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Abstract

Models of the spread of disease in a population often make the simplifying assumption that the population is homoge-
neously mixed, or is divided into homogeneously mixed compartments. However, human populations have complex struc-
tures formed by social contacts, which can have a significant influence on the rate of epidemic spread. Contact network
models capture this structure by explicitly representing each contact which could possibly lead to a transmission. We de-
veloped a method based on approximate Bayesian computation (ABC), a likelihood-free inference strategy, for estimating
structural parameters of the contact network underlying an observed viral phylogeny. The method combines adaptive se-
quential Monte Carlo for ABC, Gillespie simulation for propagating epidemics though networks, and a kernel-based tree
similarity score. We used the method to fit the Barab�asi-Albert network model to simulated transmission trees, and also
applied it to viral phylogenies estimated from ten published HIV sequence datasets. This model incorporates a feature
called preferential attachment (PA), whereby individuals with more existing contacts accumulate new contacts at a higher
rate. On simulated data, we found that the strength of PA and the number of infected nodes in the network can often be ac-
curately estimated. On the other hand, the mean degree of the network, as well as the total number of nodes, was not es-
timable with ABC. We observed sub-linear PA power in all datasets, as well as higher PA power in networks of injection
drug users. These results underscore the importance of considering contact structures when performing phylodynamic in-
ference. Our method offers the potential to quantitatively investigate the contact network structure underlying viral
epidemics.

Key words: phylogenetics; phylodynamics; contact network; transmission tree; approximate Bayesian computation; human
immunodeficiency virus.

Introduction

When an infectious disease spreads through a population,
transmissions are generally more likely to occur between cer-
tain pairs of individuals. Such pairs must have a particular
mode of contact with one another, which varies with the mode
of transmission of the disease. For airborne pathogens, physical
proximity may be sufficient, while for sexually transmitted dis-
eases, sexual or in some cases blood-to-blood contact is

required. The population together with the set of links between
individuals along which transmission can occur is called the
contact network (Klovdahl 1985; Morris 1993). The structure of
the contact network underlying an epidemic can profoundly im-
pact the speed and pattern of the epidemic’s expansion.
Network structure can influence the prevalence curve (O’Dea
and Wilke 2011; Ma, van den Driessche, and Willeboordse 2013)
and transmission rate necessary for an epidemic to develop
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(Barthélemy et al. 2005). In turn, these estimates affect the esti-
mates of quantities such as effective viral population size
(Goodreau 2006). From a public health perspective, contact net-
works have been explored as tools for curtailing epidemic
spread, by way of interventions targeted to well-connected
nodes (Wang et al. 2015). True contact networks are a challeng-
ing type of data to collect, requiring extensive epidemiological
investigation (Welch, Bansal, and Hunter, 2011; Eames et al.
2015 ).

Viral sequence data, on the other hand, has become easier to
collect as the cost of sequencing has declined. In the case of
HIV, genotyping has become part of routine clinical care in sev-
eral health regions. Due to the high mutation rate of RNA
viruses, epidemiological processes impact the course of viral
evolution, thereby shaping the inter-host viral phylogeny
(Drummond et al. 2003). The term ‘phylodynamics’ was coined
to describe this interaction, as well as the growing family of in-
ference methods to estimate epidemiological parameters from
viral phylogenies (Grenfell et al. 2004). These methods have
revealed diverse properties of local viral outbreaks, from basic
reproductive number (Stadler et al. 2012), to the degree of clus-
tering (Hughes et al. 2009), to the elevated transmission risk
during acute infection (Volz et al. 2012). On the other hand, al-
though sophisticated methods have been developed for fitting
complex population genetic models to phylogenies (Volz 2012;
Rasmussen, Volz, and Koelle 2014), inference of structural net-
work parameters has to date been limited. However, it has been
shown that network structure has a tangible impact on phyl-
ogeny shape (Goodreau 2006; Leventhal et al. 2012; Colijn and
Gardy 2014; Robinson et al. 2013; Villandre et al. 2016), suggest-
ing that such statistical inference might be possible (Welch,
Bansal, and Hunter 2011). In the context of networks, sequence
data have the advantage of being objective, in that they are not
affected by misreporting. However, just as with survey data, it is
important to collect a representative sample from the popula-
tion to perform accurate inference (Novitsky et al. 2014).

Survey-based studies of sexual networks (Colgate et al. 1989;
Liljeros et al. 2001; Schneeberger et al. 2004; Latora et al. 2006;
Rothenberg, and Muth, 2007; Clémençon et al. 2015) have found
that these networks tend to have a degree distribution which
follows a power law [although there has been some disagree-
ment, see (Handcock, and Holland Jones 2004)]. That is, the
number of nodes of degree k is proportional to k�c for some con-
stant c. When c is in the range 2 � c � 3, these networks are
also referred to as ‘scale-free’ (Barab�asi, and Albert 1999). One
process by which scale-free networks can be generated is pref-
erential attachment (PA), where nodes with a high number of
contacts attract new connections at an elevated rate. The first
contact network model incorporating PA was introduced by
Barab�asi and Albert (1999), and is now referred to as the
Barab�asi-Albert (BA) model. Under this model, networks are
formed by iteratively adding nodes with m new edges each. The
average degree of the network is therefore 2m. In the most com-
monly studied formulation, these new edges are joined to exist-
ing nodes of degree k with probability proportional to k, so that
nodes of high degree tend to attract more connections. BA sug-
gested an extension where the probability of attaching to a
node of degree k is ka for some non-negative constant a, and we
use this extension in this work. When a 6¼ 1, the degree distribu-
tion is no longer a power law: for a < 1, the distribution is a
stretched exponential, while for a > 1, it is a “gelation” type dis-
tribution where one or a few hub nodes are connected to nearly
every other node in the graph (Krapivsky, Redner, and Leyvraz
2000) (Supplementary Fig. S1).

Previous work offers precedent for the possibility of statis-
tical inference of structural network parameters. Britton and
O’Neill (Britton, and O’Neill 2002) develop a Bayesian approach
to estimate the edge density in an Erd}os-Rényi network (Erdös
and Rényi 1960) given observed infection dates, and optionally
recovery dates. Their approach was later extended by
Groendyke, Welch, and Hunter (Groendyke, Welch, and Hunter
2011) and applied to a much larger data set of 188 individuals.
Volz and Meyers (Volz, and Ancel Meyers 2007) and Volz (Volz
2008) developed differential equations describing the spread of
a susceptible-infected (SI) epidemic on static and dynamic con-
tact networks with several degree distributions, which could in
principle be used for inference if observed incidence trajectories
were available. Leigh Brown et al. (2011) analyzed the degree
distribution of an approximate transmission network, esti-
mated based on genetic similarity and estimated times of infec-
tion, relating 60% of HIV-infected men who have sex with men
(MSM) in the United Kingdom. The authors found that a Waring
distribution, which is produced by a more sophisticated PA
model, was a good fit to their estimated network. However, the
transmission network is different from the contact network,
containing only those edges which have already led to a new in-
fection. Furthermore, recent experiments have found the cor-
respondence between phylogenetic clusters and network
clusters to be weak (Villandre et al. 2016).

Standard methods of model fitting involve calculation of the
likelihood of observed data under the model, that is, the prob-
ability density of the model having given rise to that data. In
maximum likelihood estimation, a quantity proportional to the
likelihood is optimized, often through a standard multi-
dimensional numerical optimization procedure. Bayesian
methods integrate prior information by sampling from the pos-
terior distribution, the product of the prior and the likelihood,
instead. To avoid calculation of a normalizing constant,
Bayesian inference is often performed using Markov chain
Monte Carlo (MCMC), which uses likelihood ratios in which the
normalizing constants cancel out. Unfortunately, it is generally
difficult to explicitly calculate the likelihood of an observed
transmission tree under a contact network model, even up to a
normalizing constant. To do so, it would be necessary to inte-
grate over all possible networks, and flso over all possible label-
lings of the internal nodes of the transmission tree (see
Supplementary Text S1). A simpler alternative is offered by
likelihood-free methods, namely approximate Bayesian compu-
tation (ABC) (Tavaré et al. 1997; Beaumont, Zhang, and Balding
2002). ABC leverages the fact that, although calculating the like-
lihood may be impractical, generating simulated datasets ac-
cording to a model is often straightforward. If our model fits the
data well, the simulated data it produces should be similar to
the observed data. More formally, if D is the observed data, the
posterior distribution f ðhjDÞ on model parameters h is replaced
as the target of statistical inference by f ðhjqðD̂;DÞ < eÞ, where q

is a distance function, D̂ is a simulated dataset according to h,
and � is a small tolerance (Sunnåker et al. 2013). Typically, q is
chosen to be the difference between one or more summary stat-
istics calculated for each data point. Our group (Poon 2015) and
others (Mijung et al. 2015) have demonstrated that a more ac-
curate ABC approximation can be produced by using a kernel
function. These functions, popular for machine learning appli-
cations, are able to calculate the similarity between data points
when considering a very large or even infinite number of data
features.

Here, we develop a method using ABC to estimate the par-
ameters of contact network models from observed phylogenetic
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data. The distance function we use is the tree kernel developed
by Poon et al. (2013), which considers all possible subset trees
with branch lengths when calculating the similarity between
two trees. We apply the method to investigate the parameters
of the BA network model on a variety of simulated and real
datasets. Our results show that some network parameters can
be inferred with reasonable accuracy, while ABC cannot distin-
guish between different values of others. We also find that
these parameters can vary considerably between real epidemics
from different settings.

Methods
Netabc: Phylogenetic Inference of Contact Network
Parameters with ABC

We have developed an ABC-based method, netabc, to perform
statistical inference of contact network parameters from a
transmission tree estimated from an observed viral phylogeny.
We implemented the adaptive sequential Monte Carlo (SMC) al-
gorithm for ABC developed by Del Moral, Doucet, and Jasra (Del
Moral, Doucet, and Jasra 2012). The SMC algorithm keeps track
of a population of parameter ‘particles’, which are initially
sampled from the parameters’ joint prior distribution. Several
datasets are simulated under the model of interest for each of
the particles. In this case, the datasets are transmission trees,
which are generated by a two-step process. First, a contact net-
work is simulated according to the network model being fit.
Second, a transmission tree is simulated over that network with
a Gillespie simulation algorithm (Gillespie 1976), in the same
fashion as several previous studies (Leventhal et al. 2012;
Robinson et al. 2013). Tips of the simulated transmission tree
are randomly removed until the simulated tree has the same
number of tips as the input tree. The particles are weighted ac-
cording to the similarity between their associated simulated
trees and the observed tree. To quantify this similarity, we used
the tree kernel developed by Poon et al. (2013). Particles are it-
eratively perturbed by applying a Metropolis-Hastings kernel
and, if the move is accepted, simulating new datasets under the
new parameters. When a particle’s weight drops to zero, be-
cause its simulated trees are too dissimilar to the observed tree,
the particle is dropped from the population, and eventually
replaced by a resampled particle with a higher weight. As the al-
gorithm progresses, the population converges to a Monte Carlo
approximation of the ABC target distribution, which is assumed
to approximate the desired posterior (Del Moral, Doucet, and
Jasra 2012; Sunnåker et al. 2013).

In the original formulation of ABC-SMC (Sisson, Fan, and
Tanaka 2007; Beaumont et al. 2009), the user is required to spe-
cify a decreasing sequence of tolerances feig. At iteration i, par-
ticles with no associated simulated datasets within distance ei

of the observed data are removed from the population. In the
adaptive version of Del Moral, Doucet, and Jasra (2012), the se-
quence of tolerances is determined automatically by fixing the
decay rate of the population’s effective sample size (ESS) to a
user-defined value. Del Moral, Doucet, and Jasra (Del Moral,
Doucet, and Jasra 2012) call this value a, but we will refer to it
here as aESS to avoid confusion with the PA power parameter of
the BA model.

To check that our implementation of Gillespie simulation
was correct, we reproduced Figure 1A of Leventhal et al. (2012)
(our Supplementary Fig. S2), which plots the imbalance of trans-
mission trees simulated over four network models at various
levels of pathogen transmissibility. Our implementation of

adaptive ABC-SMC was tested by applying it to the same mix-
ture of Gaussians used by Del Moral, Doucet, and Jasra (2012) to
demonstrate their method (originally used by Sisson, Fan, and
Tanaka 2007). We were able to obtain a close approximation to
the function (see Supplementary Fig. S3), and attained the stop-
ping condition used by the authors in a comparable number of
steps.

Nodes in our networks followed simple SI dynamics, mean-
ing that they became infected at a rate proportional to their
number of infected neighbours, and never recovered. For all
analyses, the transmission trees’ branch lengths were scaled by
dividing by their mean. We used the igraph library’s implemen-
tation of the BA model (Csardi, and Nepusz 2006) to generate
the graphs. The analyses were run on Westgrid (https://www.
westgrid.ca/) and a local computer cluster.

Classifiers for BA Model Parameters from Tree Shapes

We considered four parameters related to the BA model,
denoted N, m, alpha, and I. The first three of these parameterize
the network structure, while I affects the simulation of trans-
mission trees over the network. However, we will refer to all
four as BA parameters. N denotes the total number of nodes in
the network, or equivalently, susceptible individuals in the
population. m is the number of new undirected edges added for
each new vertex, or equivalently one-half of the average degree.
a is the power of PA—new nodes are attached to existing nodes
of degree d with probability proportional to da þ 1. Finally, I is
the number of infected individuals at the time when sampling
occurs. The a parameter is unitless, while m has units of edges
or connections per vertex, and N and I both have units of nodes
or individuals.

Before proceeding with a full validation of netabc on simu-
lated data, we undertook an experiment designed to assess
whether different values of these parameters could be distin-
guished from tree shapes; in other words, the parameters’ iden-
tifiability. One parameter of the BA model was investigated at a
time while holding all others fixed, a strategy commonly used
when performing sensitivity analyses of mathematical models.
This allowed us to perform a fast preliminary analysis without
dealing with the ‘curse of dimensionality’ of the full parameter
space. We simulated trees under three different values of each
parameter, and asked how well we could tell the different trees
apart. The better we are able to distinguish the trees, the more
identifiability we might expect for the corresponding parameter
when we attempt to estimate it with ABC.

This experiment also had the secondary purpose of validat-
ing our choice of the tree kernel as a distance measure in ABC.
To tell the trees apart, we used a classifier based on the tree ker-
nel, but we also tested two other tree shape statistics. Sackin’s
index (Shao 1990) is a measure of tree imbalance which not take
branch lengths into account, considering only the topology. The
normalized lineages-through-time [nLTT, Janzen, Höhna, and
Etienne (2015)] compares two trees based on normalized distri-
butions of their branching times, and does not explicitly con-
sider the topology. Since the tree kernel incorporates both of
these sources of information, we expected it to outperform the
other two statistics. Finally, the tree kernel can be tuned by ad-
justing the values of the meta-parameters k and r (the ‘decay
factor’ and ‘radial basis function variance’, see Poon et al. Poon
et al. 2013). k is used to penalize large subset trees which tend to
dominate the kernel score. When k ¼ 0, all but the root
branches of each subset tree are ignored, while when k ¼ 1, no
penalty is applied. r controls how strictly the notion of
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similarity is applied to branch lengths. When r ¼ 0, branch
lengths must match exactly, while as r!1, branch lengths
are not considered at all.

We simulated 100 networks under each of three different
values of a: 0.5, 1.0, and 1.5 (300 networks total). The other par-
ameters were fixed to the following values: N ¼ 5000, I ¼ 1000,
and m ¼ 2. A transmission tree with 500 tips was simulated over
each network (300 transmission trees total). The 300 trees were
compared pairwise with the tree kernel to form a 300 � 300 ker-
nel matrix. The kernel meta-parameters k and r were set to 0.3
and 4 respectively. We also computed a 300 � 300 matrix of
pairwise nLTT values, and a 1 � 300 vector of Sackin’s index
values. We constructed three classifiers for a: a kernel support
vector regression (kSVM) from the kernel matrix with the ker-
nlab package (Zeileis et al. 2004) and two ordinary SVMs from
the nLTT matrix and Sackinry index vector with the e1071 pack-
age (Meyer 2015). The accuracy of each classifier was evaluated
with 1,000 2-fold cross validations with equally sized folds.

Three similar experiments were performed for the other BA
model parameters (one experiment per parameter). m was var-
ied between 2, 3, and 4; I between 500, 1,000, and 2,000; and N
between 3,000, 5,000, and 8,000. The parameters not being
tested were fixed at the values N ¼ 5000, I ¼ 1000, m ¼ 2, and a ¼
1. Thus, we performed a total of four cross-validations for each
classifier, one for each of the BA model parameters a, I, m, and
N. We repeated these four cross-validations with different val-
ues of k (0.2, 0.3, and 0.4) and r (2�3; 2�2, . . . , 23), as well as on
trees with differing numbers of tips (100, 500, and 1,000). For the
structural parameters a, m, and N, the experiments were re-
peated with three different fixed values of I (500, 1,000, and
2,000). The combination of the number of sampled individuals
(i.e. the number of tips) and the epidemic size (i.e. I) will be
referred to as an “epidemic scenario”. When evaluating the clas-
sifier for I, we did not consider trees with 1,000 tips, because one
of the tested I values was 500, and the number of tips cannot be
larger than I.

ABC Simulations

We tested netabc by jointly estimating the four parameters of
the BA model. We used the standard validation approach of
simulating transmission trees under the model with known
parameter values and attempting to recover those values with
netabc. The algorithm was not informed of any of the true par-
ameter values for the main set of simulations. We simulated
three transmission trees, each with 500 tips, under every

element of the Cartesian product of these parameter values:
N¼ 5,000, I¼ {1,000, 2,000}, m¼ {2, 3, 4}, and a¼ {0.0, 0.5, 1, 1.5}.
This produced a total of 24 parameter combinationsombihree
trees per combination¼ 72 trees total. The adaptive ABC algo-
rithm was applied to each tree with these priors: m �
DiscreteUniform(1, 5), a � Uniform(0, 2), and (N, I) jointly uni-
form on the region {500 � N � 15; 000; 500 � I � 5; 000; I � N}.
Proposals for a, N, and I were Gaussian, while proposals for m
were Poisson. Following Del Moral, Doucet, and Jasra (Del Moral,
Doucet, and Jasra 2012) and Beaumont et al. (2009), the variance
of all proposals was equal to the empirical variance of the
particles.

The SMC settings used were 1000 particles, 5 simulated data-
sets per particle, and aESS ¼ 0:95. We used the same stopping
criterion as Del Moral, Doucet, and Jasra (2012), namely when
the MCMC acceptance rate dropped below 1.5%. Approximate
posterior means for the parameters were obtained by taking the
weighted average of the final set of particles. Highest posterior
density (HPD) intervals were calculated with the HPDinterval
function from the R package coda (Plummer et al. 2006).

To evaluate the effects of the true parameter values on the
accuracy of the posterior mean estimates, we analyzed the a

and I parameters individually using generalized linear models
(GLMs) The response variable was the error of the point esti-
mate, and the predictor variables were the true values of a, I,
and m. We did not test for differences across true values of N,
because N was not varied in these simulations. The distribution
family and link function for the GLMs were Gaussian and in-
verse, respectively, chosen by examination of residual plots and
Akaike information criteria (AIC). The P-values of the estimated
GLM coefficients were corrected using Holm-Bonferroni correc-
tion (Sture, 1979) with n ¼ 6 (two GLMs with three predictors
each). Because there was clearly little to no identifiability of N
and m with ABC (see results in next section), we did not con-
struct GLMs for those parameters.

Two further simulations were performed to address the pos-
sible impact of two types of model misspecification. To evaluate
the effect of model misspecification in the case of heterogeneity
among nodes, we generated a network where half the nodes
were attached with power a¼ 0.5, and the other half with power
a¼ 1.5. The other parameters for this network were N¼ 5,000,
I¼ 1000, and m¼ 2. To investigate the effects of potential sam-
pling bias, we simulated a transmission tree where the tips
were sampled in a peer-driven fashion, rather than at random.
That is, the probability to sample a node was twice as high if
any of that nodeee network peers had already been sampled.

Figure 1. Cross-validation accuracy of kernel-SVM classifier (left), SVM classifiers using nLTT (centre) and Sackin’s) index (right) for BA model parameters. Kernel meta-

parameters were set to k ¼ 0:3 and r¼4. Each point was calculated based on 300 simulated transmission trees over networks with three different values of the param-

eter being tested, assuming perfect knowledge of the other parameters. Vertical lines are empirical 95% CIs based on 1,000 2-fold cross-validations. The classifiers for I

were not evaluated with 1,000-tip trees, because one of the tested I values was 500, and it is not possible to sample a tree of size 1,000 from 500 infected individuals.
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The parameters of this network were N¼ 5,000, I¼ 2,000, m¼ 2,
and a ¼ 0:5.

Despite the fact that the parameter values used to generate
the simulated transmission trees were known, the true poster-
ior distributions of the BA parameters were unknown.
Therefore, any apparent errors or biases in the estimates could
be due to either poor performance of our method, or to real fea-
tures of the posterior distribution. Two retrospective experi-
ments were performed to disambiguate some of the observed
errors. To assess the impact of the SMC settings on netabc’s ac-
curacy, we ran netabc twice on the same simulated transmission
tree. For the first run, the SMC settings were the same as in the
other simulations: 1,000 particles, 5 simulated transmission
trees per particle, and aESS ¼ 0:95. The second run was per-
formed with 2,000 particles, 10 simulated transmission trees per
particle, and aESS ¼ 0:97. To investigate the extent to which
errors in the estimated BA parameters were due to true features
of the posterior, rather than an inaccurate ABC approximation,
we performed marginal estimation for one set of parameter val-
ues. Each combination of 1, 2, or 3 model parameters (14 com-
binations total) was fixed to their known values, and the
remaining parameters were estimated with netabc. The param-
eter values were a ¼ 0:0, m¼ 2, I¼ 2,000, and N¼ 5,000.

Investigation of Published Data

We applied our ABC method to ten published HIV datasets.
Because the BA model generates networks with a single con-
nected component, we specifically searched for datasets which
originated from existing clusters, either phylogenetically or geo-
graphically defined. Characteristics of the datasets we investi-
gated are given in Table 1. For clarity, we will refer to each
dataset by its risk group and location of origin in the text. For
example, the Zetterberg et al. (2004) data will be referred to as
IDU/Estonia.

We downloaded all sequences associated with each pub-
lished study from GenBank. For the IDU/Romania data, only se-
quences from injection drug users (IDU, whose sequence
identifiers included the letters “DU”) were included in the ana-
lysis. Kao et al. (2011) (MSM/Taiwan) found a strong association
in their study population between subtype and risk group - sub-
type B was most often associated with men who have MSM,
whereas IDU were usually infected with a circulating recombin-
ant form. Since there were many more subtype B sequences in
their data than sequences of other subtypes, we restricted our

analysis to the subtype B sequences and labelled this dataset as
MSM. Two datasets (HET/Uganda and HET/Malawi) included
both env and gag sequences. Each gene was analyzed separately
to assess the robustness of netabc to the particular HIV gene se-
quence used to estimate a transmission tree. The IDU/Estonia
data also sequenced both genes, but the highly variable cover-
age and high homology of the gag sequences made it impossible
to obtain a sufficiently large block of non-identical sequences to
analyze. Therefore, we analyzed only env for this dataset.

Each env sequence was aligned pairwise to the HXB2 refer-
ence sequence (GenBank accession number K03455), and the
hypervariable regions were clipped out with BioPython version
1.66þ (Cock et al. 2009). Sequences were multiply aligned using
MUSCLE version 3.8.31 (Edgar 2004), and alignments were manu-
ally inspected with Seaview version 4.4.2 (Gouy, Guindon, and
Gascuel 2010). Duplicated sequences were removed with
BioPython; the number of these duplicates was between 0 and 7
for all but the IDU/Estonia data, from which 21 sequences were
removed. Phylogenies were constructed from the nucleotide
alignments by approximate maximum likelihood using
FastTree2 version 2.1.7 (Price, Dehal, and Arkin 2010) with the
generalized time-reversible (GTR) model (Tavaré 1986).
Transmission trees were estimated by rooting and time-scaling
the phylogenies by root-to-tip regression, using a modified ver-
sion of Path-O-Gen (distributed as part of BEAST (Drummond and
Rambaut 2007)) as described previously in Poon (2015). All esti-
mated transmission trees were fully binary.

To check if our results were robust to the choice of phylogen-
etic reconstruction method, we built and reanalyzed phyloge-
nies for the datasets with the lowest and highest estimated a

values (mixed/Spain and IDU/Estonia) with RAxML (Stamatakis
2014) with the GTRþC model of sequence evolution and rate
heterogeneity. The trees were rooted and time-scaled with Least
Squares Dating (LSD) (To et al. 2016). For expediency, the analysis
was run with the prior m � DiscreteUniformð2; 5Þ, which defines
a smaller total search space than the prior allowing m¼ 1. For
both of these datasets, we also analyzed five bootstrap replicate
alignments generated by resampling alignment columns with
replacement. For the dataset with the largest number of dupli-
cated sequences (IDU/Estonia; 21 sequences), we repeated the
analysis without removing the duplicates.

Four of the datasets (MSM/Shanghai, HET/Botswana, HET/
Uganda, and MSM/USA) were initially much larger than the
others, containing 1,265, 1,299, 1,026/915 (env/gag), and 648 se-
quences respectively. To ensure that the analyses were

Table 1. Characteristics of published datasets investigated with ABC

Reference Sequences (n) Location Risk group Gene

Zetterberg et al. (2004) 171 Estonia IDU env
Niculescu et al. (2015) 136 Romania IDU pol
Novitsky et al. (2013) 180 Mochudi, Botswana HET env
Novitsky et al. (2014)
McCormack et al. (2002) 141/154 Karonga District, Malawi HET env/gag
Grabowski et al. (2014) 225 Rakai District, Uganda HET env/gag
Wang et al. (2015) 173 Beijing, China MSM pol
Kao et al. (2011) 275 Taiwan MSM pol
Little et al. (2014) 180 San Fransisco, USA MSM pol
Li et al. (2015) 280 Shanghai, China MSM pol
Cuevas et al. (2009) 287 Basque Country, Spain mixed pol

Acronyms: MSM, men who have MSM; IDU, injection drug users; HET, heterosexual. The HET data were sampled from a primarily heterosexual risk environment, but

did not explicitly exclude other risk factors. The sequences column indicates how many sequences were included in our analysis; there may have been additional se-

quences linked to the study which we excluded for various reasons (see ‘Methods’ section).
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comparable, we reduced these to a number of sequences similar
to the smaller datasets. For the MSM/Shanghai data, we de-
tected a cluster of size 280 using a patristic distance cutoff of
0.02 as described previously in Stamatakis (2014). Only se-
quences within this cluster were carried forward. For the HET/
Uganda, HET/Botswana, and MSM/USA data, no large clusters
were detected using the same cutoff, so we analyzed subsets of
sizes 255, 180, and 180, respectively. The subset of the HET/
Uganda data was chosen by eye such that the individuals were
monophyletic in both the gag and env trees. The other subsets
were arbitrarily chosen subtrees from phylogenies of the com-
plete datasets.

For all datasets, we used the priors a � Uniform(0, 2) and N
and I jointly uniform on the region {n � N � 10; 000; n �
I � 10; 000; I � N}, where n is the number of tips in the tree.
Since the value m¼ 1 produces networks with no cycles, which
we considered fairly implausible, we ran one analysis with the
prior m � DiscreteUniform(1, 5), and one with the prior m �
DiscreteUniform(2, 5). The other parameters to the SMC algo-
rithm were the same as used for the simulation experiments,
except that we used 10,000 particles instead of 1,000 to increase
the accuracy of the estimated posterior for all analyses except
the bootstrap replicates. This was computationally feasible due
to the small number of runs required for this analysis.

Results
Classifiers for BA Model Parameters from Tree Shapes

We investigated the identifiability of four parameters of the BA
network model (Barab�asi and Albert 1999): the number of nodes
N, the PA power a, the number of edges added per vertex m, and
the number of infected nodes I. To examine the effect of these
parameters on tree shape, we simulated transmission trees
under different parameter values, calculated pairwise tree ker-
nel scores between them, and attempted to classify the trees
using a kSVM. We also tested classifiers based on Sackin’s index
(Shao 1990) and the nLTT statistic (Janzen, Höhna, and Etienne
2015). We report the accuracy of the classifiers, which is simply
the proportion of trees which were assigned the correct param-
eter value. Since there were three possible values, random
guessing would produce an accuracy of 0.33. The results are
shown in fig. 1. Classifiers based on the nLTT and Sackin’s index
generally exhibited worse performance than the tree kernel, al-
though the magnitude of the disparity varied between the par-
ameters (Fig. 1, centre and right). Larger datasets were generally
classified more accurately (Supplementary Figs. S4–S7), al-
though large values of k produced worse estimates on large
datasets. Extremely low r values, which require nearly-exact
matches between branch lengths, resulted in low accuracy in
some cases (e.g. Supplementary Fig. S4, center row).

The kSVM classifier for a had an average accuracy of 0.92,
compared with 0.6 for the nLTT, and 0.77 for Sackin’s index. No
classifier could accurately identify m in any epidemic scenario,
with average accuracy values of 0.35 for kSVM, 0.32 for the
nLTT, and 0.38 for Sackin’s index. There was little variation in
accuracy between epidemic scenarios, although the accuracy of
the kSVM was slightly higher on 1,000-tip trees (Fig. 1, left).

The accuracy of classifiers for I varied significantly with the
number of tips in the tree. For 100-tip trees, the average accur-
acy was 0.59, 0.58, and 0.34 for the tree kernel, nLTT, and
Sackin’s index, respectively. For 500-tip trees, the values
increased to 0.99, 0.76, and 0.37. Finally, the performance of
classifiers for N depended heavily on the epidemic scenario.

The accuracy of the kSVM classifier ranged from 0.36 for the
smallest epidemic and smallest sample size, to 0.81 for the larg-
est. Accuracy for the nLTT ranged from 0.33 to 0.63. Sackin’s
index did not accurately classify N in any scenario, with an
average accuracy of 0.35 and little variation between scenarios.

ABC Simulations

Figure 2 shows stratified posterior mean point estimates of the
BA model parameters a and I, obtained with ABC on simulated
data. The parameters m and N were not identifiable with ABC
for any parameter combinations (Supplementary Fig. S8).
Average boundaries of 95% HPD intervals for all parameters are
given in Table 2.

Across all simulations, the median [IQR] absolute errors of
the parameter estimates obtained with netabc were 0.11 [0.03–
0.25] for a, 492 [294–782] for I, 1 [0–1] for m, and 4,153 [3,660–
4,489] for N. These errors comprised, respectively, 6%, 11%, 17%,
and 29% of the regions of nonzero prior density. For I and N,
relative errors were 38% [20–50%] and 83% [73–90%]. Average
95% HPD interval widths were 0.68, 2,454, 3.01, and 12,046, rep-
resenting 34, 55, 50, and 83% of the nonzero prior density re-
gions. Point estimates of I were upwardly biased: I was
overestimated in 69 out of 72 simulations (96%). The estimates
for m and N were similar across all simulations (median [IQR]
point estimates 3 [3–3] and 9,153 [8,660–9,489]) regardless of the
true values of any of the BA parameters (Supplementary Fig.
S8).

To analyze the effects of the true parameter values on the
accuracy our estimates of a and I, we fitted one GLM for each of
these two parameters, with error rate as the dependent variable
and the true parameter values as independent variables. Since
the estimates of m and N were roughly equal across all simula-
tions (Supplementary Fig. S8), GLMs were not fitted for these
parameters. The estimated coefficients are shown in Table 3.
The GLM analysis indicated that the error in estimates of a

decreased with larger true values of a (P < 10�5) and m (P ¼ 0.01)
but was not significantly affected by I. Qualitatively, a seemed
to be only weakly identifiable between the values of 0 and 0.5
(Fig. 2). The error in the estimated I value was slightly lower for
smaller values of a (P < 10�5) and I (P ¼ 0.05), but was not sig-
nificantly affected by the true value of m.

The dispersion of the ABC approximation to the posterior
also varied between the parameters (Table 2). HPD intervals
around a and I were often narrow relative to the region of non-
zero prior density, whereas the intervals for m and N were more
widely dispersed. Figures 3 and 4 show one- and two-
dimensional marginal distributions for a simulation with a and I
errors close to their respective medians. The parameters for this
simulation were a ¼ 1, I ¼ 1,000, m ¼ 3, and N ¼ 5,000. The 2D
marginals indicate some dependence between pairs of param-
eters, particularly I and N which show a diagonally shaped re-
gion of high posterior density.

To test the effect of model misspecification, we simulated
one network where the nodes exhibited heterogeneous PA
power (half 0.5, the other half 1.5), with m ¼ 2, N ¼ 5,000, and I ¼
1,000. The posterior mean [95% HPD] estimates for each param-
eter were: a, 1.03 [0.67–1.18]; I, 1,474 [511–2,990]; m, 3 [1–5]; N,
9,861 [3,710–14,977]. To test the effect of sampling bias, we
sampled one transmission tree in a peer-driven fashion, where
the probability to sample a node was twice as high if one of its
peers had already been sampled. The parameters for this ex-
periment were N ¼ 5,000, m ¼ 2, a ¼ 0.5, and I ¼ 2,000. The esti-
mated values were a, 0.3 [0–0.63]; I, 2,449 [1,417–3,811]; m, 3 [2–5];
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N, 9,132 [2,852–14,780]. Both of these results were in line with es-
timates obtained on other simulated datasets (Table 2), al-
though the estimate of a for peer-driven sampling was
somewhat lower than typical.

Figure S9 shows the effect of performing marginal ABC esti-
mation of each of the BA parameters on the same simulated
transmission tree. The estimates of m were apparently un-
affected by marginalizing out the other parameters, corroborat-
ing the previous experiments’ findings that m is not an
identifiable parameter from scaled tree shapes. Compared to

allowing all parameters to vary, estimates of a, I, and N were im-
proved by 41, 59, and 46% when all other parameters were fixed.
Figure S10 shows the impact of increasing the number of par-
ticles, simulated datasets, and aESS parameter on the accuracy
of a single simulation. The number of iterations until the stop-
ping condition was reached was 81 with the basic settings and
124 with the higher settings. The results of the two simulations
were similar, but surprisingly, the results with higher SMC set-
tings were slightly worse (by 10, 8, and 11% for a, I, and N, re-
spectively). However, the 50% HPD interval for I was closer to
the true value of 2,000 with the improved settings (2,338–3,423,
vs. 2,810–3,767 with basic settings). The estimate of m, 3 in both
cases, was unaffected by the settings.

Figure 2. Posterior mean point estimates for BA model parameters a and I obtained by running netabc on simulated data, stratified by true parameter values. First row

of plots contains true vs. estimated values of a; second row contains true vs. estimated values of I. Columns are stratified by a, I, and m, respectively. Dashed lines indi-

cate true values.

Table 2. Average posterior mean point estimates and 95% HPD inter-
val widths for BA model parameter estimates obtained with netabc
on simulated data

Parameter True
value

Mean
point
estimate

Mean HPD
lower bound

Mean HPD
upper bound

a 0.0 0.36 0.01 0.81
0.5 0.43 0.04 0.83
1.0 0.90 0.51 1.09
1.5 1.52 1.26 1.81

I 1000 1450 651 2,592
2000 2622 1114 4,080

m 2 2.96 2.00 5.00
3 3.04 2.04 4.96
4 3.17 1.88 5.00

N 5,000 9,041 2,613 14,659

Three transmission trees were simulated under each combination of the listed

parameter values, and the parameters were estimated with ABC without

training.

Table 3. Parameters of fitted GLMs relating error in estimated a and I
to true values of BA parameters

Dependent
variable

Independent
variable

Estimate Standard
error

P-value

a error (Intercept) 2 0.6 0.01
true a 10 2 < 10�5

true I �3� 10�4 2� 10�4 0.7
true m 0.5 0.2 0.01

I error (Intercept) 0.004 5� 10�4 < 10�5

true a –0.001 2� 10�4 < 10�5

true I �4� 10�7 2� 10�7 0.05
true m �7� 10�5 8� 10�5 1

GLMs ere fitted with the Gaussian distribution and inverse link function.

Coefficients are interpretable as additive effects on the inverse of the mean

error.
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Figure 3. One-dimensional marginal posterior distributions of BA model parameters estimated by netabc from a simulated transmission tree. Dashed lines indicate

true values, solid lines indicate posterior means, and shaded areas show 95% HPD intervals.

Figure 4. Two-dimensional marginal posterior distributions of BA model parameters estimated by netabc from a simulated transmission tree. White circles indicate

true values, magenta diamonds indicate posterior means. Marginals in m (bottom row) have non-zero density only at integral values of m; the appearance of density at

non-integral values for is visualization only.
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Published HIV Data

We applied ABC to five published HIV datasets (Table 1), and
found substantial heterogeneity among the parameter esti-
mates (Fig. 5 and Supplementary Fig. S11). Posterior mean point
estimates and 50% and 95% HPD intervals for each parameter
are shown in Figure 5. Supplementary Figure S11 shows point
estimates and HPD intervals obtained when the value m ¼ 1
was disallowed by the prior. Since the results indicated that m ¼
1 was the most credible value for several datasets, all results
discussed henceforth apply to the prior m � DiscreteUniform
ð1; 5Þ unless otherwise stated.

Posterior mean point estimates for the PA power a were all
sub-linear, ranging from 0.27 (mixed/Spain) to 0.83 (IDU/
Estonia). When aggregated by risk group, the average estimates
were 0.78 for IDU, 0.41 for primarily heterosexual risk, and 0.37
for MSM. 95% HPD intervals were very wide for most datasets,
often encompassing nearly the interval from 0 to 1 (Fig. 5). As
shown in Supplementary Figure S12, the estimates of a were
quite robust to the gene analyzed.

For all but the HET/Botswana data, the posterior mean esti-
mates for I were between 373 (IDU/Estonia) and 1391 (MSM/
Shanghai). The HET/Botswana data had a much higher esti-
mated I value (5,432) than the other datasets, with a very wide
95% HPD interval covering almost the entire prior region (Fig. 5).
There was no significant correlation between the number of se-
quences in the tree and the estimated I value (Spearman correl-
ation, P ¼ 0.9), indicating that the higher estimates were not
simply due to increased sampling density. When both gag and
env sequences were analyzed, the estimates from the env data
were higher (HET/Uganda, 939 for gag vs. 1615 for env; HET/
Malawi, 724 for gag vs. 845 for env).

The posterior means of m were equal to one for eight of the
datasets analyzed. The widths of the 95% HPD intervals varied
from 0 (all the mass on the estimated value) to 5 (the entire prior
region). Estimates of N were mostly uninformative, with very
similar estimates for all datasets (mean 6,202, range 5,881–
6,882). This was similar to the pattern observed for the synthetic
data, where the posterior mean always fell around the upper
two-thirds mark of the range (fig. S8).

When the value m¼ 1 was disallowed by the prior, the separ-
ation in a between the IDU datasets and the others became
more striking (Supplementary Fig. S11). Both IDU datasets had
estimated a values at or above 1. The estimate for the MSM/
Beijing data was slightly lower (0.85) and the estimates for the
seven remaining non-IDU datasets were bounded above by 0.58.
The values of I were fairly robust to the choice of prior (compare
Fig. 5 and Supplementary Fig. S11), although the 95% HPD inter-
vals were slightly narrower (average width 2,159 for m � 1 and
1,874 for m � 2). The posterior means of m for all but the HET/
Botswana data took on the value 3 with this prior, with the HPD
intervals spanning the entire prior region. This is very similar to
the results observed for m on simulated data (Table 2), and sug-
gests that m is not identifiable from these data with this prior.
The results for N did not change appreciably between the two
choices of prior.

For the two datasets we reanalyzed using RAxML
(Stamatakis 2014) and LSD (To et al. 2016), a was relatively ro-
bust to the choice of method (fig. S13, posterior means 0.48 vs.
0.48 for mixed/Spain and 1.02 vs. 1.12 for IDU/Estonia). However,
the estimates of I were about twice as high when RAxML was
used instead of FastTree to reconstruct the trees (228 vs. 437 for
IDU/Estonia, 816 vs. 1,949 for mixed/Spain). Supplementary
Figure S14 shows estimates obtained for five bootstrap replicate

alignments for each of these two datasets. For the mixed/Spain
data, the estimated posterior mean [range of bootstrap posterior
means] was 0.48 [0.54–0.67] for a, 816 [403 - 886] for I, 2.76 [2.61–
3.24] for m, and 6,639 [6,652–7245] for N. For the IDU/Estonia
data, values were 1.02 [0.78–1.07] for a, 228 [313–741] for I, 3.11 [3.
41–3.46] for m, and 6,803 [5,941–6,913] for N. When duplicated se-
quences were included in the analysis of the IDU/Estonia data,
the posterior means were a ¼ 0:88 (vs. 0.83 with duplicates
excluded), I¼ 707 (vs. 373), m¼ 1.53 (vs. 1.72), and N¼ 6,517 (vs.
6,486).

Discussion

Contact networks can have a strong influence on epidemic pro-
gression, and are potentially useful as a public health tool (Little
et al. 2014; Wang et al. 2015). Despite this, few methods exist for
investigating contact network parameters in a phylodynamic
framework [although see Leventhal et al. 2012, Groendyke et al.
2011, Volz 2009, and Leigh Brown et al. 2011 for related work].
ABC is a model-agnostic method which can be used to investi-
gate any quantity that affects tree shape (Poon 2015). In this
work, we developed a ABC-based method to infer the param-
eters of a contact network model. The method is general, and
could be applied to any model from which contact networks can
be simulated. We demonstrated the method on the BA model,
which is a simple model incorporating a ‘rich get richer’, or PA,
partner formation mechanism. For some parameter choices, the
BA model gives rise to the power law degree distributions com-
monly observed in real-world networks.

Analysis of BA Model with Synthetic Data

The a parameter of the BA model, known as the PA power, con-
trols how strongly new nodes are attracted to existing nodes of
higher degree. This parameter had a strong influence on tree
shape in the range of values we considered. Although the tree
kernel was the most effective classifier for a, Sackin’s index, a
measure of tree imbalance, performed nearly as well (Fig. 1).
High a values produce networks with few well-connected
“superspreader” nodes which are involved in a large number of
transmissions, resulting in a highly unbalanced ladder-like tree
structure. There appeared to be weaker identifiability for a < 1
than for a � 1 (Fig. 2 and Table 2), meaning that values below 1
were less distinguishable from each other based on tree shape
alone. This observation may be partially explained by the rela-
tionship between a and the exponent c of a power law fitted to
the networkts degree distribution (Supplementary Fig. S15).
Although the degree distributions do not truly follow a power
law for a 6¼ 1, the fitted exponent still captures the shape of the
degree distribution reasonably well (Supplementary Fig. S1).
The c values fitted to a¼ 0 and a ¼ 0:5 are nearly identical (about
2.28 for a¼ 0 and 2.33 for a ¼ 0:5 with N¼ 5000 and m ¼ 2). In
other words, the degree distributions of networks with a < 1
are similar to each other, which may result in similarity of cor-
responding transmission trees as well.

I, representing the number of infected individuals at the
time of sampling, was also identifiable, albeit over-estimated
with ABC for both values we considered. Sackin’s index was bet-
ter able to discern I from tree shape than the nLTT (Fig. 1 and
Supplementary Fig. S6), suggesting that this parameter impacts
the distribution of branching times in the tree more than the
topology. In a homogeneously-mixed population, branching
times can be modelled by the coalescent process (Kingman
1982), in our case under the SI model (Volz et al. 2009). Although
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networks are not homogeneously mixed, the forces which affect
the distribution of branching times still apply. In our simula-
tions, all edges shared the same transmission rate, so that the
waiting time until the next transmission in the entire network
was always inversely proportional to the number of edges be-
tween infected and uninfected individuals. In the initial phase
of the epidemic, when I is small, each new transmission results
in many such edges. Hence, there is an early exponential
growth phase, producing many short branches near the root of
the tree. As the epidemic gets closer to saturating the network,
the number of these edges decays, causing longer waiting
times.

The number of nodes in the network, N, exhibited the most
variation in terms of its effect on tree shape. There was almost
no measurable difference between trees simulated under differ-
ent N values when the number of infected nodes I was small
(Supplementary Fig. S7). In retrospect, it is unreasonable to ex-
pect good estimation of N, in many cases, because adding add-
itional nodes does not change the edge density or overall shape
of a BA network. This can be illustrated by imagining that we
add a small number of nodes to a network after the epidemic
simulation has already been completed. If I is small relative to
N, very few of the infected nodes will gain any new neighbours.
Thus, the outcome of a second simulation on the same network
will likely be very similar. On the other hand, when I is large
relative to N, the coalescent dynamics discussed above also

apply. The waiting times until the next infection increase, re-
sulting in longer coalescence times toward the tips. The relative
accuracy of the nLTT in these situations (Fig. 1 and
Supplementary Fig. S7) corroborates this hypothesis, as the
nLTT uses only information about the coalescence times. When
all BA parameters were simultaneously estimated with ABC, N
was nearly always over-estimated by approximately a factor of
two (Supplementary Fig. S8 and Fig. 2). One factor which may
have contributed to this bias was our choice of prior distribu-
tion. Since the prior for I and N was jointly uniform on a region
where I � N, more prior weight was assigned to higher N val-
ues. We note also that this prior places more mass on low
I values. However, the estimate of I was very high for the
HET/Botswana data, suggesting that a strong enough signal in
the data can overcome the prior. Furthermore, when I was esti-
mated marginally with fixed N, the accuracy of the estimate im-
proved even though there was no longer any extra prior mass
on low I values.

Another possible contributing factor to the overestimation
of I and N relates to the dynamics of the SI model and the co-
alescent process. The number of infected individuals follows a
logistic growth curve under the SI model. This kind of growth
curve has three qualitative phases: exponential growth, linear
growth, and a slow final phase when the susceptible population
is almost depleted. The waiting times until the next transmis-
sion, which determine the coalescence times in the tree, are
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Figure 5. Posterior means (points), 50% HPD intervals (notches), and 95% HPD intervals (lines) for parameters of the BA network model, fitted to ten HIV datasets with

netabc. Legend labels indicate risk group and country of origin. Abbreviations: IDU, injection drug users; MSM, men who have MSM; HET, heterosexual. Note that poster-

ior means can fall outside of the HPD interval if the distribution is diffuse.
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dependent on the growth phase of the epidemic. Therefore, we
hypothesize that it is the growth phase at the time of sampling
which most affects tree shape, rather than the specific values of
I or N (Supplementary Fig. S17). As shown in Supplementary
Figure S16, there are contiguous values of I and N for which
both derivatives are similar If N and I are free to vary (as is the
case in ABC), both parameters may be overestimated. We also
note the resemblance of the contour surface of Supplementary
Figure S16 to the 2D marginal posterior distribution on I and N

obtained with simulated data (Fig. 4).
The m parameter, which controls the number of connections

added to the network per vertex, did not have a measurable im-
pact on tree shape and was not identifiable with ABC. It was
pointed out to us by an anonymous reviewer that for a fixed I,
an infected node may only end up transmitting along a fraction
of its outgoing edges, which could mask the presence of the
extra edges associated with higher m. If m were parameterized
by a continuous variable, it is possible that we would observe
stronger identifiability for lower values (say between 0 and 2),
where extra edges are more likely to be involved in the epidemic
and have an impact on the transmission tree. One way to
achieve this would be to draw m separately for each node from
a specified distribution.

As noted by Lintusaari et al. (2016), uniform priors on model
parameters may translate to highly informative priors on quan-
tities of interest. We observed a non-linear relationship be-
tween the PA power a and the power law exponent c

(Supplementary Fig. S15). Therefore, placing a uniform prior on
a between 0 and 2 is equivalent to placing an informative prior
that c is close to 2. Therefore, if we were primarily interested in
c rather than a, a more sensible choice of prior might have a
shape informed by Supplementary Figure S15 and be bounded
above by �a ¼ 1.5. This would uniformly bound c in the region 2
� c � 4 commonly reported in the network literature (Colgate
et al. 1989; Liljeros et al. 2001; Schneeberger et al. 2004; Leigh
Brown et al. 2011). We note however that Jones and Handcock
(Jones and Handcock 2003) estimated c values greater than four
for some datasets, in one case as high as 17, indicating that a
wider range of permitted c values may be warranted.

Analysis of Real World HIV Datasets

Our investigation of published HIV datasets indicated hetero-
geneity in the contact network structures underlying several
distinct local epidemics. When interpreting these results, we
caution that the BA model is quite simple and most likely mis-
specified for these data. In particular, the average degree of a
node in the network is equal to 2m, and therefore is constrained
to be a multiple of 2. Furthermore, we considered the case m ¼
1, where the network has no cycles, to be implausible and there-
fore assigned it zero prior probability in one set of analyses.
This forced the average degree to be at least four, which may be
unrealistically high for sexual networks. The fact that the esti-
mated values of a differed substantially for several datasets de-
pending on whether or not m¼ 1 was allowed by the prior is
further evidence of this potential misspecification. However, we
note that the ordering of the datasets with respect to a was
similar between the two priors, and the estimates of I were ro-
bust to the choice of prior for all datasets studied (compare
Fig. 5 and Supplementary Fig. S11). More sophisticated models,
for example models incorporating heterogeneity in node behav-
iour, are likely to provide a better fit to these data.

PA Power Is Sub-Linear and Higher for IDU Networks

For all datasets we examined, the posterior mean estimates for
a were sub-linear, ranging from 0.27 to 0.83. The sub-linearity is
consistent with the results of de Blasio, Svensson, and Liljeros
(2007), who developed a statistical inference method to estimate
the parameters of a more sophisticated PA model incorporating
heterogeneous node behaviour. When used to analyze
population-level longitudinal partner count data, they found a

values ranging from 0.26 to 0.62 depending on the gender and
time period considered. Based on these findings, de Blasio,
Svensson, and Liljeros (2007) asserted that PA may not fully ex-
plain the scale-free networks observed in real life. Other mech-
anisms, such as homophily, may play a role in generating these
networks. Further epidemiological investigation is needed in
order to to gain a more thorough understanding of the behav-
iours that shape contact networks in human populations.

Both de Blasio, Svensson, and Liljeros (2007) and the HET/
Botswana data studied populations whose primary risk factor
for HIV infection was heterosexual contact. de Blasio, Svensson,
and Liljeros (2007) explicitly excluded reported homosexual
contacts; Novitsky et al. (2014) did not, but noted that heterosex-
ual contact is the primary mode of transmission in Botswana
where the study was done. In the first of the two papers describ-
ing the Botswana study (Novitsky et al. 2013), the authors noted
that their sample was gender-biased, being composed of �75%
women. Our estimate of a for these data was 0.55 or 0.53, de-
pending on the prior on m. Similarly, de Blasio, Svensson, and
Liljeros (2007) estimated 0.54, 0.57, and 0.29 for 3-, 5-year, and
lifetime partnership networks respectively for the female por-
tion of their sample.

The datasets derived from IDU populations had a higher
estimated PA power than the other datasets (Fig. 5 and
Supplementary Fig. S11). This finding is in line with
Dombrowski et al. (2013), who reanalyzed a network of IDUs in
Brooklyn, USA, collected between 1991 and 1993 (Friedman.
et al. 2006). They found that the IDU network resembled a BA
network much more closely than other social and sexual net-
works, and offered sociological explanations for the apparent
PA dynamics in this population. Importantly, from a public
health perspective, the authors asserted that the removal of ran-
dom individuals from IDU networks may have the paradoxical
effect of increasing the networkin epidemic susceptibility.
When low-degree nodes are removed, as would occur during a
police crackdown, their network neighbours may turn to well-
known community members for advice or supplies, thus
increasing the connectivity of these high-degree nodes.

Unfortunately, the sub-linear region for a identified by both
de Blasio, Svensson, and Liljeros (2007) and netabc is also the re-
gion of poorest identifiability (Fig. 2). This was reflected in the
high level of uncertainty in the estimates, with most 95% HPD
intervals covering the majority of the range [0, 1]. The value a

¼ 0:5 was contained in the 95% HPD interval for every dataset;
consequently, it is not possible to say with high confidence that
any of the a values are different from each other. In synthetic
data, the confidence intervals around a narrowed when other
parameters were marginalized out (Supplementary Fig. S9).
Thus, it is possible that estimates of a could be made more pre-
cise by specifying either exact values or informative priors on
the other BA parameters when these are known.

Other BA Parameters

The true HIV prevalence in a population can be difficult to esti-
mate for several reasons. HIV-infected individuals may be
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asymptomatic for months or years, possibly delaying their
awareness of their status. In many contexts, the risk factors for
acquisition of HIV are illegal or stigmatized, which may repre-
sent a barrier to testing, treatment, and/or disclosure of status.
Our simulation study showed that I is weakly identifiable from
tree shapes, however, the estimates of I obtained with netabc
were upwardly biased (Fig. 2). In addition, our initial exploratory
analysis showed that the identifiability of I decreases with the
number of sampled tips (Supplementary Fig. S6); in real world
studies, the proportion of infected individuals sampled is usu-
ally low. The estimated I values for the HIV datasets ranged
from 373 (IDU/Estonia) to 5,432 (HET/Botswana). For the
IDU/Estonia data, considering duplicated sequences which were
initially removed caused the estimate of I to increase nearly
twofold. If these duplicated sequences truly represent distinct
patients, the estimate of I when they are included is likely more
accurate.

We were not able to discern and trends toward over- or
underestimation of I from available prevalence data. For ex-
ample, the authors of the HET/Botswana data (Novitsky et al.
2013, 2014) estimated that there were 1,731 HIV-positive individ-
uals in the study area. HIV sequences were obtained from �70%
of these individuals. The estimated prevalence we obtained was
much higher (5432), with a 95% HPD interval spanning nearly
the entire prior region. On the other hand, the study which
produced the MSM/USA data (Little et al. 2014) enrolled 648 HIV-
positive MSM; thus, our estimate of I (482) was clearly an under-
estimate. Post-hoc explanations can be imagined for both of
these results. The HET/Botswana data were collected from a
town located proximally to the country’s capital city; the au-
thors suggested that frequent travel between the two locations
may have facilitated linking of their sexual networks. Thus, the
high estimate of I we obtained for these data may include a
larger network component based in the capital city. The MSM/
USA result may indicate that the individuals genotyped for the
study are members of a smaller subnetwork which does not in-
clude the entire local MSM population. Unfortunately, none of
these hypotheses can be easily tested.

Over half of the datasets were estimated to have m¼ 1,
which produces tree-like networks without cycles. Since the
average degree of a BA network is 2m, this value may simply re-
flect the fact that most people have a small number of sexual
partners, especially when only recent partnerships are con-
sidered (Liljeros et al. 2001). In fact, in one survey, the most
common number of partnerships in the past 12 months was
one (Liljeros et al. 2001); the BA model does not allow any nodes
with degree 1 when m � 2. For this reason, the choice of
whether to allow m ¼ 1 in the prior is problematic, as we must
choose between an unrealistic topology (no cycles) and an un-
realistic minimum degree. Extensions to the BA model which
relax this constraint can be imagined and may offer improved
parameter resolution. Estimates of N were not informative for
any of the datasets under either choice of prior, consistent with
our simulation results.

Modelling Assumptions

In addition to the aforementioned possibility of misspecifica-
tion, additional modelling assumptions include the network
being connected and static, all transmission rates being equal,
no removal after infection, identical behaviour of all nodes, and
random sampling. The last two were addressed with small-
scale experiments. We simulated a network where some nodes
exhibited a higher attachment power than others, and found

that the estimated attachment power was simply the average of
the two values. This indicated that, although we could charac-
terize the network in aggregate, the estimated parameters could
not be said to apply to any individual node. The effect of biased
sampling was investigated by analyzing a transmission tree
which had been sampled in a peer-driven fashion. The results
were roughly in line with those for random sampling, however
the estimated value of a was lower than the average for ran-
domly sampled trees. Further experiments would be necessary
to fully explore the impact of these assumptions on the meth-
odti accuracy. However, despite these issues, we felt it was best
to demonstrate the method first on a simple model. It is pos-
sible to use this framework to fit more complex models which
address some of these issues, such as one incorporating hetero-
geneous node behaviour, which may prove a fruitful avenue for

future investigations.
Our method has a number of caveats, perhaps the most sig-

nificant being that it takes a transmission tree as input. In real-
ity, true transmission trees are not available and must be
approximated, often by way of a viral phylogeny. Although this
has been demonstrated to be a fair approximation [e.g. Leitner
et al. 1996], and is frequently used in practice [e.g. Stadler and
Bonhoeffer 2013], the topologies of a viral phylogeny and trans-
mission tree can differ significantly (Ypma, Marijn van
Ballegooijen, and Wallinga 2013) due to within-host evolution
and the sampling process (Giardina 2016). The ABC-SMC algo-
rithm is computationally intensive, taking about a day when
run on 20 cores in parallel with the settings we described in the
methods. Nevertheless, our method is potentially useful to epi-
demiological researchers interested in the general characteris-
tics of the network structure underlying disease outbreaks. This
work, and previous work by our group (Poon 2015), has demon-
strated that ABC is a broadly applicable and effective framework
in which to perform phylodynamic inference.

Supplementary data

Supplementary data are available at Virus Evolution online.
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Côté, Dr Richard Harrigan, and the two anonymous re-
viewers for many helpful suggestions.

Funding

This work was supported by grants from the Canadian
Institutes of Health Research (CIHR, operating grant HOP-
111406), the Bill & Melinda Gates Foundation (award number
OPP1110049), and the Government of Canada through
Genome Canada and the Ontario Genomics Institute (OGI-
131). R.M.M. was supported by a scholarship from the CIHR
Strategic Training Program in Bioinformatics. A.F.Y.P. was
supported by a CIHR New Investigator Award (Canadian HIV
Vaccine Initiative, Vaccine Discovery and Social Research)
and by a Career Investigator Scholar Award from the
Michael Smith Foundation for Health Research, in partner-
ship with the Providence Health Care Research Institute and
St Paul’s Hospital Foundation.

12 | Virus Evolution, 2016, Vol. 2, No. 2

http://ve.oxfordjournals.org/lookup/suppl/doi:10.1093/ve/vew029/-/DC1
Deleted Text: [56, 21]
Deleted Text: approximately 
Deleted Text: [60]
Deleted Text: Barab&aacute;si-Albert
Deleted Text: [23]
Deleted Text: twelve 
Deleted Text: [23]
Deleted Text: a
Deleted Text: -
Deleted Text: [81]
Deleted Text: [82]
Deleted Text: [40]
http://ve.oxfordjournals.org/lookup/suppl/doi:10.1093/ve/vew029/-/DC1


Availability

C source code for netabc is available at github.com/rmcclosk/
netabc. Scripts to run all computational experiments are
available at git.io/vKVsX.

Conflict of interest: None declared.

References
Barab�asi, A. -L., and Albert, R. (1999) ‘Emergence of Scaling in

Random Networks’, Science, 286/5439: 509–12.
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