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Abstract: We review the basic concepts and recent applications of two-dimensional fluorescence
lifetime correlation spectroscopy (2D FLCS), which is the extension of fluorescence correlation
spectroscopy (FCS) to analyze the correlation of fluorescence lifetime in addition to fluorescence
intensity. Fluorescence lifetime is sensitive to the microenvironment and can be a “molecular ruler”
when combined with FRET. Utilization of fluorescence lifetime in 2D FLCS thus enables us to quantify
the inhomogeneity of the system and the interconversion dynamics among different species with
a higher time resolution than other single-molecule techniques. Recent applications of 2D FLCS to
various biological systems demonstrate that 2D FLCS is a unique and promising tool to quantitatively
analyze the microsecond conformational dynamics of macromolecules at the single-molecule level.

Keywords: fluorescence correlation spectroscopy; fluorescence lifetime; single-molecule spectroscopy;
conformational dynamics

1. Introduction

With the development of the confocal microscope, fluorescence correlation spectroscopy (FCS)
has been widely applied to analyze the diffusion coefficients of molecules and their conformational
dynamics [1–4]. FCS analyzes the correlation of single molecules through the temporal fluctuation
of fluorescence signals that are detected from a tiny focal region of a microscope objective. Due to its
simple experimental setup and wider applicable range of sample concentration compared to “strict”
single-molecule experiments, FCS is becoming an indispensable tool not only in biology, but also in
molecular science and physical chemistry [5–8]. Furthermore, the combination of FCS with various
sophisticated microscope systems and the introduction of additional experimental parameters to FCS
methodology makes FCS an advanced technique, beyond conventional analytical tools [9–13]. Here,
we focus on how to incorporate fluorescence lifetime information in FCS.

In 2002, two groups independently published papers that were related to the utilization of
fluorescence lifetime in FCS. Enderlein and his coworkers reported the concept and application of
“Time-resolved FCS” [14], which is now recognized as Fluorescence Lifetime Correlation Spectroscopy
(FLCS) [15,16]. In FLCS, one uses fluorescence lifetime information to calculate the filter functions
of all species in a heterogeneous system. Utilization of filter functions enables us to extract the
species-specific auto- and cross-correlation functions from the ensemble photon data. Since the first
application of FLCS (time-resolved FCS at that time) to a dye mixture system [14], several applications
have shown the usefulness of FLCS in various biological systems [17–19]. On the other hand,
Yang and Xie built the conceptual basis of photon-by-photon analysis of excitation-detection delay
time (fluorescence lifetime) [20,21], which was later extended and experimentally demonstrated by
Ishii and Tahara as Lifetime-weighted FCS and Two-Dimensional Fluorescence Lifetime Correlation
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Spectroscopy (2D FLCS) [22–25]. In particular, 2D FLCS allows us to detect the inhomogeneity of the
system and to quantitatively analyze the diffusion and the interconversion dynamics of all species
with distinct lifetimes in a species-specific manner as described below. The excellent reviews of FLCS
can be found in the literature [26–29]. However, a comprehensive review of 2D FLCS has not yet been
published, except for a book [30]. Recently, applications of 2D FLCS to various biological systems come
to reveal the high performance of 2D FLCS to quantify the microsecond dynamics of macromolecules
at the single-molecule level. Therefore, we strongly believe that a handy but accurate review of 2D
FLCS is now needed especially for potential users. In this paper, we review the basic concepts and
recent applications of 2D FLCS, only focusing on essential points, without challenging mathematics or
too many details.

2. Instrumentation of 2D FLCS

Figure 1 shows a typical optical setup of 2D FLCS. It is usually equipped with a confocal
microscope, but is compatible with other microscope systems, e.g., a total-internal reflection
microscope [31]. In addition to the ordinary confocal microscope system, 2D FLCS requires a
pulsed laser, a single-photon detector (or two detectors), and a time-correlated single-photon
counting (TCSPC) module implementing time-tagged (or time-tagged time-resolved) mode. Either a
femtosecond Ti-sapphire laser or a picosecond diode laser is currently used as an excitation light
source. The repetition rate used is typically 20–80 MHz, which gives a sufficient excitation-detection
time window for typical fluorescent dyes. Laser is reflected by a dichroic mirror and directed into a
microscope objective to excite the sample. Fluorescence emitted from the focal region is collected by the
same objective with a back-scattering geometry. Rayleigh scattering and other unwanted background
signals are separated from the fluorescence by passing through a dichroic mirror and a bandpass filter.
The fluorescence is then passed through a pinhole to eliminate off-focus signals and is separated into
two by using a nonpolarized 50/50 beamsplitter before being focused onto single-photon detectors.
Usually, single-photon avalanche diodes (SPADs) are used for the detectors. There are two advantages
to utilizing this two-detector system. One is the reduction of detection deadtime and the other is
the elimination of the afterpulsing effect from the correlation data [32]. Afterpulse is a “fake” signal
emitted from a SPAD with a delay time of~ µs from a “true” photon detection event. Because the
detected photon and the corresponding afterpulse is highly correlated, it affects the correlation data
in the µs region in a one-detector system. However, a one-detector system also works well with a
sophisticated method reported by Ishii and Tahara, which allows us to eliminate the afterpulsing
effect from the FCS, as well as 2D FLCS data [33]. Electric signals from the detectors are sent to a
TCSPC module, and temporal information of all detected photons is stored as photon data. Currently,
either Harp series (PicoQuant) or SPC series (Becker & Hickl) can be used for the TCSPC module.
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3. Analytical Method of 2D FLCS

2D FLCS analysis consists of three steps: (1) construction of a 2D emission-delay (microtime)
correlation map, (2) subtraction of uncorrelated photon pairs, (3) conversion from the 2D
emission-delay correlation map to a 2D lifetime correlation map. In this section, we briefly describe the
procedure of each step. A more detailed description of each step can be found in the literature [23–25].

3.1. Construction of a 2D Emission-Delay Correlation Map

By using the 2D FLCS instrument shown in Figure 1, two pieces of temporal information can be
obtained for each fluorescence photon, that is, macrotime and microtime (Figure 2a). Macrotime (T) is
the detection time of the photon from the start of the experiment. Because the timescale of T (typically
sub-µs~s) is much longer than the excitation-emission delay time (ps~ns), T is usually recorded by
referring to the external clock that is given from a pulsed laser as synchronous signals. On the other
hand, microtime (t) is the relative delay time of the photon detection with respect to the corresponding
excitation pulse. This t is calculated on a TCSPC module by referring to the synchronous signals from
the laser. This information of T and t is utilized to construct a 2D emission-delay correlation map.

In constructing a 2D emission-delay correlation map, one searches photon pairs which have
the time interval of ∆T − ∆∆T/2~∆T + ∆∆T/2 between the two photons, where ∆∆T is an arbitrary
macrotime window that is typically set to be ∆∆T < ∆T (Figure 2b). Then, the microtime of the photons
in the photon pair is plotted into a map. In this map, the horizontal axis corresponds to the microtime
of the 1st photons in the photon pair and the vertical axis corresponds to the photons detected after
∆T ± ∆∆T/2 from the 1st photons (denoted as 2nd photons in Figures 2 and 3). By repeating this
procedure for all detected photons, one can get a 2D emission-delay (microtime) correlation map (M
(∆T; t′, t”)).

3.2. Subtraction of Uncorrelated Photon Pairs

The constructed 2D emission-delay correlation map (M (∆T; t′, t”)) contains a contribution from
uncorrelated photon pairs, in addition to that from correlated pairs emitted by single molecules.
Uncorrelated photon pairs include (1) photon pairs in which each photon is emitted from a different
molecule, and (2) photon pairs in which one or both photons stem from background signals. A key
characteristic of such uncorrelated photon pairs is that those photon pairs are independent of ∆T [23],
which can be utilized to subtract the contribution of the uncorrelated photon pairs from M (∆T; t′, t”)
to obtain a 2D emission-delay correlation map of single molecules. Figure 2c shows a schematic of
this procedure. The constructed 2D emission-delay correlation map at ∆T corresponds to the ordinary
intensity-correlation amplitude from 0 to G (∆T). To subtract the uncorrelated contribution, one also
constructs a 2D emission-delay correlation map at longer ∆T that is much longer than the average
residence time of the molecules in a focal region. Because the correlation is practically lost at that
∆T, the obtained map represents the uncorrelated photon pairs (Munc (t′, t”)) corresponding to the
intensity-correlation amplitude from 0 to 1. Thus, Munc (t′, t”) can be used to obtain the correlated map:

Mcor(∆T; t′, t′′ ) = M(∆T; t′, t′′ )−Munc(t′, t′′ ). (1)

Because the resulting correlated map (Mcor (∆T; t′, t′ ′)) only contains the single-molecule
correlation, the information in this map is equivalent to the data obtained with a “strict” single-molecule
experiment. Furthermore, the time resolution of FCS is superior to such (strict) single-molecule
spectroscopy. Therefore, 2D FLCS can analyze rapid interconversion dynamics at the single-molecule
level with a microsecond time resolution, which is the main advantage of 2D FLCS beyond the ordinary
single-molecule spectroscopy.
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Figure 2. Schematic of 2D FLCS analysis. (a) Accumulation of photon data. For each detected
photon, macrotime (T) and microtime (t) are stored as photon data. (b) Construction of a 2D
emission-delay correlation map. (c) Subtraction of uncorrelated photon pairs. (d) Conversion from the
2D emission-delay correlation map to a 2D lifetime correlation map by 2D inverse Laplace transform
(ILT) with the help of 2D maximum entropy method (2D MEM).

3.3. Inverse Laplace Transform with the Help of 2D Maximum Entropy Method

Even though a 2D emission-delay correlation map of single molecules (Mcor (∆T; t′, t”)) is
successfully extracted by step 2, it is still difficult to interpret the map directly from its appearance.
To further analyze this map, 2D inverse Laplace transform (2D ILT) helps us to convert this map to
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a 2D lifetime correlation map (M̃(∆T; τ′, τ′′ )) (Figure 2d). Unfortunately, it is well known that ILT is
numerically unstable. To suppress the numerical instability, 2D maximum entropy method (MEM) is
employed in 2D FLCS.

Because Mcor (∆T; t′, t”) is described with the sum of the single-molecule correlation of all emitted
species, it can be represented by the following equations:

Mcor
(
∆T; t′ i, t′′ j

)
=

L

∑
k=1

L

∑
l=1

M̃
(
∆T; τ′k, τ′′ l

)
exp(−t′ i/τ′k) exp(−t′′ j/τ′ l), (2)

M̃
(
∆T; τ′k, τ′′ l

)
=

n

∑
s=1

as(τ
′
k)as(τ′′ l), (3)

where L is the number of data points along the lifetime (τ) scale, as (τ) is the independent lifetime
distribution of species s, and n is the number of the independent species. In 2D MEM analysis, one
prepares a trial 2D lifetime correlation map (M̃0(∆T; τ′, τ′′ )) to calculate a trial 2D emission-delay
correlation map (M0

cor(∆T; t′, t′′ )) and compare it with an experimental one.

M0
cor
(
∆T; t′ i, t′′ j

)
=

L

∑
k=1

L

∑
l=1

M̃0(∆T; τ′k, τ′′ l
)

exp(−t′ i/τ′k) exp(−t′′ j/τ′′ l), (4)

M̃0(∆T; τ′k, τ′′ l
)
=

n

∑
s=1

a0
s (τ
′
k)a0

s (τ
′′

l) (5)

The agreement between Mcor(∆T; t′, t′′ ) and M0
cor(∆T; t′, t′′ ) is evaluated based on the chi-square

value (χ2):

χ2 =
1

K2 − 1

K

∑
i=1

K

∑
j=1

{
M0

cor
(
∆T; t′ i, t′′ j

)
−Mcor

(
∆T; t′ i, t′′ j

)}2

M
(
∆T; t′ i, t′′ j

) , (6)

where K is the maximum microtime channel. Moreover, the entropy (S) of M̃0(∆T; τ′, τ′′ ) can be
defined as [34]:

S =
n

∑
s=1

L

∑
k=1

{
a0

s (τk)−ms(τk)− a0
s (τk) ln

a0
s (τk)

ms(τk)

}
. (7)

In Equation (7), ms(τ) is a prior knowledge of a0
s (τ) and acts as a bias for S. Usually, one sets a

constant value for ms(τ) (no bias). The optimum M̃0(∆T; τ′, τ′′ ) that minimizes the following Q value
is then searched and determined,

Q = χ2 − 2S
η

, (8)

where η is the regularizing constant. Because the number of independent species is unknown, 2D MEM
analysis is initially performed with small n (typically 1 or 2) and n is increased until the simulated 2D
emission-delay correlation map reproduces the experimental one, as judged from χ2 and the residuals.
It is noted that one can also perform global 2D MEM analysis for several 2D emission-delay correlation
maps at different ∆Ts, which assures a more reliable and stable conversion to the corresponding 2D
lifetime correlation maps. Analytical details of global 2D MEM analysis are elaborated in [25].

On the basis of the procedure described above, one can analyze the number of independent
lifetime species and their fluorescence lifetime distributions. Furthermore, the fluorescence decay
curve of each independent species (ps (t)) can be obtained by performing Laplace transform (LT) on
the corresponding as (τ). The relationships among Mcor (∆T; t′, t′ ′), M̃(∆T; τ′, τ′′ ), ps (t) and as (τ) are
summarized in Figure 3. In the upper panel, two diagonal peaks appear in M̃(∆T; τ′, τ′′ ). This peak
pattern is a representative of the existence of two independent species and the position of each diagonal
peak represents the lifetime of each species as observed in the corresponding as (τ). On the other hand,
two off-diagonal peaks in addition to the diagonal peaks appear in M̃(∆T; τ′, τ′′ ) in the lower panel.
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This represents the existence of two independent species that are interconverted with each other with
the timescale faster than ∆T. In this case, two species with distinct lifetimes are indistinguishable at
this ∆T, so that one independent lifetime distribution with two peaks and a double-exponential decay
curve is observed in as (τ) and ps (t), respectively. Thus, the two examples in Figure 3 indicate that
the emergence of off-diagonal peaks with increasing ∆T (change from the upper to lower examples in
Figure 3) tells us the timescale of interconversion between the corresponding species.
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4. Application of 2D FLCS

The most important feature of 2D FLCS is that it enables us to observe the conformational
dynamics of macromolecules with high time resolution through the time evolution of 2D lifetime
correlation maps; specifically, the emergence of off-diagonal peaks. This was first demonstrated by
Ishii and Tahara by performing 2D FLCS on the conformational dynamics of a DNA hairpin [25].
DNA hairpin is a single-chain DNA consisting of stem and loop regions, and base pairs are formed
on the stem region. The stability of the stem region highly depends on the solution conditions such
as the ionic strength. Thus, the closed (where the base pairs are formed on the stem region) and
open forms (where the base pairs dissociate to form single-stranded conformation) of DNA coexist in
equilibrium under a certain condition. To analyze the conformational dynamics between the closed
and open forms by 2D FLCS, two fluorophores, 6-carboxyfluorescein (FAM) and tetramethylrhodamine
(TAMRA), are attached on 5′- and 3′-terminals of the DNA hairpin, respectively (Figure 4c). Because the
fluorescence spectrum of FAM overlaps with the absorption spectrum of TAMRA, the fluorescence
lifetime of FAM is sensitive to the FRET efficiency, that is, the end-to-end distance of the DNA.
Therefore, closed-open conformational dynamics can be analyzed by 2D FLCS through the correlation
of the conformation-dependent fluorescence lifetime of FAM (FRET donor).

Figure 4a shows three independent lifetime distributions observed at ∆T = 10–30 µs, and the 2D
lifetime correlation maps at ∆T = 10–30 and 100–200 µs are shown in Figure 4b. Remarkably, a single
lifetime peak in component 1 matches the fluorescence lifetime of similar DNA without an acceptor dye
(black arrow in Figure 4a), and two major peaks in component 2 are nearly identical to those observed
in the data of a single-stranded DNA without base pairs (blue arrows in Figure 4a). Based on this
agreement, components 1 and 2 are confidently assigned to the acceptor-missing and the open form of
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the DNA hairpin, respectively. Component 3 is hence assigned to the closed form. The existence of the
two peaks in component 2 suggests that the open form of the DNA hairpin is highly flexible, and the
exchange between different conformations corresponding to the two peaks occurs faster than 10 µs.
Furthermore, the closed-open dynamics of the DNA hairpin is clearly seen in the 2D lifetime correlation
maps, even though these look complex due to several major and minor peaks in each component.
In the map at ∆T = 100–200 µs, off-diagonal peaks between components 2 and 3 are clearly seen that
are absent in the map at ∆T = 10–30 µs, the regions of which are marked with magenta (Figure 4b).
On the other hand, no off-diagonal peaks between component 1 and other components are observed in
the map (green dashed region). This is reasonable because the fluorescence lifetime of the donor in the
acceptor-missing DNA is insensitive to the closed-open conformational transition. On the basis of the
reliable assignment of the three independent lifetime distributions, the observation of the emergence
of the off-diagonal peaks between components 2 and 3 and the application of lifetime-weighted FCS,
another useful variant of FCS utilizing fluorescence lifetime information [22,25], it was concluded that
the closed-open conformational transition of the DNA hairpin occurs with the time scale of ~100 µs.
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Figure 4. 2D FLCS of DNA hairpin. (a) Three independent lifetime distributions observed at
∆T = 10–30 µs, (b) 2D lifetime correlation maps at ∆T = 10–30 and 100–200 µs. Dashed lines indicate the
regions where the cross peaks between components 1 and 2, 3 (green) and those between components 2
and 3 (magenta) are expected to appear. (c) Sketch of the folding dynamics of the DNA hairpin observed
by 2D FLCS. Adapted with permission from Ref. [25], Copyright 2013, American Chemical Society.

The high time resolution of 2D FLCS was further verified by applying it to the study of protein
folding. Protein folding is a hierarchical process involving the initial conformational collapse,
the formation of secondary structure and the final tertiary-structure formation. The timescale of
each conformational transition ranges from sub-microseconds to seconds or even hours. In particular,
sub-µs and µs conformational dynamics of proteins have attracted much attention recently, because the
advancement of MD simulation now enables us to simulate the atomic details of protein dynamics
up to µs–ms timescale [35,36]. However, the applications of the ordinary single-molecule technique
are restricted to the dynamics up to ~100 µs due to the limitation of available photon number. Thus,
the quantification of the microsecond dynamics is still a challenging task.
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To elucidate the microsecond dynamics of proteins, 2D FLCS was applied to cytochrome c (cyt c)
(Figure 5) [37]. Cyt c is a heme protein and has been widely used as a model protein for protein
folding [38–43]. To study the conformational transition of this protein, a donor dye, Alexa 546, was
attached to the single free cysteine residue located in the C-terminal region (Figure 5b). Because the
fluorescence spectrum of this dye overlaps with the visible absorption band of heme, it is expected that
the conformational transition of cyt c can be analyzed through the change in the fluorescence lifetime
of the donor. 2D FLCS was performed at pH 3.5, where the µs correlation decay corresponding to
some conformational dynamics of cyt c was previously suggested by conventional FCS [42]. Figure 5a
shows the 2D lifetime correlation maps and the corresponding lifetime distributions at ∆T = 0.2–4,
8–12, and 50–100 µs. At ∆T = 0.2–4 µs, four independent lifetime species are observed and one species
(sp3) shows two peaks in the corresponding lifetime distribution. This suggests that five conformers
of cyt c coexist at pH 3.5 and two of them are interconverted with each other with the timescale
faster than ~1 µs. Furthermore, the emergence of off-diagonal peaks between sp1 and sp2 (indicated
by arrows in Figure 5a) is clearly observed in the 2D lifetime correlation maps at ∆T = 8–12 and
50–100 µs. Because the shortest lifetime species can be assigned to the native state of cyt c due to its
compact structural nature (high FRET efficiency), the observation of these off-diagonal peaks indicates
that the conformational transition between the native state (sp1) and one of the intermediate states
(sp2) occurs with the timescale at ~5 µs. As mentioned, spontaneous conformational dynamics at
several microseconds is hardly quantified with conventional single-molecule spectroscopy. Therefore,
this study unequivocally demonstrated the high performance of 2D FLCS to elucidate the rapid
conformational dynamics of proteins at the single-molecule level. Further 2D FLCS analysis in this
study gave the complex folding scheme of cyt c including seven conformers (Figure 5b).

The application to cyt c revealed the high time resolution of 2D FLCS to detect the microsecond
dynamics of proteins. In addition to the time resolution, 2D FLCS gives us the valuable structural
information through the lifetime distribution and the corresponding fluorescence decay curve of each
conformer. This is well demonstrated by applying it to the study of B domain of protein A (BdpA) [44].
BdpA is a small, single-domain globule protein which has three helices in its structure (Figure 6a) [45].
BdpA has also been utilized as a model protein for protein folding [46–48]. However, the native-state
conformation of BdpA is still under debate [49–51]. To elucidate the conformational property of
the native as well as the unfolded states of BdpA, 2D FLCS was applied. In this study, two FRET
mutants of BdpA were prepared, that is, K5C/Y15F/A55C mutant and Y15F/N22C/A55C mutant,
and FRET dyes were attached to the cysteine residues. In K5C/Y15F/A55C mutant, FRET pair is
located at the both ends of BdpA. Thus, the donor fluorescence of this mutant is sensitive to the overall
conformational change in the native state but is insensitive to the unfolded conformation due to the
longer donor-acceptor distance. Indeed, 2D FLCS of this mutant revealed two independent species
and the fluorescence lifetime of longer-lifetime species was comparable to that of a free donor dye
and insensitive to the denaturant concentration. Therefore, we assigned the longer-lifetime species to
the unfolded state, and the native-state conformation was analyzed based on the lifetime distribution
and the corresponding fluorescence decay curve of the shorter lifetime species. In Y15F/N22C/A55C
mutant, the FRET pair are located close to each other in the native state so that the donor fluorescence of
the native state is hardly observed in this mutant. On the other hand, this mutant is suitable to analyze
the conformational property of the unfolded state. Therefore, the usage of the two FRET mutants gives
us the opportunity to examine the conformational properties of the native (from K5C/Y15F/A55C
mutant) and unfolded (from K5C/Y15F/A55C mutant) states of BdpA.
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structure of cytochrome c (PDB ID:1YCC). N- and C-terminal helices are highlighted with blue.
The position of the donor dye is shown by a yellow sphere. (right) Schematic free-energy landscape
and the relevant conformational dynamics of cytochrome c at pH 3.5. The equilibration times among
conformers and the donor–heme distances evaluated in the present work are given. Adapted with
permission from Macmillan Publishers Ltd.: Nature Communications Ref. [37], Copyright 2015.

The lifetime distributions of the FRET donor in the native (Figure 6b) and unfolded (Figure 6c)
states of BdpA obtained by 2D FLCS with 10 µs time resolution show multiple lifetime peaks,
suggesting that both the native and unfolded states are inhomogeneous and multiple conformers
are interconverted with each other with the timescale faster than 10 µs. Furthermore, independent
fluorescence decay curves of both states obtained by Laplace transform of the corresponding lifetime
distributions shift to longer lifetime sides with increasing the denaturant concentration (arrows in
Figure 6b,c). This clearly shows that the native-state ensemble in addition to that of the unfolded state
are highly sensitive to the denaturant condition. The ensemble nature and denaturant sensitivity of
the native-state conformation of BdpA are surprising, because a native state was believed to have
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a solid conformation. Based on the results of the FRET mutants, it was suggested that the fraying
of N-terminal helix is the origin of the ensemble nature of the native-state conformation in BdpA.
Because a FRET donor in both the native and unfolded states shows multi-exponential decay kinetics
and the fluorescence lifetimes of both states are sensitive to the denaturant condition, it is hard
to analyze the fluorescence decay curve (lifetime) of each state based on the ensemble-averaged
experiments, e.g., the global analysis of the denaturant-dependent fluorescence decay curves. Thus,
the plasticity of the native-state conformation (ensemble nature of the native state) and the rapid
interconversions in the native-state ensemble can only be verified with the high time resolution and
structural sensitivity of 2D FLCS.
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Figure 6. (a) NMR structure of B domain of protein A (PDB ID: 1SS1). The residues that were mutated
to cysteine are shown by sticks. (b) Fluorescence decay curves of the FRET donor in the native state of
K5C/Y15F/A55C mutant of BdpA at 1.0 (red), 2.0 (blue), 2.5 (green), and 3.0 M (purple) of guanidium
hydrochloride (GdmCl). The corresponding independent lifetime distribution at 2.0 M GdmCl is
also shown in the figure. (c) Fluorescence decay curves of the FRET donor in the unfolded state
of Y15F/N22C/A55C mutant of BdpA at 2.0 (red) and 4.0 M (blue) of GdmCl. The corresponding
independent lifetime distribution at 2.0 M GdmCl is also shown in the figure. In (b,c), these decay
curves were obtained by performing a global 2D MEM analysis on the 2D emission-delay correlation
maps at ∆T = 1–20, 50–100, and 400–600 µs. The arrows in (b,c) represent the shift of fluorescence decay
curves with increasing GdmCl concentration. Adapted with permission from Ref. [44] Copyright 2017,
American Chemical Society.

5. Future Perspectives

2D FLCS utilizes fluorescence lifetime to analyze the diffusion and rapid conformational dynamics
of macromolecules with the high time resolution and structural sensitivity. Furthermore, it can be
achieved with a simple experimental configuration as shown in Figure 1. Therefore, this technique
is compatible with various optical systems where fluorescence lifetime can be measured (e.g., laser
scanning microscopy [52]), and can also be combined with other fluorescence lifetime-based analytical
methods (e.g., phasor plot analysis [53]). In particular, the combination of 2D FLCS with FLCS will
be a promising tool for the future application of 2D FLCS. FLCS developed by Enderlein utilizes
fluorescence lifetime to extract the species-specific auto-and cross-correlation curves from ensemble
photon data as described in the Introduction [15,16]. Despite its simple analytical procedure, FLCS has
one requirement that fluorescence decay curves (lifetimes) of all species in a system have to be known
in advance. This requirement may be satisfied only when the suitable reference data is available.
In the case of the folding intermediate states of proteins, for example, these is no a priori knowledge
of fluorescence lifetimes. Thus, this requirement often limits the application of FLCS. However,
this limitation can be overcome by the combination with 2D FLCS. Specifically, determination of
independent lifetime distributions of all species by 2D FLCS, their conversions to the corresponding
fluorescence decay curves by LT, and the application of these decay curves to FLCS analysis not only
remove the limitation of FLCS but also broaden the application of fluorescence lifetime-correlation
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analysis to various inhomogeneous and complex systems. Actually, this attempt has recently been
reported by the Tahara group and us [31,54].

Very recently, we also applied this methodology to examine the diffusion of lipids in a supported
lipid bilayer (SLB) [55]. SLB is a model biomembrane formed on a solid support such as a glass [56].
Besides its flatness and simple preparation procedure, the advantage of utilizing SLB is its fluidity,
which enables us to examine the dynamical property of a lipid membrane such as flip-flop kinetics of
lipids [57]. Despite the wider applications of SLB, however, the effect of a solid support on the diffusion
dynamics of lipids in the two leaflets (monolayers) of SLB, that is, the proximal (facing a solid support)
and distal (facing bulk solution) leaflets, is still controversial [58–60]. We then performed 2D FLCS
and FLCS on SLB to elucidate the diffusion of lipids in both leaflets of SLB. To analyze the diffusion of
lipids in each leaflet independently, potassium iodide, a famous fluorescence quencher, was added to
the bulk solution above SLB, by which the fluorescence lifetime of lipids in the distal leaflet becomes
shorter than that in the proximal leaflet. Leaflet-specific autocorrelation curves calculated by the
combination of 2D FLCS and FLCS clearly showed that the diffusion of lipids in the proximal leaflet of
SLB is substantially slower than that in the distal leaflet due to the stronger interaction between the
lipids in the proximal leaflet and a glass surface. Because leaflet-selective diffusion analysis is difficult
with the conventional FCS, this demonstrates that the combination of 2D FLCS and FLCS will be a
standard tool to explore the complex biological systems.

6. Conclusions

FCS has long been utilized to analyze the diffusion and rapid conformational dynamics of
macromolecules. The high time resolution (ns–µs) of FCS beyond conventional single-molecule
spectroscopy has attracted our attention with the advancement of all-atom MD simulation. However,
the fluorescence intensity-based correlation analysis has a limitation to elucidate the origin of the
fluorescence fluctuation, where only model-dependent fitting analysis is possible. 2D FLCS, on the
other hand, enables us to quantitatively analyze the rapid conformational dynamics of macromolecules
in a model-free manner though the correlation of fluorescence lifetime without sacrificing the high
time resolution of FCS. Thus, future 2D FLCS will open the way to elucidate the complex, ensemble
nature of macromolecule conformations and their significance in various biological functions.
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