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Abstract: Enterococci are the second most common Gram-positive pathogen responsible for
nosocomial infections. Due to the limited number of new antibiotics that reach the medical practice
and the resistance of enterococci to the current antibiotic options, passive and active immunotherapies
have emerged as a potential prevention and/or treatment strategy against this opportunistic pathogen.
In this review, we explore the pathogenicity of these bacteria and their interaction with the host
immune response. We provide an overview of the capsular polysaccharides and surface-associated
proteins that have been described as potential antigens in anti-enterococcal vaccine formulations.
In addition, we describe the current status in vaccine development against enterococci and address
the importance and the current advances toward the development of well-defined vaccines with
broad coverage against enterococci.
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1. Introduction

Enterococci are Gram-positive, facultative anaerobic oval cocci and lactic acid producers that form
chains of various lengths [1]. Even at the early life stages, enterococci colonize the gastrointestinal
tract of humans as commensal bacteria without affecting the host [2]. Some enterococcal strains have
also been used as probiotic agents due to their alleged beneficial effects in irritable bowel syndrome,
antibiotic-induced diarrhea, and other gastrointestinal diseases. In addition, some enterococci have been
proposed to exhibit anticarcinogenic, hypocholesterolemic, and immunomodulatory properties [3,4].
However, under some circumstances, the harmonic relationship with the host can be disrupted,
provoking a series of serious diseases [5]. The ability of these bacteria to endure extreme pH conditions
and a wide range of temperatures and salt concentrations enables them to colonize a variety of niches
and persist in hospital settings. Unlike other bacteria, they are highly tolerant of sodium azide and
concentrated bile salts [6]. The increased prevalence of enterococcal infections in humans is mainly
attributed to their acquired and intrinsic resistance to antibiotics but also to their ability to acquire
virulence factors [7]. In addition, the biofilm-forming capacity of enterococci contributes to their
persistence during infection and increases their ability to withstand difficult growth conditions [8].

In this context, this review will describe the origins of enterococcal infections and address current
difficulties in the treatment of these multiresistant pathogens, which underscores the necessity for the
development of alternative therapeutic regimens. Moreover, the pathogenicity of these bacteria and
their interaction with the host immune response will be explored, knowledge of which is of critical
importance in vaccine development. In addition, an overview of the up-to-date polysaccharide and
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protein enterococcal antigens described in the literature will be provided. Finally, the prospects and
pitfalls in vaccine development against enterococci will be discussed.

2. Enterococcal Infections

Although they usually pose no threat to healthy individuals, enterococci are typical
opportunistic pathogens associated with hospital-acquired infections, making them a serious threat
for immunocompromised patients. In particular, enterococci can cause serious diseases, including
endocarditis, bacteremia, and meningitis, as well as intra-abdominal, wound, and urinary tract
infections [9]. The first incidence of endocarditis caused by Enterococcus faecalis was reported in 1899,
and since then, numerous studies have tried to shed light on this pathogen [10]. The two most clinically
relevant enterococcal species are E. faecalis and Enterococcus faecium, with the highest incidences being
initially attributable to E. faecalis [5]. During the first wave of enterococcal infections in the late 1970s in
the United States (US), E. faecalis was the leading clinical enterococcal species [1]. However, during the
last two decades, E. faecium has become the leading species responsible for enterococcal infections both
in US and European hospitals, probably due to its high incidence of antibiotic resistance compared to
E. faecalis [11]. Currently, a new wave, caused by vancomycin-resistant enterococci (VRE), is affecting
not only the US but also Europe [1]. Cassini et al. in a recent study estimated 16,146 (95% uncertainty
interval, 13,206–19,334) cases of VRE infections in the EU and European Economic Area in 2015 and an
incidence of 1081 (891–1292) attributable deaths [12]. Southern European countries have reported the
highest rates of VRE associated with nosocomial infections in Europe [13]. In 2017, the World Health
Organization published a list of 12 antibiotic-resistant pathogens that pose the greatest threat to human
health, with E. faecium being classified as a high priority for the development of new treatments [14].

3. Translocation and Colonization

Enterococci, as natural colonizers of the gastrointestinal tract, comprise only a small portion of
the healthy gut microbiota. They can spread beyond the gastrointestinal niche into the bloodstream,
translocate, and attach to other sites, with subsequent initiation of infection [15]. Exposure of hospitalized
patients to antibiotics against Gram-negative bacteria distorts the gut microbiota, increasing the
prevalence of mostly VRE in the gastrointestinal tract [1]. Under healthy conditions, lipopolysaccharide
and flagellin from Gram-negative bacteria induce the production of REGIIIγ. REGIIIγ suppresses the
overgrowth of the Gram-positive bacteria, including E. faecium. Elimination of the Gram-negative
bacteria population using antibiotics decreases REGIIIγ, leading to overgrowth of VRE in the
gastrointestinal tract [16,17]. Similar shifts in the gut microbiota have also been reported in patients
undergoing allogeneic hematopoietic stem cell transplantation, where the VRE prevalence in the gut
was followed by enterococcal bloodstream infections [18].

Upon entering the systemic circulation, enterococci can reach the collagen-rich valvular and
aortic tissues. Distortion of the vascular endothelium can expose extracellular matrix material and
cause the formation of a sterile thrombotic vegetation, which is prone to bacterial colonization [19].
Catheter placement is an invasive procedure that increases fibrinogen levels in the bladder lumen due
to the inflammation caused by the tissue damage. The fibrinogen deposits on the implanted catheter,
acting as a nutrient for bacterial growth and promoting biofilm formation [20,21].

4. Host Immune Response against Enterococcal Infections

Limited advances have been made in the elucidation of the host immune response against invasive
enterococcal infections. The innate immune system constitutes the first line of defense against pathogen
invasion. This type of defense depends on the recognition of the pathogen-associated molecular
patterns (PAMPs), which are solely present in the pathogens [22]. PAMPs are recognized through
pattern recognition receptors, e.g., the components of the complement system and the Toll-like receptors
(TLRs) [22]. There is evidence that TLR2 plays an important role in the innate immune response against
Gram-positive bacteria by recognizing peptidoglycan and LTA and by interacting with CD14 [23].
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Leendertse et al. showed in an E. faecium peritonitis mouse model that E. faecium is recognized through
TLR2, mediating neutrophil influx to the site of infection and bacterial clearance [24]. In the same
model, it was also found that peritoneal macrophages [25], neutrophils [24], and the complement
system [26] are essential for the rapid eradication of this bacterium in the early stages of the infection.

Apart from this direct interaction of the pathogen with the phagocyte, there is also an indirect
pathway mediated through a class of molecules called opsonins, comprised of immunoglobulins
and complement components [27]. Activation of the alternative complement pathway elicits
deposition of the complement component C3b on the bacterial surface, which is subsequently
recognized by complement receptors on the phagocytes [28]. On the other hand, IgGs trigger the
FcγRs and activate the classical complement pathway, resulting in the uptake of the bacteria by the
neutrophils [28]. In encapsulated Gram-positive bacteria, like enterococci, the combination of these
two mechanisms is crucial for efficient phagocytosis of the bacteria [28–30]. A protective immune
response against enterococci requires both antibodies and complement for the successful phagocytosis
through polymorphonuclear neutrophils (PMNs). For this purpose, the opsonophagocytic assay,
by combining these three components, is a reliable surrogate of the protective immune response in
order to address the efficacy of enterococcal vaccines [31–33]. Immediately upon formation of the
phagosome, its maturation starts, and the phagosome subsequently is fused with the lysosome for the
formation of a microbicidal organelle, named phagolysosome [27]. In a study, Arduino et al. observed
a difference in susceptibility of different enterococcal species to phagocytosis by PMNs. In particular,
it was found that 13 out of the 26 E. faecium strains tested were resistant to phagocytosis, which was
related to a decreased internalization by PMNs. This event may be attributable to a carbohydrate
structure that is not sialic acid but that was not isolated or characterized in this study [34]. There have
also been reported cases where phagocytic cells failed to kill enterococci, an event that could transform
them into vehicles for the translocation of enterococci across the intestinal wall and their dissemination
into distant organs [35–37]. The incompetence of the immune system to kill the intracellular enterococci
may lead to their systemic spread [9].

5. Antibiotic Resistance and Options for Treatment

Enterococci possess intrinsic resistance to several antibiotics and may develop acquired
resistance through sporadic mutations or by the acquisition of exogenous resistance genes
(i.e., by pheromone-sensitive plasmids, broad host range plasmids, or through transposon
movement) [7]. Resistance transfer from enterococci to other Gram-positive bacteria, like staphylococci,
has also been reported in vitro, and indications for an in vivo exchange exist as well [9,38].
The prevalence of virulence and resistance genes in enterococci of the oral cavity enables the spread of
these traits to other species in this environment [39].

The majority of the E. faecium clinical isolates are ampicillin-resistant [1]. In most cases, resistance to
β-lactam antibiotics in enterococci is attributed to the expression of low-affinity penicillin-binding
proteins (PBPs) [40]. In vitro data propose that co-administration of penicillin with aminoglycosides
has a synergistic effect by inhibiting the synthesis of the cell wall, thus promoting the uptake of the
aminoglycoside [1,41]. Even so, there are instances where this scheme is inadequate, especially when
high-level resistance to aminoglycosides is encountered [42].

In the past, the glycopeptide vancomycin was mainly used for the treatment of infections caused by
β-lactam or aminoglycoside-resistant enterococci. In 1986, the first vancomycin-resistant enterococcal
strain was isolated [43]. Modifications of the d-alanyl-d-alanine terminus of the peptidoglycan precursors
to d-Ala-d-lactate or d-Ala-d-serine reduce the affinity of the glycopeptides to the peptidoglycan
precursors in VRE [44]. The van gene clusters are responsible for this type of resistance, with VanA
and VanB being the most prevalent in Europe, providing a series of enzymes that facilitate the signal
transduction, the synthesis of the modified molecules, and their subsequent ligation to the precursors,
as well the silence of the alternative biosynthetic pathway [13,44]. Each of these gene clusters is
related to different antibiotic susceptibility levels. In particular, the VanA cluster provides high-level
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resistance to vancomycin and teicoplanin, whereas strains possessing the VanB cluster retain their
susceptibility to teicoplanin [45]. In a recent study, 200 enterococcal isolates of human and animal
origin were analyzed, revealing the prevalence of teicoplanin- and vancomycin-resistant strains in
domestic animals, together with the co-existence of virulence traits [46].

Quinupristin/dalfopristin, daptomycin, tigecycline, and linezolid have entered the clinical practice
as alternative antibiotic agents to fight VRE infections. However, resistance to these agents has already
been reported [13]. Resistance to quinupristin/dalfopristin includes enzymatic acetylation of the
drugs [47,48], methylation of the 23S rRNA [49], and efflux pumps [49,50]. Clinical data suggest
that quinupristin/dalfopristin could be beneficial in the treatment of E. faecium endocarditis but have
an unfavorable toxicity and administration profile [51,52]. The two cell membrane proteins GdpD
(glycerophosphoryl diester phosphodiesterase) and LiaF (lipid II cycle-interfering antibiotics protein)
are associated with resistance to daptomycin [53]. Daptomycin is approved for skin and soft-tissue VRE
infections, and its efficacy against infective endocarditis, either as a monotherapy or in combination
with aminoglycosides, ampicillin, or tigecycline, should be further investigated [54,55]. Resistance to
linezolid has been attributed to mutations in the domain V or alterations in the methylation of the
23S rRNA [56,57]. Generally, linezolid is recommended as an alternative treatment for endocarditis
caused by VRE when other therapeutic options are not available, mainly due to its bone-marrow
toxicity [54,55]. On the whole, the therapeutic options to encounter these challenging bacterial infections
rely on synergistic agents and are limited due to the presence of multi-resistances and toxic side effects.

6. Serotyping of Enterococci

In 1933, Rebecca Lancefield described the serogroups for streptococci, classifying enterococci as
group D streptococci [58]. The initial attempt to establish a system to serotype enterococci according to
their cell wall type antigens was conducted by Sharpe M.E. in 1964 [59]. In 1992, Maekawa et al. used sera
raised against serovars in order to analyze a collection of 832 E. faecalis strains. From this collection of
bacteria, only 77% were typable into 21 distinct serovars of E. faecalis [59]. This classification system was
based on sera obtained upon immunization of rabbits with formalin-killed bacteria, thus providing no
information regarding the defined antigenic content of these bacteria (e.g., capsules or other cell-wall
related antigens) [59].

In 2004, Hufnagel et al. were able to classify 66% of a collection of 29 E. faecalis clinical isolates
into four capsular polysaccharide serotypes, named CPS-A, -B, -C, and -D. The classification was
performed by immunological selection, using sera raised against the capsular polysaccharides of four
representative strains and genetic methods [60]. In a further expansion of this study, serotyping of
157 clinical and laboratory E. faecalis isolates from four different countries was performed, where the
authors were able to categorize only 42% of the isolates into one of the four serotypes [61]. Hancock and
Gilmore identified a cps locus of 11 open reading frames that were responsible for the synthesis of a
capsular polysaccharide from E. faecalis Type 2 [62]. All the serotypes, CPS-A to -D, possess the open
reading frames cpsA and cpsB, indicating the importance of these two genes for E. faecalis [60]. On the
other side, only the CPS-C and -D serotypes possess the cpsC to cpsK, with the cpsF being present only
in some CPS-C strains, resulting in the different antigenicity of the two serotypes [60,63]. Since seven
of the nine genes of the cps locus are important for the production of the capsular polysaccharide,
the CPS-A and -B serotypes do not express this polysaccharide [64]. Theilacker et al. identified the
polysaccharide produced by the cps locus, named diheteroglycan (DHG) [65]. A few years later, the
study by McBride and co-workers demonstrated that half of the CPS-C strains examined were more
virulent compared to the CPS-A and -B strains. This feature is attributable to the presence of multiple
virulence and antibiotic-resistant traits in CPS-C, as well as to capsular polysaccharides that play a
critical role in the host–pathogen interaction [66].

Overall, to date, a limited number of studies have addressed the serotyping of enterococci.
The establishment of an enterococcal serotyping system would determine the coverage and the clinical
relevance of the putative immunogens.
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7. Enterococcal Polysaccharides and Proteins as Potential Vaccine Candidates

A current challenge in the treatment of enterococcal infections in the clinical setting is their
resistances to most conventional antibiotics [67]. This underscores the necessity for the development
of new types of treatment or prevention, such as passive and active immunotherapies. As mentioned
above, capsular polysaccharides, cell wall polysaccharides, and cell-surface associated protein antigens
can serve as targets for the development of immunotherapies.

The cell wall of Gram-positive bacteria is primarily comprised of a peptidoglycan layer,
consisting of branches of N-acetylmuramic acid-(β1-4)-N-acetylglucosamine repeating units, which are
cross-linked through short peptide bridges [68]. In enterococci the peptidoglycan layer is decorated
with a variety of molecules, which are either covalently bound to the peptidoglycan layer
(i.e., polysaccharides, teichoic acids, and surface-anchored proteins) or anchored to the plasma
membrane (i.e., lipoteichoic acids and lipoproteins) [69].

7.1. Enterococcal Polysaccharides

Antibodies targeting capsular carbohydrates have been shown in several studies to promote
PMN-mediated killing of E. faecalis and E. faecium and to protect mice against enterococcal
infections [60,70,71]. In 1999, Wang et al. identified a novel polysaccharide that was present in
E. faecalis and a vancomycin-resistant E. faecium strain [72]. Antisera raised to this polysaccharide were
able to mediate opsonic killing in vitro and protect against E. faecalis and E. faecium bacteremia [31,71].
The structural characterization of this polysaccharide was performed by Theilacker et al., revealing
a lipoteichoic acid (LTA) consisting of glycerolphosphate repeating units substituted at position
C-2 with d-alanine, kojibiose, or d-alanylated kojibiose residues (Figure 1a) [73]. While LTA has a
glycolipid anchor in the membrane, wall teichoic acids have a backbone of glycerolphosphate or
ribitolphosphate repeating units covalently attached to the peptidoglycan layer by a phosphodiester
bond [74]. The same polyglycerolphosphate backbone of LTA is also present in many other clinically
important Gram-positive pathogens, such as staphylococci and some streptococci. Theilacker et al.
proved that antibodies targeting this preserved backbone are opsonic and protective against E. faecalis
and Staphylococcus epidermidis bacteremia and also confer protection against Staphylococcus aureus
infection [75]. Another polysaccharide with potential immunogenic properties anchored to the
peptidoglycan layer is the enterococcal polysaccharide antigen (Epa) [76]. The Epa is synthesized
by the epa locus and contains a rhamnan backbone decorated with phosphopolysaccharide chains
of teichoic acids [77,78]. This polysaccharide has been suggested to play a role in biofilm formation,
resistance to neutrophil-mediated phagocytosis, virulence in a mouse peritonitis model, and phage
infection [77,79–81].

Although LTA is present in all enterococcal serotypes, it is only surface-exposed in the CPS-A and
CPS-B serotypes, resulting in the susceptibility of these serotypes to opsonization by the sera raised
against LTA [65]. Serotypes CPS-C and CPS-D possess a capsular polysaccharide, which masks LTA,
dominating in their surface composition and resulting in a different serological recognition compared
to serotypes CPS-A and CPS-B [65]. This immunogenic capsular polysaccharide DHG was initially
identified by Pazur et al. [82]. The structural elucidation of DHG was accomplished by Theilacker et al.
and Krylov et al., revealing a repeating unit of→6)-β-galactofuranose-(1→3)-β-d-glucopyranose-(1→
with O-acetylation in position 5 and lactic acid substitution at position 3 of the Galf residue
(Figure 1b) [65,82,83]. In the former study, it was also shown that rabbit serum raised against
DHG mediates opsonophagocytic killing of the encapsulated strains in vitro and also reduces the
bacterial load in livers and kidneys of mice challenged with E. faecalis strains of the CPS-C and CPS-D
serotypes [65]. It was also suggested that passive or active immunotherapy targeting DHG could
provide protection against enterococcal infections caused by the encapsulated E. faecalis strains [65].
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Figure 1. Chemical structure of (a) the 1, 3-polyglycerolphosphate backbone of LTA isolated from
E. faecalis 12030, substituted at the position C-2, with R1 = d-Alanine, R2 = kojibiose, or R3 = alanylated
kojibiose [73], and (b) DHG isolated from E. faecalis Type 2, unsubstituted (R4) or acetylated (R5) [83].

Classic vaccine production is based on the isolation of polysaccharides from bacterial cultures,
whereas modern vaccinology has also attempted synthetic approaches. The final synthetic products
have a high batch-to-batch reproducibility, lack bacterial contaminants, and possess a clearly defined
chemical structure, which can be easier characterized, providing, thus, better knowledge of the
immune-response–oligosaccharide-structure relationship [84]. The antigenic heterogeneity of LTA
necessitates structure-activity studies for the elucidation of the immunogenic epitopes. In this case,
synthetic groups of LTA, i.e., the D-alanine kojibiose functionalized LTA from E. faecalis, and TA
fragments would be useful tools [85,86]. In an attempt to develop a vaccine candidate targeting LTA
by synthetic approaches, Laverde et al. identified a synthetic teichoic acid, WH7, able to absorb the
opsonic activity of antibodies raised against enterococcal LTA. This synthetic oligomer is a promising
vaccine candidate against E. faecalis and other Gram-positive bacteria [87,88]. Synthetic octamers of the
DHG backbone, which lack the acetyl and lactic acid substituents, that conjugated to a classic carrier
protein were also able to elicit opsonic and protective antibodies against encapsulated enterococcal
species. In this study, we also proved that the length of the synthetic sugar mimetics and the pattern of
the repeating units affect the recognition of the sugar mimetic by the immune system [89].

7.2. Enterococcal Proteins

The enrolment of the bacterial cell-wall-related and secreted proteins in the bacterial adherence,
internalization, toxicity, adaptation to environmental changes, and evasion of the host defense system
contributes to their pivotal roles in host–pathogen interactions [90]. The enterococcal vaccine candidates
of protein origin described in the literature are summarized in Table 1.

Three secreted virulence factors have been identified so far in enterococci, named cytolysin (Cyl),
gelatinase (GelE), and the secreted antigen A (SagA) [91]. SagA was initially identified in E. faecium
by Teng et al. and has been shown to be essential for bacterial growth as well as to bind a number
of extracellular matrix proteins, including fibrinogen, collagen type I, collagen type IV, fibronectin,
and laminin [90]. In a recent study, Paganelli et al. identified SagA as the major secreted protein
during biofilm formation and studied its susceptibility to degradation, its localization in the biofilm
matrix, and its contribution to biofilm formation of E. faecium [92]. Kropec et al. demonstrated
that immunization with recombinant SagA induces opsonic antibodies against vancomycin-resistant
E. faecium strains and promotes bacterial clearance in mice challenged with the same bacterial
strains. These results suggest that active immunotherapy using only SagA or SagA conjugated with
polysaccharides could serve as a promising vaccine candidate against enterococcal infections [93,94].
Lately, GelE was also introduced as a putative vaccine candidate [95].
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Table 1. Overview of enterococcal vaccine candidates of protein origin.

Name Functional Description Reference

Ace collagen adhesin [19]
Acm collagen adhesin [96]
SagA secreted antigen a, bacterial growth and biofilm formation [93,94]

AdcAfm zinc ABC transporter substrate-binding lipoprotein [94]
PsaAfm manganese ABC transporter substrate-binding lipoprotein [94]
LysM peptidoglycan-binding protein [33]
DdcP D-alanyl-D-alanine carboxypeptidase [33]
PpiC peptidyl-prolyl cis-trans isomerase [33,95]
PBP5 penicillin-binding protein 5 [33]
EbpA endocarditis- and biofilm-associated pili A [21]
GelE gelatinase [95]

Another class of virulence factors is the microbial surface components recognizing adhesive
matrix molecules (MSCRAMMs), such as Ace [19] and Acm [96], and the pilus proteins that promote
biofilm formation [97,98]. Singh et al. reported that immunotherapies targeting the collagen adhesin
Ace exhibit varying effectiveness against infective endocarditis and proposed that a robust protection
could probably be succeeded by targeting multiple MSCRAMMs [19]. Moreover, Acm-specific
antibodies from the serum of an E. faecium endocarditis patient and rabbit antibodies raised against the
collagen-binding subsegments of Acm significantly inhibited the adherence of E. faecium to collagen
in vitro [96,99]. The components of endocarditis and biofilm-associated pilus (Ebp), which initiates
the bacterial adhesion to the fibrinogen, have been studied for their immunogenicity. This adhesion
promotes biofilm formation, a critical step in the development of endocarditis and Catheter-associated
urinary tract infections (CAUTIS) [100]. EbpA, EbpB, EbpC, SrtC, and SrtA have been identified to
participate in the formation and assembly of the E. faecalis Ebp pilus [100,101]. From these components,
only immunization with EbpA, and in particular with its amino-terminal domain (EbpANTD), was able to
elicit a protective immunoresponse and prevent mice from the development of E. faecalis CAUTIS [21].
This event can be attributable to the critical role of the EbpA-fibrinogen interaction in the initial
adherence of the bacteria to the catheter surface [102]. The varying protective efficacy of the different
components of the same machinery emphasizes that a proper therapeutic intervention requires a
thorough understanding of the underlying molecular mechanisms of host–pathogen interactions made
by E. faecalis [21].

Although virulence factors are present in many vaccine formulations, any bacterial antigen exposed
to the immune system can serve as a potential vaccine candidate [103]. In this context, Romero-Saavedra
et al. identified six enterococcal proteins that could serve as potential vaccine candidates against
enterococcal infections by the implementation of transcriptomic (AdcAfm and PsaAfm) and proteomic
(LysM, DdcP, PpiC, and PBP5) approaches [33,94]. In both studies, rabbits were immunized with
the recombinant proteins, and the resulting sera were evaluated in opsonophagocytic assay [33,94].
The sera raised against the proteins were opsonic against the homologous strain (E. faecium E155) but
also against a collection of E. faecalis and E. faecium strains [33,94]. Moreover, the sera were found to
be protective in a mouse bacteremia model [33,94]. Both results indicate the potential use of these
proteins as vaccine candidates with a broad cross-reactivity and serotype-independent coverage against
enterococcal infections [33,94].

Two of these proteins, AdcAfm and PsaAfm, are zinc and manganese ABC transporter
substrate-binding lipoproteins, respectively. Lipoproteins are substrate-binding proteins that deliver
the substrate to the corresponding ABC transporters [104]. The immunogenicity of the ABC transporters
has also been studied against E. faecium and Streptococcus pneumoniae [105,106]. In S. pneumoniae, PsaA,
a homolog of PsaAfm, was a promising vaccine candidate with broad coverage, administrated either
solely or as a carrier protein with a synthetic oligosaccharide from S. pneumoniae serotype 14 [105].
On the other hand, a peptidoglycan-binding protein LysM, a d-alanyl-d-alanine carboxypeptidase



Cells 2020, 9, 2397 8 of 17

(DdcP), a peptidyl-prolyl cis-trans isomerase (PpiC), and a low-affinity penicillin-binding protein
5 (PBP5) are surface-exposed proteins, which are associated with peptidoglycan [107]. Although the
function of these proteins has not been completely elucidated, these four proteins have been associated
with resistance to ampicillin and high salt concentrations, and there are indications for their involvement
in bacterial virulence and infection [33,108–111]. Finally, several of these proteins have been identified
in membrane vesicles (MVs) of E. faecium, conferring immunogenic properties to the MVs and making
them interesting vaccine candidates [107].

8. Prospects and Pitfalls in the Development of Immunotherapies against Enterococci

The development of an enterococcal vaccine would benefit patients with increased risk factors,
increasing their life expectancy and reducing their length of stay, thereby alleviating the stress on
the health care system [112]. For this purpose, studies that establish risk factors in well-defined
patient populations are of major importance [113,114]. Although the enterococcal surface proteins
are promising vaccine candidates, capsular cell wall components in E. faecium can still mask
their immunorecognition [115]. All the polysaccharides mentioned above could serve as good
antigens in vaccine formulations against enterococcus. However, polysaccharides are poorly
immunogenic, triggering T cell-independent immune response, and in most cases are unable to
elicit memory B cells [116]. Chemical conjugation of polysaccharides with a carrier protein can
overcome these obstacles. In particular, the carrier protein directs the processing of the glycoconjugate
by polysaccharide-specific B cells. The processed antigen is presented through the MHC class II
molecule to the carrier-peptide-specific T cells, thus provoking T cell-dependent immune responses,
affinity maturation, and B cell memory [116]. Currently, several glycoconjugate vaccines against
bacterial pathogens have been licensed, confirming their safety and efficacy in the prevention of
infectious diseases [117]. Apart from their implementations in the vaccine industry, glycoconjugates
have also served as immunogens for the production of polysaccharide-specific monoclonal antibodies
(mAbs) in mice [118–120].

As discussed above, carrier proteins in glycoconjugate vaccines facilitate the T cell-dependent
immune response to the conjugated polysaccharide, which is a T cell-independent antigen. The currently
licensed carrier proteins for glycoconjugated vaccines are diphtheria toxoid, tetanus toxoid, CRM197,
Haemophilus protein D, and the outer membrane protein complex of serogroup B meningococcus [121].
The discovery and usage of new carrier proteins would endorse the development of multivalent
vaccines and benefit vaccine co-administration. In particular, the new carrier proteins could simplify
vaccine formulations, broaden the coverage of vaccines, and restore the efficacy of the vaccines that
exhibit reduced immunoresponse, i.e., carrier-induced epitopic suppression (CIES) or bystander
interferences, due to their co-administration with other vaccines [121–123]. In this context, conjugates
of polysaccharide and protein virulence factors from the same pathogen, where proteins play a dual
role not only as a carrier protein but also as an immunogen, have been proposed [121]. For this
purpose, in our recent study, we evaluated the two enterococcal proteins, SagA and PpiC, as antigens
and carrier proteins for the enterococcal polysaccharide DHG in order to elicit a cross-species
immunoresponse against enterococci. The evaluated glycoconjugates exhibited crossreactivity in
ELISA and opsonophagocytic assay against several enterococcal strains, as well as protective efficacy
in a mouse sepsis model [124].

Passive immunotherapy using mAbs is an emerging field with many promising candidates to
fight these health threats, either by replacing the common antibiotic therapy or by co-administration
with antibiotics [125,126]. mAbs are also of great importance for the development of chemically defined
vaccines by solving the bottleneck of epitope identification [127]. Despite their short-lasting effect,
mAbs possess several advantages over vaccines. In particular, they can have a faster effect, with a
lower number of doses, can be produced at the industrial level, and most importantly, can even benefit
immunosuppressed individuals [128]. To date, a limited number of mAbs against enterococci exist
in the literature. In a recent study from Rossmann et al., two opsonic mAbs targeting enterococci
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were developed, exhibiting promising results in vivo and in vitro [129]. In this study, it was also
proposed that these mAbs are directed against LTA, providing a limited coverage only to the CPS-A
and CPS-B E. faecalis serotypes, since anti-LTA antibodies fail to opsonize the CPS-C and -D E. faecalis
serotypes [65,129]. Two other mAbs targeting the enterococcal proteins adhesin to collagen (Ace) and
the major component of pili (EbpC) are also in preclinical phase [130,131]. In the former case, the mAb
targeting the ligand-binding domain A of Ace inhibited E. faecalis adhesion to collagen and conferred
protection against endocarditis in passive immunization studies [130]. Although immunization with
EbpC did not succeed in providing a protective immunoresponse, the mAb targeting the protein
diminished biofilm formation and prevented the establishment of a rat endocarditis infection [21,131].
Interestingly, the radiolabeled mAb against EbpC demonstrated accumulation at the site of infection,
enabling molecular imaging [131]. The effectiveness of these mAbs against non-encapsulated E. faecalis
strains provides further support for the development of mAbs against enterococcal infections.

In addition, further research has to be done on the selection of the immunogenic targets for the
development of mAbs since the major barrier of mAb development is the antigenic heterogeneity
of clinically relevant pathogens [132]. Studies have pointed out this limitation by challenging the
efficacy of passive immunotherapies against several clinical isolates, either by targeting conserved
immunogens or several immunogens of different strains of the same species. A passive immunotherapy
targeting the aforementioned EbpANTD was described as being protective against a broad range
of E. faecalis, E. faecium, and VRE clinical strains that express fibrinogen-binding diversity and are
related to a plethora of clinical manifestations [102]. In our study, two mouse mAbs were developed
targeting the polysaccharide DHG and the protein SagA by immunization with the glycoconjugate
DHG-SagA. Both antibodies exhibited high specificity and opsonic killing against several enterococcal
strains. Interestingly, the mAb against DHG exhibited lower killing compared to the polyclonal
serum raised against the same antigen, revealing a variability in the presence and exposure of the
recognizable epitope between the strains [126]. A combination therapy using antibodies that target
a variety of antigenic epitopes would provide broad coverage and overcome the lack of diagnostic
methods [126]. Similar strategies are being explored against other types of diseases, e.g., cancer,
and could also be implemented in infectious diseases [133,134]. A combinational mAb therapy is
also supported by the opsonic and protective efficacy of human hyperimmune globulin preparations
against multidrug-resistant Gram-positive and -negative bacteria [135].

9. Conclusions

The therapeutic options against enterococcal infections are limited due to the increasing number
of multiresistant isolates in the clinical setting. For this purpose, vaccines and monoclonal antibodies
could bridge this gap and provide variety to the panel of treatment and prevention options. Of great
importance is the selection of immunogens that would enable the elimination of the bacteria
through opsonophagocytosis but also would define the vaccine coverage. For this purpose, a better
understanding of the bacterial pathogenesis and the role of virulence factors can allow new targets to
be identified. In addition, a well-defined bacterial serotyping system will determine the importance
and clinical relevance of these immunogens. Finally, since this field is currently in development and
has not yet reached clinical practice, it could profit from the current advances in glycoconjugation
and synthetic vaccines. All the corresponding epitopes could also be utilized as targets for passive
immunotherapy agents.
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