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Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as

well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation,

this response can cause an acute secondary injury that leads to widespread

neurodegeneration and loss of neurological function. Estrogens decrease injury induced

neuroinflammation and increase cell survival and neuroprotection and thus are a potential

target for use following TBI. While much is known about the role of estrogens as

a neuroprotective agent following TBI, less is known regarding their formation and

inactivation following damage to the brain. Specifically, very little is known surrounding

the majority of enzymes responsible for the production of estrogens. These estrogen

metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen

sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase

(HSD17B) and are involved in both the initial conversion and interconversion of estrogens

from precursors. This article will review and offer new prospective and ideas on the

expression of EMEs following TBI.
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INTRODUCTION

Traumatic brain injury (TBI) is a leading cause of human death and morbidity worldwide. TBI
is a broad term to explain any injury or damage to the central nervous system, ranging from
concussive, penetrating, to ischemic stroke. Over 70,000 cases are reported a year and it affects
millions of people in the United States alone (1, 2). At-risk groups range from children, who
frequently participate in contact sports to military personnel, and to an increasingly active elderly
population (3, 4). Disturbingly high injury rates have made TBI not only an issue of social and
economic concern, but also the target of nearly 50 years of dedicated clinical research (5–7). Despite
research and improvements in effective patient care, there still remain very few recommended
treatments which leads to poor patient outcomes (8).

Injury to the brain occurs in two phases, regardless of the cause. The irreversible primary phase
is the injury itself. The majority of research around the primary phase focuses on decreasing
the chance of injury (e.g., helmet design). The secondary and potentially reversible phase, which
begins after the initial injury and continues for days to weeks afterword, is characterized by an
induction of a neuroinflammatory response. This response is characterized by a permeation of
inflammatory cells around the injury, followed by endothelial activation, and an accumulation of
inflammatory cytokines (9–11). This secondary phase has some beneficial effects, but commonly
results in an exacerbation of deleterious inflammatory effects, decreased cognitive ability, motor

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00345
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00345&domain=pdf&date_stamp=2020-05-29
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:keduncan@vassar.edu
https://doi.org/10.3389/fendo.2020.00345
https://www.frontiersin.org/articles/10.3389/fendo.2020.00345/full
http://loop.frontiersin.org/people/919481/overview


Duncan TBI-Induced Estrogen Formation and Inactivation

loss, and increased risk of neurodegenerative diseases, such as
multiple sclerosis (12–17). This secondary response to injury is
well-characterized across vertebrates (rodents, birds, fish) (18–
20). The majority of research has focused on preventing this
secondary response (21, 22). One pharmacotherapeutic strategy
for treatment of secondary injury has revolved around the role
of sex steroids, specifically estrogens on the attenuation of the
immune response (22–25). Briefly, we will review the effects of
estrogens on cell survival and neuroinflammation following TBI.

Following damage to the brain, estrogens can promote
neurogenesis and neural recovery by attenuating neural
outgrowth and glial activity (25–29). Estrogens are also indicated
to serve as an antioxidant against intrinsic free radical production
following TBI (30, 31). The majority of these effects are through
estrogen receptor (ER) signaling pathways. The genomic signal
transduction pathway of estrogens involves the dimerization
of ERs and transcriptional regulation of estrogen mediated
target genes which in turn can provide neuroprotective effects,
evidenced by decreased inflammation, reactive gliosis, and
edema (30, 32–34). Furthermore, activation of ER alpha, the
primary mediator of steroid induced neuroprotection, can
also alter neurovascular function and promote myelin repair
(24, 35). However, rapid non-genomic signaling has been
shown to upregulate estrogen mediated neuroprotection via the
pro-survival signaling pathway, phosphoinositide 3-kinase/Akt.
Activation of this pathway results in increased cell survival,
differentiation, and growth (36). Estrogens can also mediate
cell death and apoptosis by inhibiting subcellular trafficking of
p38α. Jun N-terminal kinase (JNK) and p38 are necessary for
the activation of pro-apoptotic signaling pathways (34, 36, 37).
Moreover, when estrogens are given or produced immediately
after injury, they can decrease pro-inflammatory and increase
anti-inflammatory cytokines and thus have strong antioxidant
and anti-inflammatory effects. In terms of behavior and
cognitive ability following TBI, very little is known about the
role of estrogens in ameliorating these symptoms. However,
estrogens can also enhance memory function and neurological
outcome in male rodents following TBI (38–47). In addition to
these effects on cell/neuronal survival, estrogens can also regulate
neuroinflammation following injury.

Estrogen synthesis following TBI reduces the concentration
of pro-inflammatory cytokines and thus decreases the secondary
wave of degeneration observed following damage to the
brain (30, 48–50). Through regulation of pro-inflammatory
cytokines, estrogens subsequently reduce leukocyte recruitment,
cerebral edema, apoptosis, and reactive astrogliosis, thusly
improving outcomes following injury (51). Thus, estrogens are
neuroprotective on many fronts following TBI (52, 53). While,
I’ve only touched on a few of the pre-clinical studies, the majority
of these studies suggest that estrogens are neuroprotective
following TBI. However, clinical trials in humans involving
estrogen administration have not shown as robust of a beneficial
result, thus identifying how the natural/systemic productions of
estrogens differs from that of exogenous/synthetic production
is key. Aside from the neuroprotective effects of estrogens,
they exert many biological effects as well. Estrogens are mostly
widely known for their sex-specific effects related to sexual

determination and differentiation (54). Both genomic and non-
genomic signal transduction pathways of estrogens alter the
regulation of the cell cycle, this includes, but is not limited to
proliferation and differentiation, but specifically cyclines and
cycline-2dependent kinases (55–57). As a result of this effect
on cell growth and cell progression, estrogens have direct
cancerogenic effects and damage DNA and cellular proteins via
highly reactive oxygen reactivity (55, 58). Thus, understanding
and parsing out the hormonal effects from neuroprotective
actions of estrogens are key to their use as therapeutics.

FORMATION OF ESTROGENS

Four estrogens are produced naturally: estrone (E1), 17β-
estradiol (estradiol or E2), estriol (E3), and estetrol (E4;
Figure 1) The weakest form estrone is primarily found following
menopause while estriol and estetrol are the predominant
estrogens produced during pregnancy (30). Weak estrogens can
bind to estrogen receptors, but generally lack a dramatic effect
within tissues or cells. However, some weak estrogens such as
estriol exhibit greater protection than estradiol in autoimmune
disorders, such as multiple sclerosis (59). Estradiol is the most
common and strongest of the estrogens and is thought to mediate
the neuroprotection following various damage to the nervous
system (30). Estradiol is produced during themenstrual cycle and
also de novo in the brain (60–62).

Estrogens are formed following the enzymatic conversion
and interconversion from cholesterol-based precursors via
a subset of enzymes termed estrogen-metabolizing enzymes
(EME). The most prevalent of these enzymes is aromatase or
CYP19A1. The aromatase pathway forms estrone and estradiol
from androgenic precursors androstenedione and testosterone,
respectively (Figure 1) (63). In addition to this estrogen synthase
activity, aromatase has been proposed to regulate estrogen-2-
hydroxylase activity in placental tissue and in Japanese quail
brains (64–66). This activity also paired with aromatase’s
interaction with TH and DA signaling suggest that aromatase
plays a role in catecholaminergic transmission (67, 68). Thus,
aromatase may be involved in both the production and
inactivation of estrogens (68). Another EME, 17β-hydroxysteroid
dehydrogenases 1 and 2 (HSD17B1, HSD17B2) is also necessary
for the conversion of estrone to estradiol (61, 69, 70). Finally,
estrogens can be made inactive by both degradation and
sulfonation. In the sulfatase pathway, inactive estrogen sulfate
is the source or precursor for the active estradiol and estrone.
This is mediated via the enzymes steroid sulfatase (STS) and
estrogen sulfotransferase (SULT1E1) (Figure 1)(71, 72). Below
I will review what is known about these EMEs and their role
following TBI.

EMES AND TBI

Aromatase
Among the EMEs, aromatase is the most prominent and
widely studied. Across vertebrates aromatase expression is found
in gonads, placenta, adipose tissue, bone, and other tissues
including both male and female brains (73–75). Within the
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FIGURE 1 | Schematic representation of the enzymatic conversion and synthesis of biologically active estrogens. Estrogens are produced from C19 steroid

precursors through several enzymatic conversions. DHEA, dehydroepiandrosterone. DHEA-S, dehydroepiandrosterone-sulfate; Aromatase/CYP19A1, estrogen

synthase; HSD3B1, hydroxysteroid 3 beta-1; HSD3B2, hydroxysteroid 3 beta-2; HSD17B1, hydroxysteroid 17-beta dehydrogenase; HSD17B2, hydroxysteroid

17-beta dehydrogenase 2; STS, steroid sulfatase; SULT2A1, Sulfotransferase Family 2A Member 1; SULT2B1, Sulfotransferase Family 2B Member 1; SULT1E1,

estrogen sulfotransferase; AKR1C3, Aldo-Keto Reductase Family 1 Member C3; CYP3A4, Cytochrome P450 3A4.

vertebrate brain, high concentrations of aromatase are expressed
within the hypothalamus, amygdala, hippocampus, and cerebral
cortex (76, 77). Aromatase is broadly expressed within neurons
and not glial cells in the above listed brain areas of the
uninjured brain (78–80). Aromatase is also present in pre-
synaptic boutons, suggesting direct perisynaptic actions (81).
Following injury or neuroinflammation, aromatase is also found
in glial cells, specifically astrocytes (80, 82). In the songbird
brain, females exhibit higher expression immediately after injury,
but these differences disappear by 24 h post injury (83). This
upregulated glial aromatase appears to affect neurodegenerative
pathways by decreasing apoptosis (84, 85). In songbirds, as
in the mammals (86), administration of fadrozole (aromatase
inhibitor) dramatically increases the volume of damage induced
by penetrating mechanical injury (84), sometimes in a sexually
dimorphic manner (87). Replacing estradiol at the time of injury
prevents this fadrozole-induced damage (88).

Cytokines increase aromatase expression without concurrent
cell death or damage to neuronal tissues (25, 26, 89). Using
TNF-α and IL-1β KO mice, we were able to determine
that TNF-α, but not IL-1β signaling is necessary for the
induction of aromatase following brain injury (25). Interestingly,
while inflammation appears to regulate aromatase expression,
increasing aromatase decreases expression of TNF-α and IL-
1β following injury furthermore aromatase inhibition results
in prolonged elevation of TNF-α and IL-1β (29, 89). Another
mechanism by which estrogens may become inactive following
TBI is through aromatase’s estrogen-2-hydroxylase activity, that
converts estrogens to catechol-estrogens (64–66). The role of
this method of estrogen inactivation following TBI remains
unknown. This cycle of both upregulation and inhibition of

neuronal aromatase and cytokine expression may suggest a
broadly conserved mechanism for protecting the CNS following
detection of a threat (25).

Steroid Sulfatase
In addition to the aromatase pathway described previously,
estrogens can also be formed from inactive precursors by the
removal of sulfate groups (90–93). When sulfated, estrogens
are unable to bind and dimerize to estrogen receptors. This
protects cells and tissues from excess estrogen activity (55). Thus,
sulfonation can potentially regulate active estrogen signaling and
serve as a hormone “reservoir” for future use (91, 94, 95). Steroid
sulfatase (STS) hydrolyzes the removal of sulfate groups from
estrone sulfate (E1-S) to E1 and dehydroepiandrosterone sulfate
(DHEA-S) to dehydroepiandrosterone (DHEA), also known as
androstenolone (Figure 1) (96). STS is expressed broadly across
vertebrates in both males and females with highest levels being
found in the placenta, but low levels found across the majority of
steroid sensitive tissues. STS expression and the mechanism that
control its expression remain poorly understood (97). However,
estrogen signaling pathways regulate expression of STS, and thus
potentially create a positive feedback loop to increase estrogen
production and signaling (71).

The majority of studies examining STS expression and TBI
have focused more on the beneficial effects DHEA vs. E2. As STS
alters both estrogens and DHEA at this time we are unable to
separate out the neuroprotective effects of estrogens vs. those of
DHEA. Both DHEA and DHEA-S are neuroprotective following
damage to the CNS in rodents and birds. Specifically, DHEA
and DHEA-S protect rodent neurons against various forms
of toxicity including overactivation of N-methyl-D-aspartate
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(NMDA) glutamate receptors (98, 99), amyloid beta expression
(100), and oxygen-glucose deprivation (101). Importantly,
DHEA-S prevents against rodent hippocampal neuronal cell
loss and damage observed following ischemia and stroke (102).
Additionally, the progesterone precursor pregnenolone and
pregnenolone-sulfate also exhibit neuroprotective benefits (103–
105). More work is necessary to discern estrogen mediated STS
effects vs. DHEA mediated ones following TBI.

Like aromatase, we see a connection between STS expression
and inflammatory signals. Interleukin (IL)-1β suppresses STS
expression in endometrial stromal cells (106). However, in breast
cancer cells, various other cytokines IL-1α, IL-6, TNFα, and
enhanced or increased activity of STS (107). For both IL-6 and
TNFα, STS mRNA expression was unchanged and the difference
in activity was due to posttranslational modifications via STS
glycosylation (72). Our studies examining the effects of a single
penetrating injury in the adult zebra finch (Taeniopygia guttata)
brain showed that STS expression was unchanged following TBI
(Figures 2A,B). The zebra finch serves as a model organism
for the study of steroid induced neuroprotection, because they
rapidly and robustly respond to injury and express the full suite
of steroidogenic enzymes (53, 82, 108). Furthermore, increased
expression of pro-inflammatory cytokines is observed anywhere
from 2 to 4 h following injury (83). Thus, the lack of a change
in STS mRNA expression was surprising. As STS mRNA levels
are unaffected in zebra finches, more research is necessary
to determine if STS glycosylation or estrone bioavailability is
increased following injury.

Estrogen Steroid Sulfotransferases
(SULT1E1)
SULT1E1 (Figure 1) when compared to other members of the
steroid sulfotransferase (SULT) family has greater affinity for
estrogens than other steroids, and thus readily inactivates estrone
and estradiol. SULT1E1 is expressed in various tissues in both
sexes (109) including the brain (110) and its expression is
regulated by steroid hormones, specifically progesterone (96).
Estrone-sulfate and its naturally occurring counterpart estradiol-
sulfate (E2-SO4) are biologically important as they regulate
neuronal network formation, activity, and synaptogenesis (111–
114) in vertebrates.

Very little is known about the expression of SULT1E1
following TBI, however there is some data on the role of
estradiol-sulfate (E2-SO4) in rodent models. In terms of
expression, like STS, we did not see a significant increase
or decrease in expression of SULT1E1 following TBI
(Figures 2C,D), however the expression was far more variable
than that of STS. Studies are on-going to determine if protein
expression matched the mRNA expression. Sulfated estrogens
reduce neurodegeneration by altering cell and tissue damage
and oxidative stress in rodents (115, 116). This is accomplished
by improving blood and water flow to damaged tissue and
thus increasing cerebral perfusion pressure and decreasing cell
loss (22). Furthermore, the solubility of E2-SO4 as opposed
to estradiol enables intravenous delivery of supraphysiological
quantities and thus one could give much higher doses and have

it be eliminated from the body much more quickly (117, 118).
Sulfated estrogens provide a noteworthy avenue for both future
research and future treatment options following TBI (118).

With respect to SULT1E1 and TBI induced inflammation,
very little is known, but there appear to be a strong connection
between SULT1E1 expression and release of cytokines.
Knockdown of SULT1E1 increases pro-inflammatory cytokines
and decreases anti-inflammatory signals (119). Furthermore,
both edema and intercranial pressure are altered by SULT1E1
expression (115, 118). Understanding SULT1E1 expression
and its role following TBI is key to understanding how sulfate
estrogens can be used as a treatment. The time of SULT1E1
expression may also change the results. In the finch brain,
we examined expression at 24 h, however the knockdown
expression studies were 72 h. It would be interesting to extend
the timepoints at which expression was examined.

HSD17B1 and HSD17B2
17β-hydroxysteroid dehydrogenases (HSD17B) are enzymes
responsible for the synthesis and deactivation of estrogens
and androgens, specifically the formation of testosterone and
estradiol from precursors (61, 76, 108, 120, 121) (Figure 1).
HSD17B1 primarily catalyzes the conversion of estrone to
estradiol in various tissues including the brain. In addition to its
role in estrogen synthesis, HSD17B1 facilitates the formation of
various androgens as well (76, 122–124). Conversely, the enzyme
HSD17B2 mediates the oxidation of estradiol back to estrone,
and testosterone and androstendiol back to androstenedione
dehydroepiandrosterone. Furthermore, HSD17B2, is responsible
for the production of the active progestin, progesterone (76, 125).
The expression of HSD17B2 has previously only been identified
in non-neuronal tissues, however a few reports have identified
transcript and protein in the brain (126).

Surprisingly, there remains a dearth of information and
studies on the role or expression of either HSD17B1 or
HSD17B2 following TBI. The majority of past studies have
examined the role of HSD17Bs in steroid sensitive cancers (69).
Specifically, in terms of brain damage, there has been some work
showing a connection between HSD17B1 and risk of Alzheimer’s
disease in Down Syndrome patients (127). In our work, we
did not find a significant change in expression of HSD17B1
following TBI, suggesting that conversion to estrone is not a
probable path to increasing estrogen signaling following injury
(Figures 2E,F). While estradiol is the predominate estrogen
mediating neuroprotection, estrone, has been shown to be
neuroprotective following various damage or insults to the brain
(128–130). Estrone increases the signaling of neuroprotective
pathways (ERK1/2 and BDNF) and decreases cell death and
thus ischemic injury size (38). These results suggest that despite
the lack of change in HSD17B1, vertebrates may still be getting
the protection from higher levels of estrone (38). As estrone
is the most abundant estrogen in menopausal women (131,
132), it is hypothesized to be extremely important in mediating
neuroprotection in this population (38). Much more work
is necessary to understand the levels of estrone relative to
estradiol following TBI.
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FIGURE 2 | Levels of EMEs mRNA relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH; delta CT value and fold change) in both male and female zebra

finches 24 h post-surgery. Adult male and female zebra finches were subjected to an unilateral penetrating injury directed toward the entopallium and collected 24 h

later. Finches were sacrificed and total RNA was extracted from microdissections immediately adjacent to the cortical needle and the corresponding location on

uninjured hemisphere. Expression of STS (A), SULT1E1 (C), HSD17B1 (E), and HSD17B2 (G) relative to GAPDH was measured using quantitative PCR using primers

specific for the ZF mRNA sequence. Mean 1CT values were compared with a two-way ANOVA. Fold change in gene expression was also calculated STS (B),

SULT1E1 (D), HSD17B1 (F), and HSD17B2 (H). Neither expression of STS, SULT1E1, or HSD17B1 were significantly changed following injury. However, HSD17B2

was significantly downregulated following injury. *denotes a significant difference at P < 0.05. All protocols were approved by the Vassar College Institutional Animal

Care and Use Committee following National Institutes of Health Guidelines.

While HSD17B1 expression was not altered by TBI, HSD17B2
expression was downregulated in a sex specific manner following
TBI in the finch brain (Figures 2G,H). Females decreased
expression of HSD17B2 following injury while males did not.
Again, much remains unknown surrounding the function of
HSD17B2 in the brain, specifically because it is noticeably absent
from human and rodent brains (133). Notably other HSDs are
found throughout the avian brain and regulate conversion from
cholesterol to the sex steroids (108, 120, 134). Further research
is needed in order to conclude if the expression of HSD17B2
following injury is unique to songbird brains, or if this represents
a more evolutionarily conserved pathway. Despite the abundant
questions remaining, the results are promising. One could
hypothesize that females are decreasing expression of HSD17B2
in order to keep more estradiol available for neuroprotection
and repair, while not having to produce more estrogens. As
males use estrogen to undergo sexual differentiation, having a
local upregulation of estrogens in the female brain may not
be beneficial long term. Furthermore, while HSD17B2 is the
key HSD17B isozyme in androgen and estrogen inactivation, it
also activates 20α-hydroxyprogesterone into progesterone (70,
135). Females may be using progesterone in combination with
estradiol as neuroprotective steroids following injury. These

results are compelling as we have previously found a role
for progesterone in cell survival following TBI in the brain
(105) and this supports a large body of research examining
progesterone treatment following TBI (136, 137). Interestingly,
like with estradiol despite positive pre-clinical studies, larger
clinical, and human trials of progesterone use following TBI have
been unsuccessful (138). Together, these data suggest that much
more research is needed in order to understand the very complex
steroidal milieu following TBI.

CONCLUSIONS

As has been discussed in the preceding sections, there is ample
evidence to support that estrogens are neuroprotective following
injury. Yet, when estrogen use has been used in clinical trials
of TBI, the majority of evidence has not been positive and
has led many to question its use as a treatment option (139,
140). Thus, more research on the formation of these estrogens
and how they are inactivated is necessary in order to better
develop treatment plans and options for mirroring estrogen’s
endogenous neuroprotective effects found preclinically without
the undesirable hormonal ones observed.
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