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Background: The objective of this study was to assess the value of quantitative
radiomics features in discriminating second primary lung cancers (SPLCs) from
pulmonary metastases (PMs).

Methods: This retrospective study enrolled 252 malignant pulmonary nodules with
histopathologically confirmed SPLCs or PMs and randomly assigned them to a training
or validation cohort. Clinical data were collected from the electronic medical records system.
The imaging and radiomics features of each nodule were extracted from CT images.

Results: A rad-score was generated from the training cohort using the least absolute
shrinkage and selection operator regression. A clinical and radiographic model was
constructed using the clinical and imaging features selected by univariate and multivariate
regression. A nomogram composed of clinical-radiographic factors and a rad-score were
developed to validate the discriminative ability. The rad-scores differed significantly
between the SPLC and PM groups. Sixteen radiomics features and four clinical-
radiographic features were selected to build the final model to differentiate between
SPLCs and PMs. The comprehensive clinical radiographic–radiomics model
demonstrated good discriminative capacity with an area under the curve of the receiver
operating characteristic curve of 0.9421 and 0.9041 in the respective training and
validation cohorts. The decision curve analysis demonstrated that the comprehensive
model showed a higher clinical value than the model without the rad-score.

Conclusion: The proposed model based on clinical data, imaging features, and
radiomics features could accurately discriminate SPLCs from PMs. The model thus has
the potential to support clinicians in improving decision-making in a noninvasive manner.

Keywords: second primary lung cancers, pulmonary metastases, clinical-radiographic factor, radiomics,
lung cancer
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INTRODUCTION

Over the last few decades, owing to advancements in cancer
screening and treatment, the life expectancy of cancer survivors
continues to improve. It was estimated that approximately 16.9
million Americans were living with cancer as of January 1, 2019,
and this number is expected to increase to 20 million by January
1, 2030 (1). Cancer survivors have a higher risk of developing
new primary malignant tumors than the general population. The
most common newly developed primary malignant tumor is
lung cancer (2). Lung cancer remains the leading cause of cancer-
related death worldwide (3). Meanwhile, the lungs are the sites
most frequently affected by metastasis. Approximately 30% of
cancer survivors develop lung metastases (4).

The distinction of second primary lung cancers (SPLCs) from
pulmonary metastases (PMs) is of great clinical interest because
of the vastly different survival outcomes between them. On
account of the close clinical monitoring and regular follow-up
of cancer survivors, SPLCs are often diagnosed at an early stage.
Compared with primary lung cancer, SPLCs have a fair
prognosis after surgical resection of the lesion (5). Both
radiotherapy and chemotherapy are regarded as effective
methods of treatment (6, 7). Metastasis is the leading cause of
mortality among tumor patients (8). The occurrence of
metastasis is considered to represent the terminal, incurable
stage of a tumor. Early differential diagnosis between these two
disorders may help clinicians decide whether aggressive
treatment or palliative care is appropriate.

Pathologic assessment remains the gold standard for
distinguishing between SPLCs and PMs. Histologically distinct
primary tumors are presumed to have diverse origins in a single
patient. When tumors are categorized as the same histologic
type, immunohistochemistry and genetic testing can assist in
confirming the diagnosis (9). However, pathological results
cannot be obtained preoperatively. Histopathology specimen
acquisition relies on invasive lung biopsy, which may cause
several complications, such as pneumothorax, pneumorrhachis,
or air embolism. Not all patients are suitable for a needle biopsy
or surgical resection. In addition, pathological specimens are
typically acquired from one or more separate focal areas and
cannot completely characterize the whole tumor.

The value of clinical and imaging characteristics in differential
diagnosis between SPLCs and PMs has been reported in our
previous study (10) and other articles (11–14). However, there is
a lack of radiomics studies concerning the distinctions.
Radiomics is an emerging science that extracts a large number
of imaging features from radiographic images. It converts images
into quantitative parameters and subsequently performs
statistical analysis to support decision-making. Previous studies
have shown that radiomics can play an important role in
diagnosing malignancy, assessing treatment efficacy, and
predicting clinical outcomes (15–17). In particular, radiomics
has been used to discriminate different pathological types of lung
cancer (18, 19). The present study thus aimed to assess whether
radiomics features can discriminate SPLCs from PMs and to
develop a comprehensive model based on clinical imaging and
radiomics to guide clinical decisions.
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MATERIALS AND METHODS

Patients
This retrospective, single-center study was approved by the
Institutional Review Board of Zhongnan Hospital of Wuhan
University and was conducted in accordance with the
Declaration of Helsinki. The requirement for informed consent
was waived owing to the retrospective nature of this study. The
inclusion criteria were as follows: (1) pathological confirmation
of malignant pulmonary lesions based on the histopathological
evaluation of surgical resection and percutaneous biopsy; (2)
thin-section chest CT (section thickness ≤1.5 mm) examination
performed within one week before needle biopsy or surgery, and
(3) history of malignant tumors. The exclusion criteria were as
follows: (1) insufficient image quality for analysis (20), (2) any
anti-tumor treatment received before the CT scan, (3) ground-
glass opacity (GGO) lesions, (4) uncertainty of whether the
lesion was primary or metastatic, and (5) a previous history of
multiple primary tumors in separate organs. All pathologically
confirmed lesions for included patients were examined unless
they had three or more lesions. In this case, the two largest
focuses of tumor were selected. Based on the above criteria, 252
lesions (97 SPLCs and 155 PMs) from 245 patients of the given
institution from January 2017 to June 2020 were included.
Patients included in this study partially were described
previously (10). The lesions were randomly assigned to a
training cohort (n = 137) or validation cohort (n = 115).

The clinicopathological data, including pathologic
assessment, sex, age, history of smoking, family history of
malignancy, the recurrence status of the initial tumor, and
serum tumor markers [neuron-specific enolase (NSE),
carcinoembryonic antigen (CEA), and carbohydrate antigen
125 (CA125)] were obtained by reviewing the electronic
medical record system. The upper limit of each tumor marker
was the following: NSE, 15.2 ng/mL; CEA, 5 ng/mL; and CA125,
35 U/mL. The above tumor markers were considered positive if
their values were higher than the upper limit. Two authors (ZFY
and LZX) independently extracted the data.

CT Scanning
The chest CT images were obtained from the following CT
systems: SOMATOM definition scanner (Siemens Healthineers,
Forchheim, Germany), and GE discovery 750HD scanner (GE
Medical Systems, Milwaukee, WI, USA). The scanning parameters
of the above devices were as follows: tube voltage, 120 kV;
automatic tube current adjustment technology, 100–350 mAs;
matrix size, 512×512; slice interval, 0 mm; standard soft-tissue
algorithm reconstruction; reconstructed section thickness, 1 mm.

Evaluation of Subjective Radiographic
Characteristics
The subjective radiographic characteristics were independently
analyzed by two thoracic radiologists (FZ, with three years of
chest radiological experience, and HZ, with seven years of chest
radiological experience), who were blinded to the final pathological
results. The CT images were reviewed in the lung window setting
(width, 1500 HU; level, −700 HU) and mediastinal window setting
January 2022 | Volume 11 | Article 801213
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(width, 300 HU; level, 40 HU) windows. Discrepancies in the
evaluations were resolved through consultation. The imaging
characteristics of each pulmonary malignant lesion included (1)
lesion size (maximum diameter), (2) distribution of the lesions
(single or multiple), (3) central or peripheral type, (4) density
(homogeneous or heterogeneous), (5) air bronchogram (absent,
present), (6) bubble lucency (absent, present), (7) calcification
(absent, present), (8) vessel convergence sign (absent, present),
(9) margin (clear, unclear), (10) contour (round, irregular), (11)
lobulation (absent, present), (12) spiculation (absent, present), (13)
pleural effusion (absent, present), and (14) enlarged mediastinal
lymph node (absent, present).

Region of Interest (ROI) Segmentation
and Radiomics Feature Extraction
The pulmonary lesions were semi-automatically segmented using
ITK-SNAP (version 3.8.0, http://www.itk-snap.org). The original
Digital Imaging and Communications in Medicine files were
imported into the in-house software (Analysis Kit, version 3.1.5.R,
GE Healthcare) for pre-processing, and the lesions were segmented
in standard images, slice by slice, under the lung window setting
(width, 1500 HU; level, −700 HU). The lesions were delineated to
avoid large vessels, bronchi, and chest walls, if possible.

Radiomics feature extraction was applied to the chest CT
images using AK software. Finally, from one segmented ROI, a
total of 402 imaging texture features were extracted: 42
histogram features, 144 Gy-level co-occurrence matrix features,
11 Gy-level size zone matrix features, 180 Gy-level run‐length
matrix features, and 25 shape- and size-based features. Details of
the extraction features are provided in the Supplementary
Material. Each image was normalized to eliminate the impact
of different quantization levels on the texture features.

Feature Selection and Model Building
Dice Similarity Coefficient was used to describe inter reader
segmentation variability, which ranged from 0.74 to 0.98
(Table S2) (21). The intraclass correlation coefficient (ICC)
was used to evaluate inter-observer agreement of quantitative
radiomics parameters. In 20 randomly sampled cases, two chest
radiologists (FZ and HZ) independently drew the ROI and
extracted the radiomics features. Radiomics features with an
ICC higher than 0.75 were regarded as consistent (21) and were
included for further analysis. A radiologist (FZ) sketched ROIs in
the remaining cases.

In the training set, a minimum redundancy–maximum
relevance (mRMR) algorithm was employed to rank the
importance of the selected features. Finally, the 100 highest
mRMR-ranked features were input to the least absolute
shrinkage and selection operator (LASSO) classifier to select the
most predictive features. The rad-score was calculated for each
lesion based on the final selected features (22), and a receiver
operating characteristic (ROC) curve was constructed to evaluate
the discriminatory ability of the rad-scores via the area under the
curve (AUC) in the training and validation cohorts. The clinical
data and subjective radiographic characteristics were evaluated
using univariate analysis. Significant factors were included in the
multivariate analysis to build a clinical–radiographic model.
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The clinical–radiographic and rad-scores were combined to
construct an individualized discriminatory nomogram based on
a multivariate logistic regression algorithm. Internal validation
was performed using a calibration curve, which was verified by
the Hosmer–Lemeshow test. The AUCs of the ROC were
calculated to evaluate the above models in the respective
training and validation sets. Decision curve analysis (DCA)
was performed to compare the clinical value of the models (23).

Statistical Analysis
Categorical variables were expressed as frequency rates and
compared using the c² test or Fisher’s exact test. Continuous
variables were described as the median (interquartile range [IQR])
and compared using the t-test or Wilcoxon rank-sum test. A two-
sided a value of less than 0.05 was considered statistically
significant. Statistical analysis was performed using R software
(version 4.1.2, http://www.R-project.org). The “mRMRe” package
was used to conduct the mRMR algorithm, “irr” package for Intra-
class correlation coefficient (ICC) algorithm, “tableone” for
comparison of clinical baseline data between groups, “tidyverse”
for data collation and exploration, “glmnet” for LASSO regression,
“rms” for Nomogram, “rmda” for decision curve analysis(DCA),
“pROC” for receiver operating characteristic curve analysis(ROC),
“ResourceSelection” for goodness of fit test, and “ggpubr” for data
result visualization, respectively.
RESULTS

Patient Information
A total of 245 patients (134 men [54.7%] and 111 women
[45.3%]) who met the inclusion criteria were included in this
retrospective study. The median patient age was 62 years (IQR,
55–67 years; range, 31–93 years). The baseline characteristics of
the patients are presented in Table 1. Of the 245 patients, 252
solid pulmonary lesions were pathologically diagnosed as
malignant foci, including 97 primary lesions and 155
metastatic lesions. There are 21 synchronous SPLCs and 76
metachronous ones. 55SPLCs and 82 PMs were included in the
training set, while 42 SPLCs and 73 PMs were included in the
validation set. Univariate analysis revealed no difference between
the clinical data and subjective radiographic characteristics in the
training and validation sets.

Comparison of Clinical and Radiographic
Features Between SPLC and PM Groups
The univariate logistic regression analysis of the clinical data
showed a statistically significant difference in sex, history of
smoking, and CEA level between the SPLC and PM groups in the
training set (p <0.05). Other clinical data, such as age, recurrence
status of the initial tumor, family history of malignancy, NSE
level, and CA125 level, were not statistically significant.

Among the visual imaging findings, the maximum diameter
of lesions, the distribution of lesions, central or peripheral type of
lesions, air bronchogram, calcification, vessel convergence sign,
January 2022 | Volume 11 | Article 801213
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TABLE 1 | The clinical and radiographic factors of patients in SPLC
†
and PM

§
Groups.

Variables SPLC Group (N=97) PM Group (N=155) P value
No. of patient (%) No. of patient (%)

Sex 0.029
Male 62 (63.9) 76 (49.0)
Female 35 (36.1) 79 (51.0)

Age (years) <0.001
(Median [IQR]) 64.00 [59.00, 68.00] 59.00 [52.00, 65.00]

History of smoking 0.003
Yes 54 (55.7) 116 (74.8)
No 43 (44.3) 39 (25.2)

Family history of malignancy (%) 0.43
Yes 88 (90.7) 146 (94.2)
No 9 (9.3) 9 (5.8)

Recurrence status of the initial tumor 0.085
Yes 97 (100.0) 149 (96.1)
No 0 (0.0) 6 (3.9)

Maximal lesion size (mm) <0.001
(Median [IQR]) 30.00 [20.00, 49.00] 19.00 [13.00, 28.50]

NSE 0.003
Normal 74 (76.3) 141 (91.0)
Abnormal 23 (23.7) 14 (9.0)

CEA 0.002
Normal 59 (60.8) 123 (79.4)
Abnormal 38 (39.2) 32 (20.6)

CA125 0.034
Normal 69 (71.1) 129 (83.2)
Abnormal 28 (28.9) 26 (16.8)

The distribution of lesions <0.001
Single 80 (82.5) 72 (46.5)
Multiple 17 (17.5) 83 (53.5)

Central or peripheral type <0.001
Peripheral 75 (77.3) 149 (96.1)
Central 22 (22.7) 6 (3.9)

Density 0.546
Homogeneous 79 (81.4) 120 (77.4)
Heterogeneous 18 (18.6) 35 (22.6)

Air bronchogram <0.001
Absent 47 (48.5) 134 (86.5)
Present 50 (51.5) 21 (13.5)

Bubble lucency 0.283
Absent 81 (83.5) 138 (89.0)
Present 16 (16.5) 17 (11.0)

Calcification 0.001
Absent 79 (81.4) 147 (94.8)
Present 18 (18.6) 8 (5.2)

Vessel convergence sign <0.001
Absent 62 (63.9) 137 (88.4)
Present 35 (36.1) 18 (11.6)

Margin 0.003
Clear 79 (81.4) 146 (94.2)
Unclear 18 (18.6) 9 (5.8)

Contour <0.001
Round 22 (22.7) 118 (76.1)
Irregular 75 (77.3) 37 (23.9)

Lobulation <0.001
Absent 6 (6.2) 40 (25.8)
Present 91 (93.8) 115 (74.2)

Spiculation <0.001
Absent 30 (30.9) 130 (83.9)
Present 67 (69.1) 25 (16.1)

Pleural effusion <0.001
Absent 25 (25.8) 83 (53.5)
Present 72 (74.2) 72 (46.5)

Enlarged mediastinal lymph node 0.158
Absent 70 (72.2) 125 (80.6)
Present 27 (27.8) 30 (19.4)
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contour, lobulation, spiculation, and pleural effusion presented
significant differences in the univariate analysis (p <0.05). Other
radiographic features, such as density, bubble lucency, margin,
and enlarged mediastinal lymph nodes, were not statistically
significant in the two groups. All clinical–radiographic variables
that achieved statistical significance were enrolled in the
multivariate logistic regression analysis.

In the multivariate analysis, the distribution of lesions (odds
ratio [OR], 6.52; 95% confidence interval [CI], 1.92–26.84;
p-value = 0.005), central or peripheral type (OR, 0.05; 95% CI,
0–0.66; p-value = 0.031), contour (OR, 0.23; 95% CI, 0.06–0.76;
p-value = 0.018), and spiculation (OR, 0.12; 95% CI, 0.03–0.42;
p-value <0.001) were identified as independent variables and
included in the clinical–radiographic model.
Feature Selection and Radiomics
Model Building
A total of 233 radiomics features with an ICC higher than 0.75
were enrolled for the next feature extraction step. Then, the
Frontiers in Oncology | www.frontiersin.org 5
mRMR program was used to select the 100 highest-ranked
features in the training set. Finally, LASSO logistic regression
was used to reduce the 100 features to 16 features with nonzero
coefficients, as shown in Figure 1. The rad-score of each lesion
was calculated using the following formula:

Rad� Score  =  0:585917936  +  0:300121336 �  InverseDifferenceMoment _AllDirection _ offset1 _ SD

+ 0:139511141 �  HaralickCorrelation _ angle90 _ offset7  +  0:117363006

� LongRunEmphasis _ angle0 _ offset7  −  0:286189566 �  LongRunEmphasis _ angle0 _ offset4

+ 0:807308895 �  Compactness2  −  0:095952964 �  HaralickCorrelation _ angle0 _ offset7  −  0:09620897

� SphericalDisproportion  +  0:410874754

� ShortRunHighGreyLevelEmphasis _AllDirection _ offset7 _ SD  −  0:109558249 �  SmallAreaEmphasis

− 0:05680965 �  ZonePercentage  +  0:102430665 �  GLCMEntropy _ angle135 _ offset4  +  0:148896463

� LongRunHighGreyLevelEmphasis _AllDirection _ offset1 _ SD  +  0:057282871 �  Elongation

+ 0:202108196� LongRunLowGreyLevelEmphasis _ angle 0 _ offset7  −  0:244924038

� GLCMEnergy _ angle90 _ offset7  +  0:310948511 �  LongRunEmphasis _AllDirection _ offset7 _ SD

The rad-scores were significantly different between the SPLC
and the PM groups in both the training and validation sets
(p <0.05); PMs had higher rad-scores than SPLCs. The rad-
scores for both the training and validation sets are shown
in Figure 2.
A B

C

FIGURE 1 | The result of LASSO model (A) LASSO coefficient profiles of the candidate predictors. (B) The features with nonzero coefficients are shown in the model.
(C) The y-axis indicates the selected radiomics features, and the x-axis represents the coefficient of radiomics.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhong et al. Radiomics Discriminate SPLCs and PMs
Nomogram Model Construction and
Validation
Based on the training set, the radiomics scores, distribution of
lesions, central or peripheral type, contour, and spiculation were
incorporated into the comprehensive nomogram model
construction (Figure 3A). Figure 3 shows the calibration
curves of the nomogram model in training cohort (B) and
validation cohort (C). The Hosmer–Lemeshow test finding was
not significant (P = 0.4612); it showed good calibration in the
training set. Figure 4 shows the discriminative abilities of each
model. The radiomics model had good discriminative
performance, with AUCs of 0.8707 (95% CI, 0.8138–0.9277) in
the training set and 0.7622 (95% CI, 0.6702–0.8543) in the
validation set. The clinical–radiographic model had AUCs of
0.8989 (95% CI, 0.8475–0.9503) and 0.9035 (95% CI, 0.8489–
0.9581) in the training and validation cohorts, respectively. The
comprehensive model achieved a slightly higher AUC in the
training (0.9421; 95% CI, 0.9056–0.9786) and validation sets
(0.9041; 95% CI, 0.8417–0.9665). Figure 5 presents the DCA of
the nomogram. The DCA showed that in most circumstances,
using the comprehensive model to distinguish between SPLCs
and PMs would be more clinically beneficial than using other
models in training cohort (A) and validation cohort (B).
DISCUSSION

In this study, the ability of CT-based radiomics to discriminate
SPLCs from PMs was investigated. An individual nomogram
model integrated with clinical data, radiographic characteristics,
and radiomics features was constructed. It achieved an
excellent discriminative capability and has the potential to
support clinicians in improving decision-making in a
noninvasive manner.

In recent years, radiomics studies have attracted increasing
attention because they can reflect quantitative intratumoral
Frontiers in Oncology | www.frontiersin.org 6
pathophysiological information in a noninvasive manner (24).
Radiomics features represented tumor heterogeneity and were
extracted from the entire ROI; they were not just limited to the
biopsy site (17). Previous studies demonstrated that radiomics
plays a role in differentiating between primary and metastatic
tumors (25–29). In particular, CT radiomics features combined
with positron emission tomography (PET) features can
accurately distinguish between primary and metastatic lung
cancers (26, 27). However, neither of these previous studies
focused on the patient’s history of neoplastic disease, leading to
insufficient clinical value. To the best of the present authors’
knowledge, this is the first study to apply radiomics studies to
SPLCs and to build a radiomics model for distinguishing SPLCs
from PMs. In this study, the rad-scores in the SPLC group were
significantly lower than those in the PM group (−0.005
[IQR −0.516–0.365] vs. 0.830 [IQR 0.357–1.53]), thereby
showing strong diagnostic efficacy.

Several studies have demonstrated that combining
radiographic and radiomics provides a higher prognostic
performance than radiomics alone in lung lesions (20, 30, 31).
Despite some observer bias, the subjective radiographic
characteristic is the most frequently used method for
describing pulmonary lesions. Pulmonary GGO lesions have
shown that tumor cells grow along the alveolar wall and are
known to be a key sign of primary lung adenocarcinoma (11, 14,
32). This was also observed at the present research institution
(10); therefore, only solid lesions were employed in this study. A
prior study argue that central-type pulmonary lesion strongly
prompts to be the SPLC because endobronchial metastasis is a
rare event (13), and the same result was obtained in this study. In
the final model, four independent imaging characteristics,
including the distribution of lesions, central or peripheral type,
contour, and spiculation, were in accordance with the authors’
clinical experience. The final model did not include clinical
variables because they were not statistically significant in
the multiple logistic regression analysis. In the past, the event-
A B

FIGURE 2 | The Rad-score of each lesion in the training set (A) and validation set (B).
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A

B C

FIGURE 3 | (A) Nomogram for predicting SPLCs and PMs. For each patient, draw a vertical line between the variable value and the corresponding point line, and
then assign a score for each variable based on the clinical and imaging characteristics to obtain a total score. The risk of metastasis can be predicted according to
the total score. (B) Calibration curve for the nomogram in training cohort. (C) Calibration curve for the nomogram in validation cohort.
A B

FIGURE 4 | Receiver operating characteristic (ROC) curves of the models based on clinical-radiographic factors (blue), radiomics features alone (red), and
comprehensive clinical-radiography-radiomics features (green) in the training set (A) and validation set (B).
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 8012137
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free duration is considered to be an important differentiating
factor (13). However, it is difficult to accurately measure
the time between primary and secondary tumor. So, this
characteristic was not included in this study. Smoking
history used to be a risk factor for SPLC (14, 33) but it
has not been seen in this research. This may be because
traditional Chinese women smoke less. Thus, combining the
radiomics model with the radiographic features improved the
prognostic performance.

However, there were some limitations to this study. First, it
was a retrospective, single-center study with a small sample
size. As the number of cases was small, different organs of
initial primary cancers were not distinguished, which may have
led to bias. Therefore, larger sample sizes from multiple centers
are required for further studies. Second, radiomics feature
extraction was performed only on plain CT scanning images.
Enhanced CT or PET images may contain added valuable
information. Third, in this study, a semi-automatic method
was adopted to segment ROIs, which could lead to artificial
differences. An accurate automatic segmentation method should
be considered in future studies (34). Last, the relationship
between radiomics signatures and subjective radiographic
characteristics was not assessed. This aspect will be explored in
future work.

In conclusion, the model developed using clinical–
radiographic factors and CT-based radiomics features shows
good performance discriminating between SPLCs and PMs.
Therefore, for pulmonary malignancy patients with a history of
other malignant tumors, the individual nomogram model may
guide therapeutic decisions. With the development of artificial
intelligence and machine learning, quantitative radiomics may
have promising clinical applications.
Frontiers in Oncology | www.frontiersin.org 8
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