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We describe a genome-wide analytical approach, SNP and Haplotype Regional Heritability
Mapping (SNHap-RHM), that provides regional estimates of the heritability across locally
defined regions in the genome. This approach utilises relationship matrices that are based
on sharing of SNP and haplotype alleles at local haplotype blocks delimited by
recombination boundaries in the genome. We implemented the approach on simulated
data and show that the haplotype-based regional GRMs capture variation that is
complementary to that captured by SNP-based regional GRMs, and thus justifying the
fitting of the two GRMs jointly in a single analysis (SNHap-RHM). SNHap-RHM captures
regions in the genome contributing to the phenotypic variation that existing genome-wide
analysis methods may fail to capture. We further demonstrate that there are real benefits to
be gained from this approach by applying it to real data from about 20,000 individuals from
the Generation Scotland: Scottish Family Health Study. We analysed height and major
depressive disorder (MDD). We identified seven genomic regions that are genome-wide
significant for height, and three regions significant at a suggestive threshold (p-value < 1 ×
10−5) for MDD. These significant regions have genesmapped to within 400 kb of them. The
genes mapped for height have been reported to be associated with height in humans.
Similarly, those mapped for MDD have been reported to be associated with major
depressive disorder and other psychiatry phenotypes. The results show that SNHap-
RHM presents an exciting new opportunity to analyse complex traits by allowing the joint
mapping of novel genomic regions tagged by either SNPs or haplotypes, potentially
leading to the recovery of some of the “missing” heritability.
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1 INTRODUCTION

Estimates of the genetic component of complex trait variation
using genotyped SNPs led to the conclusion that a proportion of
the heritability of complex traits is still unexplained or “missing”
(Maher, 2008; Manolio et al., 2009). Full sequence data will
contain all the variants that account for all the heritability of
complex traits (Wainschtein et al., 2019). Moreover, some of
these true causal variants may be rare (Pritchard, 2001) and
therefore may be in incomplete linkage disequilibrium (LD) with
genotyped SNPs (Yang et al., 2010). Thus, some of the “missing”
heritability may be “hidden” in rare variants whose effects are
difficult to capture because of lack of statistical power. There is,
therefore, some benefit to be gained in terms of improving the
heritability estimates and uncovering gene variants involved in
the control of traits by fitting genome-wide analytical models that
adequately capture the combined effects of rare genetic variants
(Cirulli and Goldstein, 2010; Gonzalez-Recio et al., 2015).

In light of this, we proposed a genome-wide analytical
approach that draws its theoretical basis from the genome-
based restricted maximum likelihood (GREML) approach
(Maher, 2008; Manolio et al., 2009; Clarke and Cooper, 2010;
Yang et al., 2011; Speed et al., 2012) which utilises both local and
genome-wide relationship matrices to provide regional estimates
of the heritability across locally defined regions in the genome
(Nagamine et al., 2012; Uemoto et al., 2013). This regional
heritability analysis can capture the combined effect of SNPs
in a region, and thus small effect variants may be detectable.
However, the analysis only captures effects associated with
common SNPs present on genotyping chips.

Haplotypes may provide a better strategy to capture
genomic relationships amongst individuals in the presence
of causal rare variants. Although rare variants are not in LD
with genotyped variants and thus are difficult to capture in
conventional GWAS, these rare variants may be in LD with
some haplotypes and thus can be captured using haplotype
methods. Compared with genotyped SNPs, capturing
haplotype effects may offer an advantage because
haplotypes can be functional units (Vormfelde and
Brockmöller, 2007). Therefore, haplotype effects may reflect
the combined effects of closely linked cis-acting causal variants
(Balding, 2006) and using haplotypes could provide real
benefit over SNPs in recovering some of the “missing”
heritability and identifying novel trait-associated variants.
Therefore, we extended the SNP-based regional heritability
analysis further by incorporating haplotypes in addition to
SNPs in the calculation of the regional GRMs used in the
analysis (Shirali et al., 2018). This approach includes two
regional GRMs and divides the genome into windows based
on local haplotype blocks delimited by recombination
boundaries.

This paper further explores the properties of both the SNP-
based and the haplotype-based regional heritability mapping
(SNP-RHM and Hap-RHM respectively). We hypothesise and
show by simulation that the Hap-RHM complements existing
SNP-RHM analytical approaches by capturing regional effects in
the genome that existing SNP-based methods fail to capture. This

leads us to propose a mapping strategy that jointly utilises SNP
and haplotype GRMs in a single analysis called SNHap-RHM.We
then confirm the utility of this approach by applying it to real data
obtained from about 20,000 individuals from the Generation
Scotland: Scottish Family Health Study (GS: SFHS) (Smith et al.,
2012). We analysed two phenotypes: height and major depressive
disorder (MDD). The aim was to uncover novel genetic loci that
may affect these traits and improve the estimates of the genetic
components of the variation in these traits.

2 MATERIALS AND METHODS

2.1 Materials
The data used in this study is from the Generation Scotland:
Scottish Family Health Study (GS: SFHS), comprising of 23,960
participants recruited from Scotland (Smith et al., 2006; Smith
et al., 2012). The DNA from about 20,032 of the participants had
been genotyped using the Illumina
HumanOmniExpressExome8v1-2_A chip (∼700 K genome-
wide SNP chip) (Smith et al., 2012). GRCh37 was used
throughout. Quality control excluded SNPs and individuals
with a call rate less than 98%, SNPs with minor allele
frequency (MAF) less than 1% and SNPs that were out of
Hardy-Weinberg equilibrium (p-value < 0.000001). A total of
555,091 autosomal SNPs passed quality control for downstream
analysis. Ethical approval for the GS: SFHS study was obtained
from the Tayside Committee on Medical Research Ethics (on
behalf of the National Health Service).

2.2 Methods
We have shown previously that regional GREML analysis
(Regional Heritability Mapping or RHM) using fixed region
sizes in the genome is a suitable mapping method for finding
local genetic effects (Nagamine et al., 2012). The conventional
RHM model fits two genomic relationship matrices (GRMs) in
the analyses to map genetic loci that affect trait variation: a
local GRM (rGRM) calculated using SNPs located in the region
and a genome wide GRM (gwGRM) calculated from SNPs
outside the region. We have since extended this conventional
regional heritability analysis to incorporate haplotypes in the
calculation of the local GRM and have successfully
implemented this in a simulation study (Shirali et al., 2018).
This study, like our previous (Shirali et al., 2018), utilises a
regional heritability model that breaks the genome into
naturally defined regions by delimiting them by
recombination hotspots. Two types of regional heritability
models are then fitted in turn to the phenotypes. One
model (SNP-RHM) uses SNPs to estimate local genetic
relationships between study individuals, and the other
model (Hap-RHM) estimates local genetic relationships
amongst individuals using haplotypes. We go a step further
in this study to perform a regional heritability analysis that
jointly fits the SNP and the haplotype GRM in an approach
that we termed SNP and Haplotype Regional Heritability
Mapping (SNHap-RHM). An overview of SNHap-RHM is
shown in Figure 1.
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2.2.1 The General Statistical Setting of a Regional
Heritability Analysis
Consider a vector y of phenotype values with length n, the linear
mixed-effects model for fitting the effects of genomic region i and
background polygenic markers is given as

y � Xβ +Wiui + Zub + e

where y is a vector of phenotypes, X is a design matrix of fixed
effects, and β is a vector of fixed effects, W i is a design matrix
relating phenotype measures to genetic markers in region i and ui
is a vector of random genetic effects due to region i assumed to be
multivariate normal,MVN(0, σ2uiLui). Lui is a relationship matrix
calculated using markers (SNPs or haplotypes) in region i:
calculated in the subsequent sections as G for the SNP and H
for the haplotype-based models. Z is a design matrix for
background polygenic effects of markers outside the region i
and ub is a vector of random polygenic effect of genetic markers
excluded from region i, assumed to be multivariate normal,
MVN(0, σ2ubBub). Bub is a relationship matrix calculated using
the markers outside the region i: calculated in the subsequent
section in the same way as G. And e is a vector of residual effects
assumed to be multivariate normal, MVN(0, σ2e I). I is an
identity matrix.

Under the model, the vector of phenotypes y is assumed to
be normally distributed, N(Xβ,V) where the variance is:

V � σ2
ui
WiLuiW

T
i + σ2

ub
ZBubZ

T + σ2eI

2.2.1.1 SNP-RHM: SNP-Based Regional Heritability Model
A SNP-based regional heritability analysis was first reported by
Nagamine et al. (2012). The regional heritability analysis
approach we employ here differs from the analysis done by
Nagamine et al. (2012) in the way the regions are defined. That
analysis defined local regions by breaking the genome into
smaller user-defined windows of r SNPs, which overlapped by
s SNPs. Here, however, we define regions based on
recombination boundaries in the genome.

The regional heritability model fits two genetic relationship
matrices (GRMs): one local GRM for the region and a whole-
genome GRM for the remaining SNPs in the genome that are
outside the region. The GRMs are genomic relatedness
matrices calculated as the weighted proportion of the local
or genome-wide autosomal SNPs shared identity by state (IBS)
between pairs of individuals. The SNP IBS matrices are
calculated as follows, following the second scaling factor
proposed by VanRaden (2008)

G � MM′
m

where m is the total number of r local or b background
autosomal SNPs, and M is a matrix of genotype codes for the
sampled individuals centred by loci means and normalised by the
standard deviation of each locus. M is calculated as follows for
individual i at locus j

FIGURE 1 | A Schema outlying SNHap-RHM.
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Mij �
(xij − 2pj)����������
2pj(1 − pj)√

where xij is the genotype code at locus j for individual i and takes
the values 0, 1 and 2 for AA, Aa and aa genotypes respectively, pj

is the frequency of allele “a” at locus j. The SNP-based
relationship for individuals i and k is therefore calculated as
follows

Gik � 1
m

×∑m
j�1

(xij − 2pj)(xkj − 2pj)
2pj(1 − pj)

2.2.1.2 Hap-RHM: Haplotype-Based Regional Heritability
Model
The haplotype-based regional heritability model follows
theoretically from the SNP-based analysis and utilises
haplotypes instead of SNPs as the genetic markers for the
regional analysis. The analysis fits two GRMs, a haplotype-
based regional GRM and a SNP-based background genome-
wide GRM. The haplotype-based GRM is similar to the SNP-
based GRM defined in the previous section. For a locally defined
region (haplotype block) containing h haplotype variants, the
haplotype-based kinship for individuals i and k is calculated as
follows

Hik � 1
h
×∑h

j�1

(dij − 2pj)(dkj − 2pj)
2pj(1 − pj)

where dij is the diplotype code (coded as the number of copies of
haplotype j) for individual i and takes the values 0, 1, and 2 for the
htht, hthj, hjhj diplotypes respectively where haplotype t is any
haplotype other than haplotype j, i.e., t ≠ j, pj is the haplotype
frequency for haplotype j.

2.2.2 Simulation Study
Five phenotypes were simulated using available genotypic
information of 20,032 individuals from the Generation
Scotland: Scottish Family Health Study (Smith et al., 2012).
The five phenotypes were simulated to have a total variance of
1. This total is composed of 0.6 environmental (residual) variance
and genetic variance of 0.4. The genetic variance was partitioned
into two components, a polygenic variance of 0.3 and a total QTL
variance of 0.1 (20 QTLs, each explaining a variance of 0.005). A
common polygenic variance was simulated for all five phenotypes
from 20,000 markers randomly selected across the genome. The
polygenic variance was simulated to be normally distributed with
zero mean and variance of 0.3.

Phasing of the GS: SFHS data was done using SHAPEIT2
(Delaneau et al., 2013). Best guess haplotypes were used.
Haplotypes variants within blocks were determined using the
phased data. For each phenotype, 20 regions (haplotype blocks)
were randomly selected, one on each autosome (except
chromosomes 6 and 8 because of the unusually high LD in
the MHC regions on chromosome 6 and a large inversion on
chromosome 8 (Amador et al., 2015)), to simulate quantitative

trait loci (QTL). This gave a total of 20 QTLs for each phenotype.
The haplotype blocks were delimited by natural boundaries:
recombination hotspots where the estimated recombination
frequency exceeds ten centiMorgans per Megabase (10 cM/
Mb) with the estimated recombination frequency between
boundaries being less than ten centiMorgans per Megabase
(10 cM/Mb) based on the Genome Reference Consortium
Human Build 37 (International Human Genome Sequencing
Consortium, 2004). This recombination threshold resulted in a
total of 48,772 regions across the genome. The number and type
of marker used to simulate the QTL are what defined the five
phenotypes. The five phenotypes are, a 1-SNP QTL within the
haplotype block, a multiple-SNP (5 SNPs) QTL within the
haplotype block, two types of 1-haplotype QTL within the
haplotype block (taking either a common or a rare haplotype
as causal) and multiple (5) haplotype QTL within the haplotype
block. Details of these phenotypes are described below.

For the haplotype QTL phenotypes, a haplotype block is
treated as a single genetic locus having multiple alleles. Each
haplotype variant within a block is considered as an allele of that
locus. Each study individual will carry two alleles, or have a
diplotype, for each locus or haplotype block. The genotype data
used to simulate the phenotypes were phased using SHAPEIT2
(Delaneau et al., 2013) to produce the haplotypes for study
individuals. The multiple haplotype QTL phenotypes were
simulated by randomly sampling two rare haplotypes and
three common haplotypes within each haplotype block to give
five haplotypes per block. The two types of 1-haplotype QTL
phenotypes were simulated by randomly sampling a rare
haplotype per haplotype block for one type and for the other
type a common haplotype was randomly sampled within each
haplotype block. Supplementary Figure S10 gives an indication
of the frequencies for the rare (0.00002–0.036) and common
haplotype (0.008–0.906) randomly sampled to simulate the
phenotypes. There is a slight overlap between the frequencies
for rare and common haplotypes because the regions had already
been randomly selected before proceeding to randomly select rare
and common haplotypes in those regions. Which means what is
rare in one region may be common in another.

The individual marker contribution to the polygenic effect and
the QTL effects were calculated as follows

σ2j � 2pj(1 − pj)g2
j

gj �
����������

σ2j

2pj(1 − pj)
√√

where σ2j is the contribution of a marker to the QTL or polygenic
variance, gj is the effect of a SNP j or haplotype j randomly
sampled to have polygenic or QTL effect, pj is the frequency of
haplotype j or the effect allele of the SNP j. For the single marker
QTL phenotypes, each QTL explained a variance of 0.005. For the
multiple marker QTL phenotypes, each causal variant explained
the same variance, with the effects scaled to account for LD in the
region so each QTL locus explained a variance of 0.005. For the
multiple haplotype QTL effects, the haplotype effects were scaled
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relative to the inverse of their frequency to give a total variance
explained by the region of 0.005.

Common environmental effects were randomly sampled
for the five phenotypes from a normal distribution N(0, σ2e)

where σ2e is 0.6. This, together with a genetic variance of 0.4,
gave a total variance of 1 for each phenotype. The final
simulated phenotype for an individual i was then
calculated as follows

FIGURE 2 | Plots of Likelihood ratio test (LRT) statistics at each QTL locus and five regions either side averaged for the 20 simulations of each of the five QTL
phenotypes. Plot (A) is SNP QTL phenotypes analysed using the SNP-RHM and plot (B) is the haplotype QTL phenotypes analysed using the Hap-RHM. Both models
can capture the simulated QTL effects for their respective SNP and haplotype phenotypes.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7917125

Oppong et al. SNHap-RHM Regional Heritability Mapping

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


y(singlemarkers perQTL region)i � ∑20000
j�1

xijgj +∑20
j�1

xijgj + ei,

y(multiplemarkers perQTL region)i
� ∑20000

j�1
xijgj +∑20

l�1
∑5
j�1
xijgj + ei,

where xij is the number of copies of the effect allele of SNP j for
individual i (for haplotypes, this is defined as dij; the number of
copies of haplotype j for individual i) and gj is the effect of
haplotype j or SNP j. Twenty replicates were analysed for each
of the five phenotypes with a different set of QTL markers
sampled for each replicate.

2.2.2.1 Analysis of Simulated Data
In this simulation study, the five simulated phenotypes were
analysed using the two models, the SNP-based regional
heritability model (SNP-RHM for the SNP QTL phenotypes)
and the haplotype-based regional heritability model (Hap-RHM
for the haplotype QTL phenotypes). To test the analytical models’
specificity, we applied Hap-RHM to SNP QTL phenotypes and
SNP-RHM to the haplotype QTL phenotypes. We also performed
a Hap-RHM analysis in which the units of analysis in the
haplotype blocks were restricted to regions of 20 or fewer
SNPs per haplotype block. This was because we observed that
longer haplotype blocks had many SNPs (and hence many, many
haplotypes, up to 14,000 in some blocks), and this impacted the
estimation of the simulated regional effect. The hybrid Hap-
RHM, therefore, investigates whether the regional effect is well
captured by the haplotype-based model when shorter haplotypes
are used.

We estimated the regional genetic variance and polygenic
variance using restricted maximum likelihood (REML). For
each simulated phenotype, we analysed 220 regions in total to
map the 20 simulated QTLs. This involved analysing the
region containing the QTL and ten adjacent regions (five in
either direction). In this way, we limit the analysis to the
regions in the genome with simulated effects, thereby reducing
computation time considerably. Also, by analysing
neighbouring regions, we are able to explore the precision
of estimates of the location of regional effects. We assessed the
significance of a region using the Likelihood Ratio Test (LRT).
The genome-wide significance threshold was calculated to be
LRT � 23.9 (p-value < 1.02 × 10−6) using a Bonferroni
correction for testing 48,772 regions.

Also, we selected one replicate for each simulated
phenotype and performed SNHap-RHM (SNP and
Haplotype Regional Heritability Mapping), a regional
heritability analysis that jointly fitted the SNP and the
haplotype GRM.

2.2.3 SNHap-RHM of MDD and Height
MDD status for GS: SFHS participants was assigned following
an initial mental health screening questionnaire with the
questions: “Have you ever seen anybody for emotional or
psychiatric problems?” or “Was there ever a time when you,

or someone else, thought you should see someone because of
the way you were feeling or acting?” Participants who
answered yes to one or both of the screening questions
were further interviewed by the Structured Clinical
Interview for DSM-IV (SCID) (First et al., 2002). A total of
18,725 participants (2,603 MDD cases and 16,122 controls)
were retained for analysis for MDD. A total of 19,944
participants from the GS: SFHS were analysed for height.

SNHap-RHM fits jointly, the two types of regional GRMs,
SNP-based and haplotype-based, in the analysis of phenotypes
(Figure 1). We pre-corrected the phenotypes with the whole-
genome GRM before performing SNHap-RHM to speed up the
GREML analysis of each block. This pre-correction has
previously been shown to speed the regional heritability
analysis by Shirali et al. (2018). This is a leave-one-
chromosome-out step (Yang et al., 2014), which involved 22
separate GREML analyses each fitting a whole-genome GRM
that excluded SNPs from one chromosome. The residuals from
the pre-correction step were then used in the SNHap-RHM
analysis. The models adjusted for sex, age, age2, and the first 20
principal components calculated from the study participants’
genomic relationship matrix (calculated using 555,091
autosomal SNPs).

The significance of a region was tested with a likelihood
ratio test (LRT) with two degrees of freedom which compared a
model with three variance components fitted (the two regional
variances together with the residual variance) against a model
with only the residual variance component fitted. The
individual regional variance components in all regions were
subsequently tested with an LRT with one degree of freedom
which compared a model with three variance components
fitted against a model with two variance components fitted
(one regional variance component dropped from the model).
We assumed the appropriate null distribution that results from
testing on the boundary of the parameter space and therefore
calculated the p-values as 0.5× the p-value of a chi-squared
distribution with one degree of freedom for the one degree of
freedom test and as 0.5× the p-value of a chi-squared
distribution with one degree of freedom plus 0.25× the
p-value of a chi-squared distribution with two degrees of
freedom for the two degrees of freedom test.

The p-values obtained from the LRTs were used to generate
genome-wide association plots for each phenotype (equivalent
to GWAS Manhattan plots). The genome-wide significance
threshold was calculated to be LRT � 23.9 (p-value < 1.02 ×
10−6) using a Bonferroni correction for testing 48,772 regions.
The suggestive significance threshold of a region was set at an
LRT � 19.5 (p-value < 1.02 × 10−5).

3 RESULTS

3.1 Simulation Study: SNP-RHM, Hap-RHM
and SNHap-RHM
We performed a regional heritability analysis that fits two GRMs
(one for the region and one for the rest of the genome) per region
across multiple genomic regions delimited by recombination
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hotspots (where the estimated recombination frequency exceeds
ten centiMorgans per Megabase (10 cM/Mb)). This
recombination threshold resulted in a total of 48,772 regions
across the genome. We tested two types of regional heritability
models, SNP-RHM and Hap-RHM, on 20 replicates of five
simulated phenotypes. In SNP-RHM, the regional matrix is
derived from SNP genotypes whereas in Hap-RHM the
regional matrix is derived from haplotypes. The phenotypes
were simulated to be determined by 20 regional QTL effects
and genome-wide polygenic effects. The regional QTL effects of
the five phenotypes were simulated using SNPs as causal variants
for two of them and haplotypes for the remaining three as
described in the methods section.

A likelihood ratio test (LRT) was used to test the null
hypothesis, H0: that the genetic variance explained by the
region is not significant, against the alternative hypothesis, H1:
that the region accounts for a significant proportion of the
phenotypic variance. A large LRT statistic is evidence against
the null hypothesis, and therefore means the region explains a
significant proportion of the phenotypic variance.

The LRTs averaged over the 20 replicates of the five
phenotypes are shown in Figure 2. The figure shows plots
of average LRT for the QTL regions and ten adjacent regions
(five to each side). The results show that both models detected
the simulated regional effects at the genome-wide significance
level (LRT � 23.9) (p-value < 1.02 × 10−6, Bonferroni
correction for testing 48,772 regions) and can capture true
causal loci in traits with different genetic architectures. The
LRTs were higher on average for the SNP-based model (SNP-
RHM) than the haplotype-based model (Hap-RHM). This
could be because for Hap-RHM, the genome-wide GRM
which is a SNP-based GRM does not tag any of the
background haplotype effects that are outside any one
particular region being analysed, and thus the residual
variance may be inflated by the other haplotype QTLs
which downwardly impact the LRTs.

We provide further investigation of the results from the
simulation in the supplementary material (Supplementary
Text). For both analysis models, we have presented detailed
results of the relationships between the LRT statistics, region
size, variance estimates and allele frequencies (Supplementary
Figures S3–S10). We observed that the longer haplotype
blocks had many SNPs (and hence many, many haplotypes,
up to 14,000 in some blocks), and this impacted the estimation
of the simulated regional variance (Supplementary Figure
S8). We, therefore, performed a hybrid-Hap-RHM analysis
that restricted the natural haplotype block sizes to 20 or fewer
SNPs per haplotype block. This hybrid-Hap-RHM was to
investigate whether the regional variance is well captured by
Hap-RHM when shorter haplotypes are used. The hybrid-
Hap-RHM underestimated the regional variance for larger
regions but did not offer any discernible improvement in
the LRT statistics (Supplementary Figure S9). The
relationship between region size and estimated variance was
different between the Hap-RHM and hybrid-Hap-RHM, while
we observed a similar relationship between LRTs and the
region size.

Both SNP-RHM and Hap-RHM fail to capture the simulated
regional effects when the simulated phenotype has a genetic
architecture that does not match the analysis model, i.e., SNP or
haplotype (Figure 3; Supplementary Figure S1). These figures show
the results for the situation where the SNP QTL phenotypes were
analysed with the haplotype-based model (Hap-RHM) and the
haplotype QTL phenotypes were analysed with the SNP-based
model (SNP-RHM). Both models fail to detect the simulated
effects in such situations, therefore, showing that the models
complement each other since they capture effects due to different
types of genetic variants (i.e., tagged by SNPs or haplotypes).

To confirm that two models are complementary and
independent of each other, we implemented SNHap-RHM that
fits the regional SNP and haplotype GRMs jointly, on a replicate
of each of the five simulated phenotypes. The significance of
regional effects was tested with an LRT with two degrees of
freedom. The results are shown in Figure 4 and confirm that the
two models are complementary since even when we fitted jointly
the two regional matrices (SNP and Haplotype-based), we can
still capture the simulated effects.

3.2 SNHap-RHM Analysis of Height and
Major Depressive Disorder
The heritability estimates for height and MDD in the GS: SFHS
dataset, calculated using the whole-genome GRM, were 81.4%
(0.92) and 13.8% (1.35) respectively. There were no overlaps
between regions identified as significant (tested with an LRT with
one degree of freedom) by the haplotype and SNP-based models
for either of the two traits (Supplementary Figure S2). This
reaffirms our hypothesis tested by simulation that the Hap-RHM
is complementary to SNP-RHM in mapping associated
genomic loci.

The regional heritability results for height and MDD are
presented as plots of minus-Log10 of the LRT p-values
(Figures 5, 6). The plots for the SNHap-RHM, SNP-RHM and
Hap-RHM analyses are shown.

The results for height show that nine regions passed the
Bonferroni-corrected genome-wide significance threshold in
the analysis using SNP-RHM. No region was genome-wide
significant for height when analysed with Hap-RHM.
Furthermore, seven of the nine associated regions still come
up as genome-wide significant when SNPs and haplotypes in
those regions are analysed jointly using SNHap-RHM. There
are GWAS reported genes that lie in or are within 400 kb of
these regions (Supplementary Table S1).

For MDD, no region passed the Bonferroni-corrected
genome-wide significance threshold for the analysis done with
the SNP-based and haplotype-based regional heritability models
(Figure 6). Three regions passed the suggestive significance
threshold at p-value < 1 × 10−5 for Hap-RHM analysis of
MDD. A further nine regions were significant at p-value < 5 ×
10−5 for the haplotype-based analysis, and one region for the
SNP-based analysis (Supplementary Table S2). Figure 6 shows
that when the two local GRMs are fitted jointly using SNHap-
RHM, the genomic regions associated with MDD can still be
mapped. The associated regions mapped by the haplotype-based
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model for MDD contain genes reported by GWAS to be
associated with several psychiatry phenotypes (Figure 6;
Supplementary Table S2). The most strongly associated
region was within 400 kb of the DCC gene. This gene is part
of the NETRIN1 pathway, which has been reported to be
associated with major depressive disorder in two GWAS
samples (GS: SFHS and Psychiatric Genomics Consortium)
(Zeng et al., 2017). Zeng et al. (2017) used a SNP-RHM
guided by pathway analysis (to first uncover pathway
association and then localise DCC within the pathway) to
show the DCC association with major depressive disorder. The
second most strongly associated region was on chromosome 8,
and this region had no gene mapped to it.

A linear mixed effects model was used to test for association of
the SNPs within the suggestive significant region identified by the
haplotype-based model on chromosome 3 for MDD. The model
tested for association of SNPs by fitting their allelic dosages
individually in a regression model and fitting a GRM to
account for relatedness of individuals. The region on

chromosome 3 was chosen in this example because there is a
psychiatric phenotype associated gene, MYRIP (Luciano et al.,
2011), mapped to it, unlike the DCC region which has the gene
outside the region. The results are shown in Table 1. Five SNPs
within this region are nominally significant at p-value < 0.05.
Four out of these five SNPs confer about 2% increased risk of the
disease each. These four SNPs lie within the MYRIP gene
sequence. The MYRIP gene is expressed in the brain (Ganat
et al., 2012). A SNP (rs9985399) in this gene is reported to be
associated with brain processing speed in the Lothian birth cohort
(Luciano et al., 2011). Brain processing speed is an important
cognitive function that is compromised in psychiatric illness such
as schizophrenia and depression, and old age. Also, a SNP
(rs6599077) in the MYRIP gene region is associated with sleep
duration (Gottlieb et al., 2007). Sleep durations outside the
normal range (both short sleep and long sleep) is significantly
associated with increased risk of depression (Roberts and Duong,
2014; Watson et al., 2014; Zhai et al., 2015; Mohan et al., 2017).
The MYRIP gene is also reported to have a role in insulin

FIGURE 3 | Plots of average LRT statistics over replicates of QTL loci across the chromosomes for the 20 simulations of each of the two SNPQTL phenotypes. The
red dashed lines are genome-wide significance threshold (for 48,772 regions) and the black dashed lines are Bonferroni significance threshold (for 220 regions). The
upper plot (A) is the 1-SNP QTL phenotype, and the lower plot (B) is the multiple SNP QTL phenotype. The two phenotypes are analysed using both the SNP based
model (SNP-RHM) (blue points) and the Haplotype based model (Hap-RHM) (red points). The Hap-RHM fails to capture the simulated effects for the SNP QTLs.
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secretion (Waselle et al., 2003) and low insulin levels have been
linked to depression (Pearson et al., 2010; Greenwood et al., 2015;
Webb et al., 2017).

3.2.1 Comparison With Published GWAS SNPs
For both traits, the SNPs in the regions that were significant at
p-value < 5 × 10−5 were compared to SNPs reported in the
GWAS catalogue (MacArthur et al., 2017) to be significant for
the two traits. The GWAS catalogue was accessed on the
January 15, 2021. The results are presented in Table 2. The
SNP-based and haplotype-based models identified 1,380 and
45 SNPs respectively for height, and 78 and 495 SNPs
respectively for MDD taking all SNPs within haplotype
blocks significant at p-value < 5 × 10−5. Out of the 1,380
SNPs identified for height by the SNP-based model, 57 SNPs
spanning 20 haplotype regions were in common with
published GWAS results for height. The number of SNPs
found in common with published GWAS results are
modest, and this could be because of the differences in
genotyping chips used in this study and the published
studies. Which means if we were to consider proxies of our
SNPs (LD > 0.8) in the comparison, the numbers might
increase. Also, our sample size compared to most of those
published GWASs is quite small which means that we might
not have enough power to detect all associations.

4 DISCUSSION

We have proposed and implemented a genome-wide analytical
method that analyses genomic regions using a regional
heritability model (Nagamine et al., 2012). We have since
extended this method to include haplotypes by fitting a
regional haplotype-based GRM (Hap-RHM) and redefined

genomic regions in our analysis to be delimited by
recombination hotspots generated using HapMap Phase II
(Frazer et al., 2007; Shirali et al., 2018). In this study, we build
on our previous regional heritability methods by exploring the
properties of the SNP and haplotype-based regional heritability
mapping models by simulation and demonstrate that the two
variance components fitted are largely independent of each other
(Supplementary Figure S2). The novelty in this study is that we
show that the two regional matrices fitted in SNP-RHM and Hap-
RHM capture two different kinds of effects in terms of genetic
architecture, and thus the two variance components can be fitted
jointly (by fitting the SNP and haplotype regional matrices
together) in a joint marker regional heritability mapping
procedure that we call SNHap-RHM.

We hypothesised that the Hap-RHM would complement the
SNP-RHM.We investigated this hypothesis in a simulation study
in which we simulated 20 replicates each of two types of SNPQTL
phenotypes and three types of haplotype QTL phenotypes. The
results show that the two heritability models can capture the
effects of causal variants within genomic loci associated with the
phenotype analysed. The results also show that the two models
are specific about the type of causal effect they can capture,
therefore, providing support for the hypothesis that haplotype-
based regional heritability models will complement SNP-based
regional heritability models. We provide further support for this
hypothesis by fitting the two GRMs jointly and showing (using an
LRT with two degrees of freedom) that we can still capture the
simulated effects and real effects from real data.

We applied SNHap-RHM to height and MDD phenotypes
from the Generation Scotland: Scottish Family Health Study.
Again, we draw comparisons between the effects captured by the
SNP-RHM and the Hap-RHM. The SNP-RHM identified more
Bonferroni-corrected genome-wide (GW) significant regions
(p-value < 1.02 × 10−6) for height compared to MDD. Fifty-

FIGURE 4 | Joint analysis of the SNP and haplotype phenotypes using SNHap-RHM. The plot is an analysis of one replicate of each of the simulated phenotypes.
The LRT statistics are plotted over QTL loci across the chromosomes. The red dashed lines are genome-wide significance threshold (for 48,772 regions) and the black
dashed lines are Bonferroni significance threshold (for 220 regions).
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seven of the SNPs identified for height by the SNP-RHM have
been reported by other studies to be associated with height. These
SNPs spanned 20 genomic regions in the GS: SFHS cohort.
Height is a highly polygenic trait with many common genetic
variants accounting for most of the additive genetic variation
(Yang et al., 2015). These common genetic variants may be in LD
with genotyped SNPs on SNP chips (these chips are
disproportionately enriched for common SNPs). Therefore, the
SNP-based regional heritability model is better suited for
capturing SNP loci in height compared to MDD.

MDD is a very heterogeneous phenotype, and thus every MDD
case could have a set of genetic and non-genetic risk factors
exclusive to them (Levinson et al., 2014). These unique genetic

risk factors will mean that a lot of the genetic variants driving the
disease will be rare at the population level. Three genomic regions
were identified for MDD by the haplotype-based regional
heritability model at the suggestive level, p-value < 1 × 10−5.
The Hap-RHM works well for MDD because MDD is believed
to be driven by rare genetic variants, and the model can capture
rare genetic variants. The haplotype model can capture rare
variants because of the LD between rare variants (both typed
and untyped) and the flanking variants that aggregate to form the
haplotypes within the genomic regions. There were no overlaps
between regions identified by the Hap-RHM and SNP-RHM for
each trait, which again supports the hypothesis that the twomodels
complement each other in mapping associated loci.

FIGURE5 | The genome-wide evidence of haplotype block association for height. Analysis donewith SNHap-RHM, SNP-RHM and Hap-RHM. The points are plots
of −log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The green lines are the Bonferroni-corrected genome-wide significance
threshold and the red lines are the suggestive significance threshold calculated to be p-value < 1 × 10−5. The top association hits at p-value < 5 × 10−5 with genes located
within the region are highlighted in blue for SNP-RHM and red for the Hap-RHM.
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FIGURE 6 | The genome-wide evidence of haplotype block association for Major Depressive Disorder. Analysis done with SNHap-RHM, SNP-RHM and Hap-
RHM. The points are plots of −log10 of the p-values of regions tested with the LRT for the regional GREML analyses. The green lines are the Bonferroni-corrected
genome-wide significance threshold and the red lines are the suggestive significance threshold calculated to be p-value < 1 × 10−5. The top association hits at p-value < 5
× 10−5 with genes located within the region are highlighted in blue for SNP-RHM and red for the Hap-RHM.

TABLE 1 | SNP-based association test of MDD in the MYRIP gene region.

SNP information Major depressive disorder association

SNP ID Chr Pos MAF OR Log (OR) SE (logOR) p

rs9842160 3 39844703 0.14 0.97 −0.030 0.013 0.02
rs9858242 3 39847606 0.19 1.02 0.025 0.011 0.03
rs1599902 3 39954674 0.41 1.02 0.019 0.009 0.04
rs7618607 3 39947936 0.41 1.02 0.019 0.009 0.04
rs9860916 3 39944942 0.41 1.02 0.019 0.009 0.04

The columns are the SNP ID, chromosome, genome position of SNP, minor allele frequency, odds ratio, log of odds ratio, standard error of log odds ratio and association p-value.
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In both traits, the top significant regions we mapped at p-value
< 5 × 10−5 had genes mapped to those regions or within 400 kb of
those regions. For height, these genes have been reported to be
associated with height in humans (Gudbjartsson et al., 2008;
Weedon et al., 2008; Lango Allen et al., 2010; Wood et al., 2014;
Nagy et al., 2017; Tachmazidou et al., 2017; Kichaev et al., 2019).
For MDD, these genes have been reported to be associated with
major depressive disorder and other psychiatry phenotypes
(Luciano et al., 2011; Zeng et al., 2017; Wray et al., 2018;
Arnau-Soler et al., 2019; Howard et al., 2019; Liu et al., 2019).
In one of such regions for MDD, five SNPs within the region are
individually significantly associated with MDD at the nominal
level (p-value < 0.05). Four of these SNPs lie within the gene
sequence of MYRIP, and they each confer 2% disease risk. A
conventional GWAS analysis would have missed these nominally
associated SNPs because they will not reach the suggestive
significance threshold, let alone genome-wide (GW)
significance. However, analysing these SNPs within the region
as haplotypes allowed us to detect the combined effect of these
SNPs in the region at a suggestive-significance level even with our
relatively small sample size compared to recent genome-wide
association studies of MDD: 322,580 (Howard et al., 2018) and
480,359 (Wray et al., 2018).

The current study’s primary strength is that we show the
ability of SNHap-RHM to incorporate SNP and haplotype
information jointly to map genomic regions that affect
complex traits. This gives SNHap-RHM a uniquely useful role
to play in the future of complex traits analysis. The plummeting
costs of whole-genome resequencing (Caulfield et al., 2013) have
shifted research focus in GWA studies towards sequence data
analysis (Höglund et al., 2019). Although whole-genome
sequence data analysis allows incorporating all the genetic
variants that drive the phenotypic variation, there may still be
some variants whose individual effects may be too small to be
picked up in a conventional GWA analysis. However, regionally
analysing sequence information can help overcome this because
multiple small-effect variants in a region can add up to a
substantial regional effect that can be captured by a regional
SNP GRM or tagged by a haplotype GRM. Moreover, by defining
haplotype blocks using recombination hotspots, whole-genome
information can be summarised naturally without setting an
arbitrary number of SNPs, and that facilitates integration and
comparison across studies. More so, regional heritability analysis
of sequence data would be an efficient way to deal with the burden
of multiple testing, which has long been a problem of
conventional GWAS.

One limitation of the current study is the computation
burden of the analyses, which necessitates the pre-correction
of the phenotypes with the whole-genome GRM before
performing SNHap-RHM. This was a leave-one-
chromosome-out step involving 22 separate GREML
analyses, each fitting a whole-genome GRM that excluded
SNPs from one chromosome (Yang et al., 2014). For our
sample of about 20,000 individuals, the precorrection step
reduced the computation time needed to perform GREML
analysis at each region by approximately 33% (15 min) and
used about 20% (16 gigabytes) less memory. Although this was
done to speed up the analysis, the precorrection step was used
as an approximation to account for the background polygenic
effects of genetic markers outside each region; this would have
been about 48,772 separate GREMLs to account for each
region. One way to get around the computational burden of
accounting for the background polygenic effect and speed up
the analysis would be to sidestep the computation of the
whole-genome GRM by using a decomposition step similar
to the one used by FaST-LMM (Lippert et al., 2011).
Additionally, it would be interesting to explore the
incorporation of other GRMs that account for allele
frequencies and LD (Speed et al., 2020) in the genomic
background correction stage of SNHap-RHM, going
forward. However, whether that will perform better than
the commonly employed standard GRM proposed by
VanRaden (2008) remains unclear (Rawlik et al., 2020).
Moreover, for the regional matrices in SNHap-RHM, it is
important to retain SNPs in LD as these determine the
haplotype structure that we wish to explore. Also, due to
the two degrees of freedom test applied in SNHap-RHM, we
observed a slight drop in the significance of the associated
regions in both height and MDD when SNHap-RHM was
applied to those traits. One option would be to use a less
stringent test for SNHap-RHM, effectively testing regions
assuming only one degree of freedom so that if only one of
the variance components significantly contributed to the
phenotypic variance the region would be identified for
subsequent formal testing of the individual variance
components.

Finally, although this study thoroughly evaluates the
robustness of SNP and Haplotype RHM using simulation and
demonstrates the utility of SNHap-RHM in real phenotype
analysis, seeking replication in other cohorts will improve our
understanding and, more importantly, demonstrate that the
analysis is portable across studies and genotyping platforms.

TABLE 2 | Comparison of SNPs within significant regions identified by both models and published GWAS results for height and MDD.

Trait Number of SNPS Number of overlapping SNPS

SNP-RHM Hap-RHM pubGWAS SNP-RHM &
Hap-RHM

SNP-RHM &
pubGWAS

Hap-RHM &
pubGWAS

Height 1,380 45 4,960 0 57 0
MDD 78 495 1,815 0 0 0

The columns are the name of trait, number of SNPS in regions identified by SNP-RHM and HAP-RHMwith p-value < 5 × 10−5 and SNPS in published GWAS (pubGWAS) for the traits, and
the number of SNPS overlapping between the three.
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5 CONCLUSION

We have implemented a regional heritability analysis and
undertaken analyses of regions in the genome delimited by
recombination boundaries and shown by simulation that
haplotype-based GRMs can capture genetic variance that may
be missed by conventional SNP-based GRMs. We then applied
this method in the analysis of real phenotype data fromGS: SFHS.
Again, we show that the haplotype-based regional heritability
model uncovers associations in regions of the genome that
explain genetic variance missed by the SNP-based heritability
model. In light of this, we further showed that regional effects can
still be captured when the two regional GRMs (SNP and
haplotype-based) are fitted jointly: an analytical procedure we
termed SNHap-RHM. This SNHap-RHM presents an exciting
new opportunity to analyse complex traits by allowing the joint
mapping of novel genomic regions tagged by either SNPs or
haplotypes, potentially leading to the recovery of some of the
“missing” heritability.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following licenses/
restrictions: All relevant data supporting the conclusion of this
article are included within the article and its Supplementary
Material. Generation Scotland data are available from the MRC
IGC Institutional Data Access/Ethics Committee (https://www.
ed.ac.uk/generation-scotland/for-researchers/access) for
researchers who meet the criteria for access to confidential
data. The managed access process ensures that approval is
granted only to research which comes under the terms of
participant consent which does not allow making participant
information publicly available. Requests to access these datasets
should be directed to Archie Campbell, archie.campbell@igc.ed.
ac.uk/ access@generationscotland.org.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Tayside Committee on Medical Research Ethics
(on behalf of the National Health Service). Written informed
consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: RO, PN, CH, SK. Provided
data: TB, AC, AM, DP, CH. Performed the experiments: RO.
Analysed the data: RO. Wrote the paper: RO, PN, CH, SK.

FUNDING

The first author (RO) was funded by the Darwin Trust of
Edinburgh (https://darwintrust.bio.ed.ac.uk/) for his PhD study
(no grant number). CH and PN acknowledge funding from the
Medical Research Council UK (MRC, https://mrc.ukri.org/
funding/): MC_UU_00007/10, MC_PC_U127592696, MC_PC_
U127561128; the BBSRC (https://bbsrc.ukri.org/funding/): BBS/
E/D/30002275, BBS/E/D/30002276 and aWellcome Trust (https://
wellcome.org/grant-funding) Investigator Award to AM: 220857/
Z/20/Z. Generation Scotland received core support from the Chief
Scientist Office of the Scottish Government Health Directorates
(CZD/16/6) and the Scottish Funding Council (HR03006) and is
currently supported by the Wellcome Trust (216767/Z/19/Z).
Genotyping of the GS: SFHS samples was funded by the
Medical Research Council UK and the Wellcome Trust
(Wellcome Trust Strategic Award “STratifying Resilience and
Depression Longitudinally” (STRADL) Reference 104036/Z/14/Z).

ACKNOWLEDGMENTS

We are grateful to all the families who took part, the general
practitioners, and the Scottish School of Primary Care for their
help in recruiting them, and the whole Generation Scotland team,
which includes interviewers, computer and laboratory
technicians, clerical workers, research scientists, volunteers,
managers, receptionists, healthcare assistants and nurses. We
also acknowledge Eilidh Fummey for coming up with the
name for the joint mapping method.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.791712/
full#supplementary-material

REFERENCES

Amador, C., Huffman, J., Trochet, H., Campbell, A., Porteous, D., Wilson, J. F.,
et al. (2015). Recent Genomic Heritage in Scotland. BMC Genomics 16, 1–17.
doi:10.1186/s12864-015-1605-2

Arnau-Soler, A., Macdonald-Dunlop, E., Macdonald-Dunlop, E., Adams, M. J.,
Clarke, T.-K., MacIntyre, D. J., et al. (2019). Genome-Wide by Environment
Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK
Biobank and Generation Scotland. Transl Psychiatry 9, 14. doi:10.1038/s41398-
018-0360-y

Balding, D. J. (2006). A Tutorial on Statistical Methods for Population Association
Studies. Nat. Rev. Genet. 7, 781–791. doi:10.1038/nrg1916

Caulfield, T., Evans, J., McGuire, A., McCabe, C., Bubela, T., Cook-Deegan, R., et al.
(2013). Reflections on the Cost of “Low-Cost” Whole Genome Sequencing:
Framing the Health Policy Debate. PLoS Biol. 11, e1001699. doi:10.1371/
journal.pbio.1001699

Cirulli, E. T., and Goldstein, D. B. (2010). Uncovering the Roles of Rare Variants in
Common Disease Through Whole-Genome Sequencing. Nat. Rev. Genet. 11,
415–425. doi:10.1038/nrg2779

Clarke, A. J., and Cooper, D. N. (2010). GWAS: Heritability Missing in Action?
Eur. J. Hum. Genet. 18, 859–861. doi:10.1038/ejhg.2010.35

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79171213

Oppong et al. SNHap-RHM Regional Heritability Mapping

https://www.ed.ac.uk/generation-scotland/for-researchers/access
https://www.ed.ac.uk/generation-scotland/for-researchers/access
mailto:archie.campbell@igc.ed.ac.uk/
mailto:archie.campbell@igc.ed.ac.uk/
mailto:access@generationscotland.org
https://darwintrust.bio.ed.ac.uk/
https://mrc.ukri.org/funding/
https://mrc.ukri.org/funding/
https://bbsrc.ukri.org/funding/
https://wellcome.org/grant-funding
https://wellcome.org/grant-funding
https://www.frontiersin.org/articles/10.3389/fgene.2021.791712/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.791712/full#supplementary-material
https://doi.org/10.1186/s12864-015-1605-2
https://doi.org/10.1038/s41398-018-0360-y
https://doi.org/10.1038/s41398-018-0360-y
https://doi.org/10.1038/nrg1916
https://doi.org/10.1371/journal.pbio.1001699
https://doi.org/10.1371/journal.pbio.1001699
https://doi.org/10.1038/nrg2779
https://doi.org/10.1038/ejhg.2010.35
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Delaneau, O., Zagury, J.-F., and Marchini, J. (2013). Improved Whole-
Chromosome Phasing for Disease and Population Genetic Studies. Nat.
Methods 10, 5–6. doi:10.1038/nmeth.2307

First, M. B., Spitzer, R. L., Gibbon, M., and Williams, J. B. W. (2002). Structured
Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Non-
Patient Edition. New York, NY.

Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A.,
et al. (2007). A Second Generation Human Haplotype Map of over 3.1 Million
SNPs. Nature 449, 851–861. doi:10.1038/nature06258

Ganat, Y. M., Calder, E. L., Kriks, S., Nelander, J., Tu, E. Y., Jia, F., et al. (2012).
Identification of Embryonic Stem Cell-Derived Midbrain Dopaminergic
Neurons for Engraftment. J. Clin. Invest. 122, 2928–2939. doi:10.1172/JCI58767

Gonzalez-Recio, O., Daetwyler, H. D., MacLeod, I. M., Pryce, J. E., Bowman, P. J.,
Hayes, B. J., et al. (2015). Rare Variants in Transcript and Potential Regulatory
Regions Explain a Small Percentage of the Missing Heritability of Complex
Traits in Cattle. PLoS One 10, e0143945. doi:10.1371/journal.pone.0143945

Gottlieb, D. J., O’Connor, G. T., and Wilk, J. B. (2007). Genome-wide Association
of Sleep and Circadian Phenotypes. BMC Med. Genet. 8, S9. doi:10.1186/1471-
2350-8-S1-S9

Greenwood, E. A., Pasch, L. A., Shinkai, K., Cedars, M. I., and Huddleston, H. G.
(2015). Putative Role for Insulin Resistance in Depression Risk in Polycystic
Ovary Syndrome. Fertil. Sterility 104, 707–714.e1. doi:10.1016/
j.fertnstert.2015.05.019

Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson,
B. V., Zusmanovich, P., et al. (2008). Many Sequence Variants Affecting
Diversity of Adult Human Height. Nat. Genet. 40, 609–615. doi:10.1038/ng.122

Höglund, J., Rafati, N., Rask-Andersen, M., Enroth, S., Karlsson, T., Ek, W. E., et al.
(2019). Improved Power and Precision with Whole Genome Sequencing Data
in Genome-Wide Association Studies of Inflammatory Biomarkers. Sci. Rep. 9,
16844. doi:10.1038/s41598-019-53111-7

Howard, D.M., Adams,M. J., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J.,
et al. (2019). Genome-Wide Meta-Analysis of Depression Identifies 102
Independent Variants and Highlights the Importance of the Prefrontal
Brain Regions. Nat. Neurosci. 22, 343–352. doi:10.1038/s41593-018-0326-7

Howard, D. M., Adams, M. J., Adams, M. J., Shirali, M., Clarke, T.-K., Marioni, R.
E., et al. (2018). Genome-wide Association Study of Depression Phenotypes in
UK Biobank Identifies Variants in Excitatory Synaptic Pathways. Nat.
Commun. 9, 1470. doi:10.1038/s41467-018-03819-3

International Human Genome Sequencing Consortium (2004). Finishing the
Euchromatic Sequence of the Human Genome. Nature 431, 931–945.
doi:10.1038/nature03001

Kichaev, G., Bhatia, G., Loh, P.-R., Gazal, S., Burch, K., Freund, M. K., et al. (2019).
Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am.
J. Hum. Genet. 104, 65–75. doi:10.1016/j.ajhg.2018.11.008

Lango Allen, H., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F.,
et al. (2010). Hundreds of Variants Clustered in Genomic Loci and Biological
Pathways Affect Human Height. Nature 467, 832–838. doi:10.1038/nature09410

Levinson, D. F., Mostafavi, S., Milaneschi, Y., Rivera, M., Ripke, S., Wray, N. R.,
et al. (2014). Genetic Studies of Major Depressive Disorder: Why are There No
Genome-wide Association Study Findings andWhat CanWe do About it? Biol.
Psychiatry 76, 510–512. doi:10.1016/j.biopsych.2014.07.029

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., and Heckerman, D.
(2011). FaST Linear Mixed Models for Genome-Wide Association Studies. Nat.
Methods 8, 833–835. doi:10.1038/nmeth.1681

Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., et al. (2019).
Association Studies of up to 1.2 Million Individuals Yield New Insights into
the Genetic Etiology of Tobacco and Alcohol Use. Nat. Genet. 51, 237–244.
doi:10.1038/s41588-018-0307-5

Luciano, M., Hansell, N. K., Lahti, J., Davies, G., Medland, S. E., Räikkönen, K., et al.
(2011). Whole Genome Association Scan for Genetic Polymorphisms
Influencing Information Processing Speed. Biol. Psychol. 86, 193–202.
doi:10.1016/j.biopsycho.2010.11.008

MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., et al. (2017).
The New NHGRI-EBI Catalog of Published Genome-wide Association Studies
(GWAS Catalog). Nucleic Acids Res. 45, D896–D901. doi:10.1093/nar/gkw1133

Maher, B. (2008). Personal Genomes: The Case of the Missing Heritability. Nature
456, 18–21. doi:10.1038/456018a

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D.
J., et al. (2009). Finding the Missing Heritability of Complex Diseases. Nature
461, 747–753. doi:10.1038/nature08494

Mohan, J., Xiaofan, G., and Yingxian, S. (2017). Association Between Sleep Time
and Depression: a Cross-Sectional Study from Countries in Rural Northeastern
China. J. Int. Med. Res. 45, 984–992. doi:10.1177/0300060517701034

Nagamine, Y., Pong-Wong, R., Navarro, P., Vitart, V., Hayward, C., Rudan, I., et al.
(2012). Localising Loci Underlying Complex Trait Variation Using Regional
Genomic Relationship Mapping. PLoS ONE 7, e46501. doi:10.1371/
journal.pone.0046501

Nagy, R., Boutin, T. S., Marten, J., Huffman, J. E., Kerr, S. M., Campbell, A., et al.
(2017). Exploration of Haplotype Research Consortium Imputation for
Genome-wide Association Studies in 20,032 Generation Scotland
Participants. Genome Med. 9, 23. doi:10.1186/s13073-017-0414-4

Pearson, S., Schmidt, M., Patton, G., Dwyer, T., Blizzard, L., Otahal, P., et al. (2010).
Depression and Insulin Resistance: Cross-Sectional Associations in Young
Adults. Diabetes Care 33, 1128–1133. doi:10.2337/dc09-1940

Pritchard, J. K. (2001). Are Rare Variants Responsible for Susceptibility to Complex
Diseases. Am. J. Hum. Genet. 69, 124–137. doi:10.1086/321272

Rawlik, K., Canela-Xandri, O., Woolliams, J., and Tenesa, A. (2020). SNP
Heritability: What are we Estimating? bioRxiv doi:10.1101/2020.09.15.276121

Roberts, R. E., and Duong, H. T. (2014). The Prospective Association Between
Sleep Deprivation and Depression Among Adolescents. Sleep 37, 239–244.
doi:10.5665/sleep.3388

Shirali, M., Knott, S. A., Pong-Wong, R., Navarro, P., and Haley, C. S. (2018).
Haplotype Heritability Mapping Method Uncovers Missing Heritability of
Complex Traits. Sci. Rep. 8, 4982. doi:10.1038/s41598-018-23307-4

Smith, B. H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, C., Kerr, S.
M., et al. (2012). Cohort Profile: Generation Scotland: Scottish Family
Health Study (GS:SFHS). The Study, its Participants and Their Potential for
Genetic Research on Health and Illness. Int. J. Epidemiol. 42, 689–700.
doi:10.1093/ije/dys084

Smith, B. H., Campbell, H., Blackwood, D., Connell, J., Connor, M., Deary, I. J.,
et al. (2006). Generation Scotland: The Scottish Family Health Study; A
New Resource for Researching Genes and Heritability. BMC Med. Genet. 7.
doi:10.1186/1471-2350-7-74

Speed, D., Hemani, G., Johnson, M. R., and Balding, D. J. (2012). Improved
Heritability Estimation from Genome-Wide SNPs. Am. J. Hum. Genet. 91,
1011–1021. doi:10.1016/j.ajhg.2012.10.010

Speed, D., Holmes, J., and Balding, D. J. (2020). Evaluating and Improving
Heritability Models Using Summary Statistics. Nat. Genet. 52, 458–462.
doi:10.1038/s41588-020-0600-y

Tachmazidou, I., Süveges, D., Min, J. L., Ritchie, G. R. S., Steinberg, J., Walter,
K., et al. (2017). Whole-Genome Sequencing Coupled to Imputation
Discovers Genetic Signals for Anthropometric Traits. Am. J. Hum.
Genet. 100, 865–884. doi:10.1016/j.ajhg.2017.04.014

Uemoto, Y., Pong-Wong, R., Navarro, P., Vitart, V., Hayward, C., Wilson, J. F.,
et al. (2013). The Power of Regional Heritability Analysis for Rare and Common
Variant Detection: Simulations and Application to Eye Biometrical Traits.
Front. Genet. 4, 232. doi:10.3389/fgene.2013.00232

VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions.
J. Dairy Sci. 91, 4414–4423. doi:10.3168/jds.2007-0980

Vormfelde, S. V., and Brockmöller, J. (2007). On the Value of Haplotype-Based
Genotype-Phenotype Analysis and on Data Transformation in
Pharmacogenetics and -genomics. Nat. Rev. Genet. 8, 983. doi:10.1038/
nrg1916-c1

Wainschtein, P., Jain, D., Zheng, Z., Cupples, L. A., Shadyab, A. H., McKnight, B.,
et al. (2019). Recovery of Trait Heritability from Whole Genome Sequence
Data. bioRxiv 588020. doi:10.1101/588020

Waselle, L., Coppola, T., Fukuda, M., Iezzi, M., El-Amraoui, A., Petit, C., et al.
(2003). Involvement of the Rab27 Binding Protein Slac2c/MyRIP in Insulin
Exocytosis. Mol. Biol. Cell 14, 4103–4113. doi:10.1091/mbc.E03-01-0022

Watson, N. F., Harden, K. P., Buchwald, D., Vitiello, M. V., Pack, A. I., Strachan, E.,
et al. (2014). Sleep Duration and Depressive Symptoms: A Gene-Environment
Interaction. Sleep 37, 351–358. doi:10.5665/sleep.3412

Webb, M. B., Davies, M., Ashra, N., Bodicoat, D., Brady, E., Webb, D., et al. (2017).
The Association Between Depressive Symptoms and Insulin Resistance,

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79171214

Oppong et al. SNHap-RHM Regional Heritability Mapping

https://doi.org/10.1038/nmeth.2307
https://doi.org/10.1038/nature06258
https://doi.org/10.1172/JCI58767
https://doi.org/10.1371/journal.pone.0143945
https://doi.org/10.1186/1471-2350-8-S1-S9
https://doi.org/10.1186/1471-2350-8-S1-S9
https://doi.org/10.1016/j.fertnstert.2015.05.019
https://doi.org/10.1016/j.fertnstert.2015.05.019
https://doi.org/10.1038/ng.122
https://doi.org/10.1038/s41598-019-53111-7
https://doi.org/10.1038/s41593-018-0326-7
https://doi.org/10.1038/s41467-018-03819-3
https://doi.org/10.1038/nature03001
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1038/nature09410
https://doi.org/10.1016/j.biopsych.2014.07.029
https://doi.org/10.1038/nmeth.1681
https://doi.org/10.1038/s41588-018-0307-5
https://doi.org/10.1016/j.biopsycho.2010.11.008
https://doi.org/10.1093/nar/gkw1133
https://doi.org/10.1038/456018a
https://doi.org/10.1038/nature08494
https://doi.org/10.1177/0300060517701034
https://doi.org/10.1371/journal.pone.0046501
https://doi.org/10.1371/journal.pone.0046501
https://doi.org/10.1186/s13073-017-0414-4
https://doi.org/10.2337/dc09-1940
https://doi.org/10.1086/321272
https://doi.org/10.1101/2020.09.15.276121
https://doi.org/10.5665/sleep.3388
https://doi.org/10.1038/s41598-018-23307-4
https://doi.org/10.1093/ije/dys084
https://doi.org/10.1186/1471-2350-7-74
https://doi.org/10.1016/j.ajhg.2012.10.010
https://doi.org/10.1038/s41588-020-0600-y
https://doi.org/10.1016/j.ajhg.2017.04.014
https://doi.org/10.3389/fgene.2013.00232
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1038/nrg1916-c1
https://doi.org/10.1038/nrg1916-c1
https://doi.org/10.1101/588020
https://doi.org/10.1091/mbc.E03-01-0022
https://doi.org/10.5665/sleep.3412
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Inflammation and Adiposity in Men and Women. PLoS One 12, e0187448.
doi:10.1371/journal.pone.0187448

Weedon, M. N., Lango, H., Lango, H., Lindgren, C. M., Wallace, C., Evans, D. M.,
et al. (2008). Genome-Wide Association Analysis Identifies 20 Loci that
Influence Adult Height. Nat. Genet. 40, 575–583. doi:10.1038/ng.121

Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., et al. (2014).
Defining the Role of CommonVariation in theGenomic andBiological Architecture
of Adult Human Height. Nat. Genet. 46, 1173–1186. doi:10.1038/ng.3097

Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui,
A., et al. (2018). Genome-Wide Association Analyses Identify 44 Risk Variants
and Refine the Genetic Architecture of Major Depression. Nat. Genet. 50,
668–681. doi:10.1038/s41588-018-0090-3

Yang, J., Bakshi, A., Bakshi, A., Zhu, Z., Hemani, G., Vinkhuyzen, A. A. E., et al.
(2015). Genetic Variance Estimation with Imputed Variants Finds Negligible
Missing Heritability for Human Height and Body Mass index. Nat. Genet. 47,
1114–1120. doi:10.1038/ng.3390

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R.,
et al. (2010). Common SNPs Explain a Large Proportion of the Heritability for
Human Height. Nat. Genet. 42, 565–569. doi:10.1038/ng.608

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: A Tool for
Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet. 88, 76–82.
doi:10.1016/j.ajhg.2010.11.011

Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M., and Price, A. L. (2014).
Advantages and Pitfalls in the Application of Mixed-Model Association
Methods. Nat. Genet. 46, 100–106. doi:10.1038/ng.2876

Zeng, Y., Navarro, P., Fernandez-Pujals, A. M., Hall, L. S., Clarke, T.-K., Thomson,
P. A., et al. (2017). A Combined Pathway and Regional Heritability Analysis

Indicates NETRIN1 Pathway is Associated With Major Depressive Disorder.
Biol. Psychiatry 81, 336–346. doi:10.1016/j.biopsych.2016.04.017

Zhai, L., Zhang, H., and Zhang, D. (2015). Sleep Duration and Depression Among
Adults: A Meta-Analysis of Prospective Studies. Depress. Anxiety 32, 664–670.
doi:10.1002/da.22386

Conflict of Interest: AM has received research support from Eli Lilly and
Company, Janssen and the Sackler Trust and speaker fees from Illumina and
Janssen.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Oppong, Boutin, Campbell, McIntosh, Porteous, Hayward, Haley,
Navarro and Knott. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 79171215

Oppong et al. SNHap-RHM Regional Heritability Mapping

https://doi.org/10.1371/journal.pone.0187448
https://doi.org/10.1038/ng.121
https://doi.org/10.1038/ng.3097
https://doi.org/10.1038/s41588-018-0090-3
https://doi.org/10.1038/ng.3390
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1038/ng.2876
https://doi.org/10.1016/j.biopsych.2016.04.017
https://doi.org/10.1002/da.22386
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	SNP and Haplotype Regional Heritability Mapping (SNHap-RHM): Joint Mapping of Common and Rare Variation Affecting Complex T ...
	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.2 Methods
	2.2.1.1 SNP-RHM: SNP-Based Regional Heritability Model
	2.2.2 Simulation Study
	2.2.3 SNHap-RHM of MDD and Height


	3 Results
	3.1 Simulation Study: SNP-RHM, Hap-RHM and SNHap-RHM
	3.2 SNHap-RHM Analysis of Height and Major Depressive Disorder
	3.2.1 Comparison With Published GWAS SNPs


	4 Discussion
	5 Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


