaction pairs, etc.) What Sleipnir trades off in generality
(e.g. with respect to BNT) or robustness to malformed input
(e.g. with respect to MeV), it gains in speed, memory management
and overall scalability, allowing it to efficiently manipulate large
data collections.

The Sleipnir library is particularly useful for large integration
tasks involving hundreds of diverse biological datasets; example
applications of Sleipnir in such settings include Huttenhower et al.
(2006) and Myers and Troyanskaya (2007). A schematic of such
a task is shown in Figure 1, where Sleipnir was used to learn
200 context-specific Bayesian classifiers each integrating 186
Saccharomyces cerevisiae datasets. Conditional probability tables
were learned for each dataset within each context, entailing ∼75 000
probability distributions. The resulting Bayesian classifiers were
used to infer context-specific functional relationship networks, each
consuming 90 MB of disk space and calculated in 16.3 min. Sleipnir
also supports an online mode for functional relationship inference

Fig. 1. Sample application of the Sleipnir library to integrate 186
heterogeneous genomic datasets in S.cerevisiae within 200 biological
contexts. White boxes indicate externally generated data, grey boxes data
generated by Sleipnir, arrows processing performed by Sleipnir, and black
bubbles highlight time-consuming tasks. Times were generated on a 2 GHz
Intel Xeon CPU; peak RAM usage was ∼200 MB. Sleipnir is extensively
parallelizable, and running these tasks on four cores reduces processing time
by an optimal 4-fold to ∼13 h each for Bayesian learning and inference.

in which no additional disk space is consumed and individual
context-specific functional relationships can be produced in as little
as 100 ns. Parallelization on four processor cores reduces the total
learning and evaluation time by an optimal 4-fold speedup (∼13 h
each for Bayesian learning and inference). Every stage of this
complex data integration and machine-learning task was performed
using Sleipnir and its associated tools.

4 DISCUSSION
The Sleipnir library for computational functional genomics provides
a wide range of data processing and machine learning algorithms
optimized for integrating very large collections of heterogeneous
biological data. These include algorithms for data integration,
machine learning by Bayesian networks or SVMs, and data types for
manipulating microarrays, gene identifiers, functional annotations
and other common biological entities. Several tools are provided
with the core library to perform common tasks, and most algorithms
are multithreaded or parallelizable for distributed computing. The
Sleipnir library enables computational biologists to efficiently
integrate thousands of genomic datasets and to rapidly mine them
for biological knowledge.
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