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Abstract

The combination of phase separation and disorder-to-order transitions can give rise to ordered, 

semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian 

transfer of information across cells. Recently, a method known as Distributed Amphifluoric 

Fö rster Resonance Energy Transfer (DAmFRET) was developed to study the convolution 

of phase separation and disorder-toorder transitions in live cells. In this assay, a protein of 

interest is expressed to a broad range of concentrations and the acquisition of local density 

and order, measured by changes in FRET, is used to map phase transitions for different 

proteins. The high-throughput nature of this assay affords the promise of uncovering sequence­

to-phase behavior relationships in live cells. Here, we report the development of a supervised 

method to obtain automated and accurate classifications of phase transitions quantified using 

the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions 
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are consistent with prion-like behaviors, although the converse is not always true. We uncover 

well-established and surprising new sequence features that contribute to two-state phase behavior 

of prion-like domains. Additionally, our method enables quantitative, comparative assessments 

of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate 

that a modest augmentation of DAmFRET measurements, specifically time-dependent protein 

expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific 

lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches 

lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding 

phase transitions in live cells.
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Introduction

Phase transitions can lead to the formation of various types of macromolecular assemblies 

in cells.1–7 These include liquid or gel-like biomolecular condensates that concentrate 

protein and nucleic acid molecules,8–10 liquid crystalline assemblies,11 and semi-crystalline 

assemblies12 such as prions,13,14 which are protein-based elements that enable non­

Mendelian inheritance.15–17 Phase transitions are characterized by cooperative changes 

to order parameters and different types of transitions are associated with changes to 

different types of order parameters.18 Phase separation is a form of phase transition where 

macromolecular concentration is the relevant order parameter.6,18,19 In a macromolecular 

solution, if and only if homotypic interactions are the main drivers of phase separation,20,21 

then the system separates into two or more coexisting phases when the concentration of 

macromolecules crosses a system-specific threshold concentration, with each pair of phases 

being delineated by a distinct phase boundary.

On a microscopic level, phases are defined and distinguished on the basis of structural 

symmetry and the type of order found in a phase.18 Distinguishing order versus disorder 

in different phases requires quantification of how a phase responds to a set of symmetry 

operations such as the Euclidean group,22 which represents a set of translational, rotational, 

and reflection operations. Isotropic liquids and gases are statistically invariant under all 

symmetry operations. Accordingly, the entire Euclidean group is the symmetry group for 

isotropic fluids and such systems have the highest possible symmetry. As a result, a 

vapor–liquid transition of isotropic fluids does not involve a change in symmetry, but it 

does involve a change in density. The working hypothesis that has emerged from in vitro 
characterizations is that liquid–liquid phase separation that gives rise to some biomolecular 

condensates1 is akin to a vapor–liquid transition that involves a change in density,23 

without a change in symmetry.24 There can be significant differences in compositions,25–27 

including the exclusion of certain components such as macromolecular crowders from dense 

phases,28 which points to a change in compositional symmetries.
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Theonsetoforderinaphaseimpliesthatthephasein question is statistically invariant to a 

subgroup of operations that define the Euclidean group. The extent and type of order versus 

disorder is governed by the size of the symmetry group for a given phase and the type of 

symmetry operations to which the phase in question remains statistically invariant. At 

equilibrium, higher entropy disordered phases have high symmetries whereas lower entropy 

ordered phases have lower symmetries. Accordingly, disorder-to-order transitions are also 

described as symmetry-breaking transitions.18 Symmetries are quantified in terms of non-

conserved order parameters,typicallytakingvaluesbetween0(maximaldisorder) and 1 

(maximal order). This is relevant because phase separation in vitro and in live cells can also 

be accompaniedbythebreakingofsymmetriesthatdrive collectivedisorder-to-

ordertransitions.19,29,30 

Examplesincludeproteincrystallizationinvitro
31andtheformationoffibrillarsolidsbothinvitroandincells.18,19,29,30

The order parameter for phase transitions that combine phase separation and disorder-to­

order transitions has two components namely, macromolecular concentration and a measure 

of order/disorder.32,33 The free energy barrier for nucleating an ordered phase is determined 

in part by the supersaturation,34–36 defined as the natural logarithm of the ratio of the 

bulk concentration to the saturation concentration.37 Above the saturation concentration, 

the supersaturation increases, thereby decreasing the nucleation barrier and increasing the 

probability of spontaneously nucleating the ordered assembly38 (Figure 1(a)). The assembly 

of prion-like states arises through templated growth of the nucleus, which is the embryo 

of the ordered phase that forms within the disordered phase.14 The latter is either a dilute 

or dense liquid where the distinction between dilute and dense points to the difference 

in macromolecular concentration within the liquid phase, and the extent of order versus 

disorder refers to the fraction of molecules that are incorporated into the ordered phase.

Results of measurements made under conditions where the effects of active processes are 

minimized are helpful for understanding how the milieu of a living cell impacts the intrinsic 

driving forces for phase transitions.39 Live cell investigations of macromolecular phase 

transitions have been driven by adaptations of optogenetics technologies,40,41 advances in 

super-resolution microscopy,34,42 and single particle tracking.43,44 Recently, a new method 

known as Distributed Amphifluoric Fö rster Resonance Energy Transfer (DAmFRET) was 

introduced to investigate phase transitions that lead to prion-like assemblies in yeast39 and 

mammalian cells.45 In DAmFRET measurements, live cells are used as femto-liter sized test 

tubes in which protein self-assembly is measured. FRET is used as the reporter for protein 

assembly within each cell. Because changes to FRET intensities result mainly from changes 

to intermolecular distance, DAmFRET measures changes to both density and the extent of 

order/disorder. Accordingly, phase transitions such as prion formation that combine phase 

separation and disorder–order transitions can be measured using DAmFRET.

In DAmFRET experiments a photo-switchable fluorescent protein mEos3.1 is expressed 

as a chimera with the protein of interest (Figure 1).39 mEos3.1 is a green fluorescent 

protein that can be converted to a red fluorescent protein upon illumination with violet 

light. This conversion can be achieved in a controlled, time and intensitydependent manner. 

Photo conversion allows the generation of FRET pairs from a single genetic construct in a 
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consistent and controllable ratio that is independent of expression level. The resulting green 

and red forms constitute the FRET donor and acceptor, respectively. In yeast, variability in 

expression under the GAL1 promoter and the 2 microns replication system is achieved by 

harnessing the wide range (more than 100-fold) of plasmid copy numbers across thousands 

of cells. This allows wide coverage of protein expression levels across a population of cells 

analyzed by flow cytometry. Intracellular phase behavior is interrogated after cell division 

and protein degradation have been turned off upon galactose induction. This ensures that 

each cell mimics a closed system and that phase transitions are being interrogated in a 

cell autonomous manner since propagation via cell division is eliminated. In effect, the 

DAmFRET approach affords two advantages: from the perspective of physical chemistry, it 

allows one to treat each live cell as being a femtoliter test tube. Secondly, live cells are not 

passive reservoirs and therefore the insights gleaned from the DAmFRET assay are likely 

to have a direct bearing on understanding how spontaneous and driven phase transitions are 

controlled by protein expression and influenced by a dynamic cellular milieu.

DAmFRET assays enable the interrogation of protein assembly behavior across a large 

population of live cells by monitoring AmFRET, defined as the ratio of sensitized emission 

FRET to acceptor fluorescence intensity.39 AmFRET measured by flow cytometry is 

not an order parameter in the strictest sense of the term. For example, two different 

proteins that have similar AmFRET values do not necessarily have the same degree of 

order/disorder. Likewise, the densities of assemblies corresponding to similar AmFRET 

values do not have to be similar. However, it can be used as a proxy of a non-conserved 

parameter for understanding the nature of the phase transition that a specific system 

undergoes because, for a specific system, interrogated across a population of cells, it 

provides a quantitative assessment of relative order versus disorder. Further, as we show 

here, parameters extracted from analysis of DAmFRET histograms can be compared across 

different proteins. Dispersed monomers should have low AmFRET values around zero, 

whereas the AmFRET value will increase upon assembly formation. For proteins that do 

not become trapped in long-lived partially assembled intermediates, we can distinguish the 

concentration dependence of assemblies into three categories. At low overall expression 

levels, the effective concentration is below the saturation concentration, and a dilute, 

disordered phase will form for the protein of interest across the population of cells (Figure 

1(b)). At intermediate levels of expression, the protein of interest is supersaturated, and two 

distinct populations of cells can coexist with one another: In one population, the protein of 

interest will be entirely in the dilute, disordered phase, whereas in the coexisting population, 

we will observe proteins concentrated into dense, ordered assemblies. The likelihood of 

observing a coexisting population of cells that feature dilute, disordered phases will be tied 

to the supersaturation-dependent nucleation probability. At high expression levels, dense 

ordered assemblies will form for the protein of interest in a majority of the cells. In 

each of these three categories cells only fall into one of the two distinct states, dilute or 

ordered assembled; therefore, these proteins can be classified as undergoing a two-state 

discontinuous phase transition.

Given that the DAmFRET assay collects data across expression levels that span 2–3 orders 

of magnitude,39 one can analyze two-dimensional histograms of expression levels and 

AmFRET values across a large (~104) population of cells and categorize proteins based 
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on the types of assembly behaviors observed. Information extracted from analysis of two­

dimensional histograms allows us to quantify the expression level at which proteins in 50% 

of the cells are in the assembled phase. Because the driving forces for phase transitions are 

dependent on protein concentration through the degree of supersaturation, the measure of 

the expression level at which proteins in 50% of the cells are in the assembled phase allows 

for a comparative assessment of sequence-encoded driving forces for phase transitions that 

show two-state discontinuous behavior. Further, one can also analyze the measured phase 

behavior to identify proteins into groups that do not undergo a measurable transition or 

undergo continuous or discontinuous transitions into different phases that are amenable to 

interrogation by the DAmFRET assay.

Here, we assess and analyze the information gleaned from DAmFRET measurements to 

answer three questions: (1) Given the large amount of data that can be generated through 

the DAmFRET assay, approximately 103 histograms in a day, we ask if we can automate 

the classification of phase transitions measured by DAmFRET into distinct categories? (2) 

Further, do the phase transitions of proteins that form bona fide prions belong to a specific 

category? And (3), for proteins that show discontinuous two-state phase behavior, consistent 

with nucleated transitions, can we use data from DAmFRET experiments to extract 

information regarding the barriers to nucleation at different degrees of supersaturation? 

To answer the first question, we develop a supervised method47 that classifies different 

types of DAmFRET histograms based on analyzing synthetic AmFRET data as a function 

of expression level. We apply these methods to analyze DAmFRET data obtained for a 

large number of candidate prion-like domains (cPrDs)16 and uncover sequence features 

that correlate with the degree of discontinuity of a two-state transition. We also show that 

expression levels at which 50% of the cells are in the assembled state can be accurately 

extracted by analysis of DAmFRET measurements using our automated method. This value, 

designated as c50, can be used to rank order proteins based on their driving forces for 

assembly. As for the second question, we find that proteins classified as undergoing two­

state discontinuous transitions tend to show prion-like properties, although bona fide prions 

can be classified into other categories of transition classes as well. Finally, we deploy a 

numerical method motivated by classical nucleation theory to show that information from 

DAmFRET measurements can be adapted to estimate the sizes of free energy barriers to 

nucleation of ordered assemblies. Usage of this analysis does require augmentation to the 

data collected from DAmFRET measurements. Overall, the analysis pipeline we develop 

here paves the way for gleaning quantitative and mechanistic inferences from analysis of 

large-scale, proteome-level investigations of prion formation and related phase transitions in 

live cells.

Results

Classifiers of phase transitions measured using DAmFRET:

Depending on how AmFRET changes as a function of protein expression levels, we classify 

DAmFRET datasets into five categories.
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One-state –no transition:

Across the concentration range interrogated by DAmFRET experiments, AmFRET does 

not change its value. If AmFRET is low across the concentration range, then this is 

a manifestation of one-state behavior without assembly. Alternatively, if AmFRET is 

uniformly high across the concentration range, then the data are concordant with the 

designation of one-state behavior with assembly.

Two-state discontinuous transitions:

These are characterized by the existence of a threshold expression value, such that above 

this value AmFRET changes in a stepwise fashion from low to high values. Accordingly, 

cells fall into one of two categories defined by the presence or absence of dense, ordered 

assemblies.

Two-state continuous transitions:

Here, AmFRET increases continuously once the expression level crosses a threshold value. 

Unlike two-state discontinuous transitions, the two-state continuous transitions are best 

modeled using a smooth function that interpolates between low and high AmFRET values. 

Continuous transitions likely reflect the formation of a distribution of low-affinity oligomers 

or mesophases whereby the sizes and/or numbers of assemblies increase as concentration 

increases. This would result in a continuous increase in FRET intensity, which is also 

proportional to the numbers of complexes of specific sizes.

Three- or multistate transitions:

Here, the transitions proceed through multiple states characterized by intermediate values of 

AmFRET. It is worth noting that intermediate values of AmFRET may also be a reflection 

of non-equilibrium steady states or long-lived transients.

Enabling supervised learning and classification based on synthetic data sets for each of 
the different categories of phase transitions:

Synthetic two-dimensional histograms of expression level and AmFRET were generated 

for each of the five categories of phase transitions (Figure 2(a)). We generate synthetic 

AmFRET datasets using a simple step function or a sigmoid function. The minimum and 

maximum values of the step and sigmoid functions in the synthetic data for the supervised 

learning are set as Amin = 0 and Amax = 1.5. Each histogram was generated using ~104 

data points, where the points are proxies for measurements in individual cells. Points were 

generated using a log10(expression) value in the range of 2.0–8.0 and an AmFRET value 

between 0.0 and 1.5. Noise was added in the log10(expression) value using a Gaussian with a 

mean of 0.5 and standard deviation of 0.75, which we term ce. The expression at which 50% 

of the cells show high AmFRET assemblies is designated as c50 and log10(c50) was set to 

be 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, or 12.0; to increase the width of the range of concentrations 

where high and low AmFRET values overlap, we introduced random noise to c50 with a 

variance of ±0.8, which we term c50e. For three-state transitions, the variance value was 

increased to ±4.0 in order to represent observations in some instances of experimental data 

where a wider range of concentrations have both low and high AmFRET populations, and 
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to test the ability of our algorithm to classify data with larger overlaps. For our analysis, 

we only consider data points with log10(expression) values between 3.0 and 10.0. Note that 

datasets with log10(c50) less than 3.0 or greater than 10.0 were intentionally chosen to be 

outside this concentration range. Accordingly, datasets generated using log10(c50) = 1.0 or 

2.0 were designated as “One state: All assembled”, and datasets with log10(c50) = 12.0 were 

designated as “One state: No assembly”. Data for log10(c50) = 10 fall at the edge of the 

range of generated points. However, because of noise, data generated using this model show 

evidence for transitions from low AmFRET to high AmFRET states, although this transition 

is incomplete within the simulated concentration range. These synthetic data were used to 

represent experimentally observed cases where the complete transition is not fully captured.

To mimic data from measurements that correspond to two-state transitions, the synthetic 

data for AmFRET values were generated using a piecewise step function with log10(c50) 

as the transition point to mimic two-state discontinuous transitions, or using a Boltzmann 

sigmoid logistic equation48 to mimic continuous two-state transitions. For the latter case, 

data were generated by sampling points from the following equation for AmFRET, which 

will be a function of the bulk concentration c and the values will depend on the baselines for 

Amax and Amin, our choices for c50 and the choice of m, which is the slope of the transition 

between low and high AmFRET values. Accordingly, for synthetic continuous two-state 

data, AmFRET as a function of c is computed using:

AmFRET = c50e
ce

c Amax − Amin

c50 1 + exp c50 − c
m

(1)

Synthetic data to mimic three-state transitions were generated with two overlapping 

piecewise step functions, one stepping from zero to 0.4Amax and the other to 0.8Amax. For a 

given set of parameters namely, (i) the values of c50, (ii) stepwise versus sigmoid function, 

and (iii) whether the transitions are one-, twoor three-state, synthetic data were generated 

in three independent repetitions using different random number seeds with three different 

AmFRET noise levels (low, medium, high).

Heuristics to classify different categories of phase transitions:

Since synthetic datasets were generated from known priors, we can assess the accuracy 

of a classifier with certainty. This supervised approach, whereby we know how data were 

generated and ask if a classifier is accurate in its assignment of the category of phase 

transitions, yields heuristics that can be deployed in the analysis of real data while also 

knowing the level of confidence one can ascribe to a specific classification.

The null hypothesis is that all synthetic DAmFRET histograms belong to the two-state 

discontinuous transition category. We use the synthetic DAmFRET histograms to rule in or 

rule out this hypothesis. Specifically, each histogram is divided along the expression-axis 

into expression level slices. The one-dimensional histogram of AmFRET values within each 

expression level slice is fit to a sum of two Gaussians (Figure 2(b) and Figure S1). Here, the 

position of the first peak is set to be at zero AmFRET and the position of the second peak is 
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set to the maximum mean AmFRET across expression level slices. For calculating the latter, 

we discard all AmFRET values within the noise around AmFRET = 0. We use a sum of 

two Gaussians since the null model is that of a discontinuous two-state transition wherein 

all cells either have no assembly or have reached steady-state assembly. Next, the fraction 

assembled in each expression slice is calculated by computing the area under the curve of 

the second Gaussian peak and dividing it by the total area under both curves (Figure 2(c)).

If the fraction assembled in the last expression slice minus the minimum value for the 

fraction assembled is less than 0.1, then the DAmFRET histogram is classified as being 

one-state. The mean AmFRET value is then used to determine if the one-state behavior 

corresponds to no assembly or all assembled in the given expression range. Specifically, if 

the mean AmFRET value is less than the noise cutoff around AmFRET = 0 it is classified as 

being one-state without assembly.

For DAmFRET histograms that are inconsistent with one-state assembly we examine the 

R2 values as a function of expression slice for the fit of the AmFRET histogram to the 

sum of the two Gaussians (Figure 2(d)). For discontinuous two-state transitions, the R2 

values should be high (near 1.0) across all expression level slices. Additionally, Gaussian 

fits of AmFRET histograms for two-state continuous and three-state discontinuous data 

show distinct R2 dependencies on expression level. Specifically, for two-state continuous 

transitions, the R2 values are lowest at expression level slices around log10(c50). This is 

because, within the transition region, most cells have AmFRET values that lie between zero 

and high AmFRET for a two-state continuous transition (Figure 2(b) and Figure S1). The 

percent of cells that lie between the limits will depend on the slope of the transition. At 

equivalent noise levels, smaller slopes imply that a larger percentage of cells lie between 

the limits, thereby leading to a smaller R2 value. In contrast, the three-state discontinuous 

transitions show a linear decrease in R2 values across expression level slices due to the 

existence of three overlapping states. We used these two trends to determine if a DAmFRET 

histogram is consistent with either a two-state continuous or multi-state transition (see 

Materials and Methods for details). If R2 as a function of expression slice does not show 

either of these two trends, then it passes our null hypothesis and the transition measured by 

DAmFRET is classified as being two-state discontinuous.

Figure 3 shows how well the classifier performs in categorizing the synthetic data. The 

corresponding synthetic DAmFRET histograms are shown in Figure S2. Each dataset is 

assigned a color that corresponds to its classification and the shade of the color indicates 

the confidence level in the classification, the darker the shade the more confidence in 

the classification. Synthetic data were created in three replicates and therefore each row 

represents a different replica. Of the 162 histograms that we generated, our classification 

scheme yields a 90% accuracy, classifying 146 of the histograms correctly. In general, we 

succeed in classifying synthetic datasets into the correct categories, although the confidence 

in these classifications decreases as log10(c50) approaches the limits of the expression range 

that can be assessed, or the noise becomes too high. This is evident for synthetic data 

corresponding to two-state continuous transitions (Figure 3(d)).
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Beyond classifying datasets into distinct categories, for data classified as two-state systems 

we can fit the fraction assembled as a function of expression to a logistic function and 

extract c50. This is a strategy we adopt for analyzing real DAmFRET data, and we prototype 

it here for synthetic data. Figure 4 shows the comparison between the actual value of c50 

used to generate the synthetic datasets and the estimate for c50 extracted from the logistic fits 

to the synthetic datasets. We observe good agreement between the actual versus extracted 

values. However, deviations from the actual value of c50 occurs when this value approaches 

the limits of the expression range that can be accessed. Overall, the results in Figures 3 and 4 

show that the method introduced here allows for accurate classifications of phase transitions, 

while also enabling the extraction of accurate quantitative estimates for c50.

Application of the numerical classifier to DAmFRET data for a set of cPrDs:

We collected and analyzed DAmFRET data for 84 of the 100 candidate prion domains 

(cPrDs) identified and analyzed by Alberti et al.,16 in their screen for proteins with prion 

behavior (see Materials and Methods). Alberti et al. used a combination of four different 

assays to test if the cPrDs are bona fide prion formers. In their assessments, a bona fide prion 

former should have the following characteristics: (a) it should form foci in cells; (b) the 

assemblies extracted from cells should be stable as assessed by sensitivity to detergent; (c) 

the assembly state should be transferable from mother to daughter cells during cell division 

and (d) the assemblies should stain positively with amyloid sensitive dyes such as thioflavin 

T (ThT). In all, Alberti et al., identified 18 cPrDs that showed prion-like behavior in all 

four assays.16 Here, we make comparisons against the assessments made by Alberti et al. 

in order to test our classification method and o uncover information about mechanisms for 

prion formation as assessed by DAmFRET.

Figure 5 shows our classification of the cPrDs for which DAmFRET measurements were 

performed. The corresponding DAmFRET histograms are shown in Figure S4. For these 

data, we included an additional class to allow for proteins that are not classified as one-state, 

but only show assembly in fewer than 10% percent of the cells that were interrogated. Given 

the low percent of cells in the assembled state there is not enough information to classify 

the type of transition observed and therefore we denote this class as “Infrequent Transition”. 

Additionally, unlike the synthetic data set, in which the transition was binary in terms of 

being discontinuous or continuous, the classification of real data for two-state histograms 

falls along a continuum from discontinuous to continuous (Figure 5(e)). Thus, we group all 

cPrDs that show two-state behavior together and then further annotate their position on the 

spectrum.

Figure 5(a) shows that of the 84 cPrDs that were examined using DAmFRET, 35 showed no 

assembly across all expression levels, 9 showed infrequent transitions, 23 showed two-state 

behavior, and 2 showed assemblies at all expression levels. Additionally, 15 cPrDs showed 

mixed classification in which not all of the individual cPrD replicates were sorted into the 

same class (Figure 5(c)). Figure 5(b)–(d) shows the classification of each cPrD for each 

of its four replicates. The pixel color denotes the classification, and the darkness indicates 

the confidence level in that classification, with darker being more confident (Materials 
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and Methods). The two-state cPrDs are sorted by where they fall on the spectrum of 

discontinuous to continuous transitions (Figure 5(b), Materials and Methods).

Figure 5(e) shows representative DAmFRET histograms for five cPrDs that show two-state 

behavior in the DAmFRET assays. Here, the color represents where the cPrD of interest falls 

on the two-state spectrum. Nsp1 shows discontinuous two-state behavior with low AmFRET 

up until a threshold expression level and then a transition to a high AmFRET state with 

few cells showing intermediate AmFRET values. In contrast, Rbs1 features continuously 

increasing AmFRET values as the expression level increases. The other two-state cPrDs 

fall between these two extremes. Along the progression from discontinuous to increasingly 

continuous transitions we observe a positive slope in AmFRET at low expression values 

and a larger population of cells with intermediate AmFRET values in the transition region. 

In this context, it is worth noting that Pub1, which falls in the middle of the spectrum 

between discontinuous and continuous transitions, has been shown to form both disordered 

liquid-like condensates and ordered amyloid-like assemblies.49 This may suggest that the 

positive slope in AmFRET at low expression values corresponds to the formation of liquid­

like condensates, which, with increasing expression, transform into ordered assemblies.

cPrDs that fall outside the classification as two-state are grouped by classification and 

ordered by their predicted prion aggregation propensity as quantified by PAPA (Figure 5(c) 

and (d)). Toombs et al.,50 previously showed that a cutoff score of +0.05 yielded greater than 

90% accuracy in delineating the 18 bona fide prion domains from the 18 non-prion domains 

in the Alberti et al. study. We find that 31 of the 35 cPrDs that were classified as showing no 

assembly across all expression levels had PAPA scores below this cutoff. In comparison, 3 of 

9 cPrDs with infrequent transition (33%), 6 of 23 two-state cPrDs (26%), and 0 of 2 cPrDs 

that assembled at all expression levels (0%) had PAPA scores below this cutoff. Thus, our 

classification method is consistent with the trends expected based on PAPA scores.

cPrDs that are classified as two-state discontinuous from DAmFRET show prion-like 
behavior:

By cross-referencing our classifications with the results of Alberti et al.,16 we tested our 

hypothesis that cPrDs that are classified as undergoing two-state discontinuous transitions 

in the DAmFRET assay are in fact bona fide prion forming domains. Eight of the cPrDs 

were classified as undergoing a two-state discontinuous transition for all four experimental 

replicates. Therefore, we examined how many of these eight cPrDs engendered prion-like 

behavior in each of the four assays conducted by Alberti et al. (Figure 6(a)–(d)). All of the 

cPrDs that were classified as undergoing a two-state discontinuous transition formed foci 

in cells (Figure 6(a)), had assemblies that were SDS resistant (Figure 6(b)), and stained 

positively with ThT (Figure 6(d)). Two of the eight cPrDs did not pass the most stringent test 

for prion-like behavior, namely a heritable switch in the context of a Sup35 chimera (Figure 

6(c)). One of these, Cyc8 was subsequently shown to be a bona fide prion.51 These results 

suggest that, while a two-state discontinuous transition likely implies amyloid assembly 

consistent with prion formation, it does not necessitate heritability. This is expected given 

that DAmFRET interrogates the mechanism of assembly formation, whereas the biological 

context of prions dictates whether the amyloids propagate or not. For example, propagation 
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in rapidly dividing budding yeast cells requires specific interactions with the yeast-specific 

prion replication factor Hsp104.52

DAmFRET histograms of cPrDs that are bona fide prions are not always classified as 
undergoing a two-state discontinuous transition:

Next, we asked whether being a bona fide prion implies that the cPrD is classified as 

undergoing a two-state discontinuous transition from the DAmFRET analysis. Of the 18 

bona fide prion-forming domains, 16 were examined using DAmFRET. Of these, ten were 

classified as two-state, with six of these bona fide prion-forming domains being classified 

as two-state discontinuous in all four of their replicates (Figure 7). Additionally, three of the 

bona fide prion-forming domains were classified as undergoing an infrequent transition and 

three showed mixed classification. Given that ten of the 16 bona fide prion-forming domains 

were not classified as undergoing a two-state discontinuous transition, this suggests prions 

can exhibit other types of DAmFRET histograms. We find that 15 of the 16 did show at 

least the emergence of a transition to a higher AmFRET state. Only Cbk1 had a negligible 

increase in AmFRET across the expression levels analyzed. Together with the fact that Cbk1 

was only weakly amyloidogenic in Alberti et al.,16 this suggests that its self-propagating 

ability and/or nucleation mechanism may be atypical of prions.

In general, our analysis indicates that not all proteins capable of forming bona fide prions 

exhibit two-state discontinuous behavior under the specific experimental conditions used 

to generate these DAmFRET data. Shorter induction times or the use of a more sensitive 

cytometer may allow detection of missing low-FRET states for some proteins, while longer 

induction times or allowing the protein states to evolve through multiple rounds of cell 

division may allow detection of missing or infrequent high-FRET states for other proteins.

Can DAmFRET data be used to quantify nucleation probabilities for proteins that undergo 
two-state discontinuous transitions?

As shown for the dataset of Alberti et al., two-state discontinuous transitions are likely 

to be nucleated phase transitions. The simplest mechanism for such transitions is that of 

homogeneous nucleation described in terms of classical nucleation theory.35,38,53,54 We 

define the probability of homogeneous nucleation as the probability of observing non-zero 

or high AmFRET states as a function of time and concentration. The probability of 

nucleation and assembly are correlated, and this is governed by the degree of supersaturation 

and the free energy barrier. The supersaturation ratio centration and S = c
csat

 where c is the 

bulk concentration and Csat  is the saturation concentration above which the phase transition 

is thermodynamically favored. In DAmFRET, measurements are typically performed at a 

fixed time t across a population of cells containing a fixed concentration c of the protein of 

interest. Since each cell is akin to a femtoliter-scale test tube, each cell acts as a separate, 

independent experiment.

The fraction of cells in which assembly has occurred at time t and concentration c is used 

to define the probability p(t) = n+(t)
n . Here, n+ is the number of cells in which assembly 

has occurred at time t, and n is the total number of cells in which measurements are being 

Posey et al. Page 11

J Mol Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



made. Each cell is an independent observation volume in which two outcomes are possible 

namely, high AmFRET, implying the observation of assembly or no AmFRET, which means 

the lack of assembly in the cell. Accordingly, observations within each cell are Bernoulli 

trials, which are akin to a random experiment with exactly two outcomes. Accordingly, 

the overall outcomes across a population of cells can be treated as a binomial distribution. 

Since the outcome is also dependent on time and we are interested in the number of 

high AmFRET outcomes in a specific interval of time, the binomial distribution becomes 

a Poisson distribution, which is essentially a binomial distribution in the limit of infinite 

sub-divisions of the time interval.55

We adapt the approach of Jiang and ter Horst,56 which uses the Poisson distribution to 

extract information regarding nucleation rates and barriers from distributions of induction 

time measurements. If the average number of nuclei N that form in a time interval is 

known, the probability of finding k nuclei within that time interval is given by the Poisson 

distribution as: pk = Nke−N
k! . Note that the average number of nuclei that form in time 

interval t in volume V is directly related to the nucleation rate J because N = JVt. From the 

Poisson distribution, the probability that nuclei do not form in the time interval is given by 

p0 = e–N. Therefore, (1 –p0)=1–e–N is the probability that at least one nucleus has formed 

in the interval of interest. Accordingly, the probability of observing a high AmFRET state 

at time t is p(t) = 1 –exp(–JVt) and this can be equated to the fraction of cells in which 

assembly has occurred at a given time and concentration. At a fixed time-interval, the 

probability of observing a fully assembled state is governed by the supersaturation S because 

J(S) = ASexp − B
ln2S

. Here, A is a kinetic parameter that is governed by the rate of crossing 

the free energy barrier for nucleation, while B is a thermodynamic parameter governed by 

the size of the free energy barrier.

The Poisson distribution applies to a scenario in which supersaturation is achieved 

instantaneously and then fixed. While protein translation can be inhibited in cells by the 

addition of cycloheximide, this does not address the issue at hand, i.e., up to the point 

of cycloheximide addition, the concentration of protein, and therefore supersaturation, is 

continually changing. Although this may seem like a limitation, the reality is that, embedded 

within a single DAmFRET experiment is rich information about the concentration and 
time dependence of nucleation for tens to hundreds of thousands of cells, and this can 

be leveraged to provide an extraordinary advantage. By quantifying p(t) as a function of 

both time and concentration one can obtain a complete assembly probability landscape. 

This is shown in Figure 8 for a specific choice of values for A and B. Here, we set A = 

1014 m−3 s−1, B = 3.6, csat = 1.0 a.u., and V = 10−18 m3. We use a time range of 0 to 

20 h, and a concentration range of 1.0 –5.0 a.u. Note that we use acceptor intensity as a 

proxy for concentration and hence the choice of arbitrary units (a.u.) for concentrations. 

This is convenient since concentration shows up in terms of the supersaturation, which is 

dimensionless, and therefore the specific concentration scale is not relevant here.

To map the assembly probability across time and concentration for a population of cells 

and fully capitalize on the time- and concentration-dependent information contained in 
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DAmFRET data, we require knowledge of acceptor intensity as a function of time or at 

least upper and lower bounds on rates of protein expression. It is possible to observe 

individual cells via microscopy, while ensuring that they are incubated under conditions 

that are identical to the DAmFRET assay. Protein expression data for eight cells expressing 

the mammalian prion ASC (PYCARD)57 fused to mEos3.1 were collected in this manner 

(Figure 9(a)). Variability in expression levels across the cell population is apparent and 

this is the result of variation in plasmid copy number that was designed into the system. 

Although this approach reduces the throughput of the DAmFRET assay and does not yield 

the numbers desirable for large-scale statistical analyses, it shows that expression levels at 

distinct time points can be quantified.

In typical chemical kinetics assays used to study phase transitions in vitro, purified and fully 

disaggregated proteins are dissolved or diluted into buffer prior to performing measurements 

as a function of time.58–60 This ensures that measurements begin from a fully monomerized 

and dispersed phase. In contrast, the DAmFRET assay is performed in live cells that have 

been induced to express protein over a period of 10–24 hours. Unlike in vitro assays, the 

starting protein concentration is a moving target, since the protein of interest has gradually 

accumulated over a period of 10–24 hours prior to measurement. Further, the rate of protein 

accumulation varies from cell to cell. Because concentration is a moving target, the starting 

time t0 for the initiation of the phase transition is less well defined. We propose that the most 

accurate way to quantify incubation time at a particular concentration in the DAmFRET 

assay is to recognize that each concentration level ci attained during protein expression must 

be marked by a separate t0, which we designate as t0i, and hence there exists a distinct 

starting time t0i for every ci reached. Therefore, time is counted as the time elapsed from 

time t0i, when a given concentration ci is reached, to the time of measurement designated 

as tm (Figure 9 (b)). This method of tracking time elapsed at each concentration only holds 

while the concentration is increasing. Therefore, we identify the time point when 99% of 

the maximum concentration is reached. The expression data are fit to a logistic function in 

order to facilitate extrapolation and interpolation of the expression trajectory in subsequent 

analysis. Based on our data and other published values of protein expression in yeast this 

seems to be a reasonable model for approximating expression under the GAL1 promoter in 

yeast.61

Using parameters from fits to the fastest and the slowest protein expression trajectories 

as limits, we used nearly exhaustive combinations of parameters between these limits to 

calculate possible expression trajectories that fall between the fastest and slowest trajectories 

(Figure 9(b), gray area). Where the lines approach verticality, the data can be ignored 

since the modified method of counting time no longer applies. In order to explore how 

measured expression trajectories within individual cells affect the DAmFRET readouts, we 

select representative fast, intermediate, and slow trajectories from the expression data and 

plot them as a function of both time and concentration (Figure 9(d)) using the assembly 

probability landscape shown in Figure 8. This analysis identifies the relationship between 

the DAmFRET data and the three-dimensional model, by demarcating the bounded range of 

assembly probabilities that can be fit to DAmFRET data.
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Using the modeled range of expression trajectories, we estimated lower bounds for the 

assembly probability as a function of concentration in a two-dimensional projection of the 

three-dimensional data. The red, maroon and blue traces in Figure 9(c) indicate lower limits 

of assembly probability for the fastest, intermediate and slowest expression trajectories, 

respectively. While these plots show the full history of various cells in assembly probability 

versus concentration space based on the protein expression trajectory within a cell, the actual 

measurement of FRET only happens when the cell is at the end of the plotted trace. As 

can be seen for the intermediate expression rate trace, the final concentration at the time of 

measurement can yield a lower probability of assembly than the lower concentration values 

that were passed through earlier in the trace. This is because the final concentration was 

only present briefly before the measurement was made, and lower concentrations that were 

reached earlier in that cell had a longer incubation time.

From our observations, we draw the following conclusions: (1) the endpoint represents a 

lower bound for assembly probability because it represents the shortest time spent at that 

concentration (Figure 9(c), green trace); (2) the fastest expression trajectory provides an 

upper limit on the lower bound of the assembly probability because it represents the case in 

which the highest concentrations were achieved most rapidly, and (3) the maximum lower 

bounds on the assembly probabilities for all other expression trajectories will fall in between 

the values inferred for the slowest and fastest expression trajectories. We note that even 

though the measured assembly probability is attributed to the final concentration within 

a cell, that same cell also existed at lower concentrations for longer periods of time and 

therefore has increased probability of assembly as indicated by the maximum of the trace. 

This is evident in the red and green traces in Figure 9(c), which demarcate the bounded 

range of assembly probabilities that can be fit to DAmFRET data.

Overall, we can conclude that measurements of a small number of protein expression 

trajectories should make it feasible to extract the nucleation probability for various proteins 

that undergo two-state discontinuous transitions. Essentially, the protocol to follow would 

be to categorize the nature of the transitions using the supervised approach we have 

introduced here. This, supplemented by measurements of a modest number of expression 

trajectories for systems classified as undergoing two-state transitions, can be used to 

extract bounds on the in-cell saturation concentration and classical nucleation theory 

parameters A and B, which are directly related to the kinetics and thermodynamics 

of nucleation, respectively. The combination of these parameters provides a unique 

quantitative description of nucleation mechanism and paves the way for dissecting sequence­

to-mechanism relationships. This is noteworthy because it represents acquisition of key 

biophysical quantities from measurements made directly in a cellular environment, rather 

than extrapolating from measurements made in the simplified context of a test tube.

Do inferred values of c50 and the slope m provide useful information regarding the 
mechanism of nucleation?

As discussed above, classical nucleation theory allows for the prospect of fixing the 

observation time, varying the supersaturation and quantifying the fraction of proteins g(S) 

that have been incorporated into an assembled phase as a function of S. Previously, Khan et 

Posey et al. Page 14

J Mol Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., built on the conjecture of Sear62 who proposed that g(S) can be described empirically 

using a Weibull distribution. These distributions were defined by shape and scale parameters 

designated as d and EC50, respectively, which relate to the slope m and mid-point c50 

that we calculate here by fitting logistical models to DAmFRET histograms.39 The shape 

parameter d was found to correlate with the amount of structural order in the Sup35 prion 

domain. With our usage of classical nucleation theory, we can directly test if and how the 

slope and midpoint parameters extracted from DAmFRET experiments are related to the 

mechanistically relevant parameters csat, A, and B. Specifically, we wish to know if useful 

inferences can be forthcoming regarding the nucleation parameters in the absence of any 

additional information. We use classical nucleation theory, specifically the model based on 

the underlying Poisson distribution, to explore how the values of m and c50 of nucleation 

probability curves relate to the values of A, B, and csat that were used to generate the data. 

It is necessary to use an expression trajectory, and for the sake of simplicity, we choose 

the highest rate of expression that we modeled previously. However, once the nucleation 

probability data are generated, we proceed with the subsequent analysis as if we have no 

knowledge of expression rates.

By assuming a fixed value for two of the three variables A, B, csat, and varying the third 

within a reasonable range, we can explore how these variables affect m and c50. The 

parameter A was varied from 1013 to 1015 (spanning this range in logscale increments) 

with B fixed at 3.0 and csat fixed at 1.0. The resulting nucleation probability curves were 

collapsed onto distinct planes, and we assume these curves to be representative of the points 

acquired from fits to slices of DAmFRET data as previously described. We fit a logistic 

function to these points in order to obtain a slope, m, and midpoint c50 (Figure 10(a)). We 

then plotted m and c50 as a function of the values used for A (Figure 10 (b) and (c)). We 

find that m has a strong dependence on A, as shown by the dramatic changes in slope of the 

curves in Figure 10(a). Although the values of c50 also change with A, this effect appears 

to be determined by the change in slope rather than a shifting of the entire curve. This can 

be seen clearly in Figure 10(a), where all of the curves begin to depart from zero nucleation 

probability at the same location (near an acceptor intensity of 2.0 a.u.) but with different 

slopes. Thus, A, the parameter that measures the effective shape of the nucleation barrier, 

appears to affect m directly and c50 indirectly.

Next, we repeated the above analysis by varying B between 1.0 and 5.0, fixing A at 1014 

and csat at 1.0 (Figure 10(d)). Unlike A, we find that B, which quantifies the barrier height, 

has an inverse relationship with m (Figure 10(e)). Importantly, the value of B directly affects 

both m and c50 (Figure 10(f)). This is evident in the fact that in addition to changing slope, 

the onset of the transition i.e., the initial departure from zero nucleation probability, shifts 

further to the right with increasing B (Figure 10(d)).

Repeating the analysis with the csat varied between 1.0 and 2.0, fixing A at 1014 and B at 1.0 

revealed that csat and c50 are positively correlated with one another (Figure 10(g), (i)). This 

is true for all combinations of A, B and csat in the ranges that we tested (Figure 10(j)). Taken 

together, we observe that while there are many combinations of A, B and csat that result in 

similar intermediate slopes, the largest slopes corresponding with the steepest transitions are 

the result of high A, low B, and low csat (Figure 10(k)). Accordingly, the steepest slopes 
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correspond with the highest rates, lowest barriers, and lowest saturation concentrations. 

These analyses indicate that even in the absence of information about expression rates, 

c50 can provide useful information for comparing different proteins. Even though c50 is 

influenced by A, B, and csat, it has a strong positive correlation with csat across all values 

of A and B and this is a direct consequence of the two-state behavior suggesting it can be 

used as a reasonable proxy for csat, which measures the driving forces for phase separation. 

On the other hand, m, (or the d parameter from the original work.39 is a convolution of 

contributions from A, B and csat, and therefore m on its own is not a readily interpretable 

parameter. However, it still carries information regarding the relative drive for nucleation, 

whereby steeper slopes are often due to a combination of high values for A, and low values 

for B as well as csat.

Analysis of DAmFRET data yields information regarding the driving forces for assembly:

DAmFRET data are information-rich, and additional insights can be extracted from the 

histograms. For instance, we can extract accurate quantitative estimates for c50 values 

for all proteins that show two-state behavior. Figure 11 shows the c50 for all 23 cPrDs 

which were classified as undergoing a two-state transition. By extracting c50 values we 

can rank order these proteins according to their c50 values. Given the relationship shown 

in Figure 10, for proteins that show two-state discontinuous behavior, the lower the c50, 

the lower the concentration needed for assembly, and thus the greater the driving force 

for assembly. The analysis in Figure 11 shows a two-order of magnitude variation in 

inferred c50 values. It is worth emphasizing that all cells for all measurements were prepared 

in identical fashion. All proteins are probed across overlapping concentration ranges in 

similar cellular environments. Therefore, to zeroth order, the only variable distinguishing 

different experiments is the sequence of the protein whose phase behavior is being probed. 

Accordingly, to zeroth order, assuming the cellular factors do not have cryptic sequence­

specific responses as modulators of phase behavior, the data for c50 help quantify the impact 

of sequence-encoded interactions as drivers of phase transitions. If there are sequence­

specific effects of cellular factors, it still follows that the modulation of the driving forces is 

governed by the sequences of the proteins whose phase behavior is being probed.

Extracting sequence-to-assembly relationships from DAmFRET data:

The minimum R2 value in the transition expression region yields information on the degree 

of discontinuity in the two-state transition. Larger R2 values imply that the DAmFRET 

data fits well to a sum of two Gaussians in the transition region and thus most cells are 

either at zero AmFRET or at high AmFRET, thus implying the transition is discontinuous. 

In contrast, small R2 values imply that AmFRET values for most cells falls between zero 

and high values for AmFRET. The fraction of cells that fall between the two limits should 

increase as the slope of the transition becomes smaller, and thus the R2 should be lowest for 

two-state continuous cases with shallow transitions. We can use this relationship to examine 

whether there are certain amino acids that correlate with one type of two-state transition 

over another. Figure 12 plots the fraction of a given amino acid against the minimum 

R2 value in the transition region. Each point represents one in-cell experimental replicate 

per cPrD. These data are shown for the four amino acids with the highest positive versus 

negative linear correlations. The correlations for all amino acids are showed in Figure S6. 
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We find that an increase in the fraction of Phe or Thr correlates positively with increased 

discontinuity. In contrast, an increase in the fraction of Pro or Tyr correlates negatively with 

increased discontinuity. The impact of Pro on the discontinuity of the two-state transition 

is not surprising given its tendency toward disrupting secondary structures other than beta 

turns. However, the non-equivalence of Phe and Tyr as promoters of two-state discontinuous 

transitions is surprising. This suggests that titrations of Phe versus Tyr contents in low 

complexity domains might be a way to tune the discontinuity of a phase transition and the 

tendency for forming liquid-like condensates versus ordered assemblies.63,64 A recent study 

has uncovered clear differences between Phe and Tyr as drivers of condensate formation 

via phase separation aided percolation transitions in prion-like low complexity domains 

(PLCDs). Further, analysis across homologous sequences highlights a negative correlation 

between Phe and Tyr contents.65 Taken together with findings in Figure 11, a prediction 

that emerges is that weakening of the driving forces for condensate formation by lowering 

the Tyr content and increasing the Phe content also enables a facile transition to ordered 

assemblies. This would suggest that there is likely to be discernible code for distinguishing 

sequences that drive condensate formation that also turnover into ordered assemblies versus 

those that form stable, reversible condensates that are unlikely to undergo disorder-toorder 

transitions.

Discussion

There is growing interest in measuring phase transitions in live cells.34,39,40,42 Of particular 

interest are results of measurements made under conditions where the effects of active 

processes are minimized. These measurements are helpful for understanding how the 

milieu of a living cell impacts the intrinsic driving forces for phase transitions.39 These 

experiments, performed as a function of controlling the expression levels of the protein of 

interest, can help in mapping the sequence-specific free energy landscape that underlies 

the driving forces for and mechanisms of phase transitions that are under thermodynamic 

control.

Here, we analyze in-cell phase transitions by allowing for a range of transition categories 

and use a supervised approach to develop a method that enables the automated analysis 

of DAmFRET data. This approach affords classification of the type of phase transition 

and comparative assessments of the driving forces for phase transitions. We applied our 

method derived from supervised learning to analyze DAmFRET data for 84 different 

candidate prion domains. Our analysis helps categorize the phase transitions for each of 

these domains and identify sequences that clearly show two-state behavior. Among the 

trends that emerge, we find a noticeable negative correlation between the Tyr/Pro content 

and systems that undergo discontinuous two-state transitions. Conversely, we observe a 

weak positive correlation between the Phe/Thr content and the propensity for showing 

discontinuous two-state behavior. We envisage the possibility of using information gleaned 

across large libraries of sequences to design novel domains that undergo specific categories 

of phase transitions. The ability to quantify the sequence contributions to c50 values also 

affords the prospect of manipulating the driving forces for forming prion-like assemblies 

through sequence design.
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In addition to categorizing sequence-specific phase transitions and quantifying the driving 

forces for these transitions, we show how classical nucleation theory can be brought to 

bear for estimating the lower bounds on nucleation probabilities of systems that undergo 

discontinuous two-state transitions. This analysis requires independent measurements of 

expression trajectories, although this information is not available across the spectrum of 

proteins that have been interrogated using DAmFRET. If the parameters S, and J can be 

extracted using analysis of the DAmFRET data as a function of S, then the parameters 

A and B can be determined by plotting J/S versus ln−2S. This would allow mechanistic 

inferences such as estimates of free energy barriers to be extracted from a single DAmFRET 

experiment. Although expression trajectories are not currently obtained with the same level 

of throughput and speed as the generation of DAmFRET histograms, the data regarding 

expression trajectories are essential for estimating nucleation probabilities. It suffices to 

have these data for the fastest and slowest expression trajectories. High-throughput methods 

for obtaining upper and lower bounds on expression levels versus time should be feasible, 

and promising options are being explored. Supplementing datasets by defining bounds 

on probable expression rates will go a long way toward facilitating a near complete 

mechanistic understanding of nucleated phase transitions for systems that undergo two­

state discontinuous transitions. The physical parameters extracted from the application 

of classical nucleation theory to the analysis of DAmFRET histograms augmented by 

expression trajectories could be useful in enabling proteome-wide comparisons of the 

driving forces for forming ordered assemblies.

Finally, the packaged code for supervised learning and for automated analysis of DAmFRET 

data are available via Github (https://github.com/pappulab/damfret_classifier). This package 

is distributed as open source, available for free download and usage, and users are invited 

to contribute code and insights to further the development of the package that is intended 

to enable automated classification of phase transitions and mechanistic inferencing based on 

DAmFRET data.

Materials and Methods

Biological reagents and yeast transformation

The yeast strain used was rhy1713 as described in previous work.39 The strain is a knockout 

of CLN3 combined with a galactose-inducible overexpression of WHI5, thereby breaking 

the G1 cell cycle checkpoint and inducing cell arrest.66 This allowed us to detect only 

de novo nucleation events by preventing mother-daughter cell propagation of the prions. 

Table S4, attached as an Excel spreadsheet, lists all plasmids used in this study. Plasmid 

number, gene name, cell count and encoded polypeptide sequences for each gene region are 

listed for each construct and replicate. Cells were transformed using a standard lithium acid 

transformation protocol.67

Preparation of cells for cytometry

Protein expression is induced in a 2% synthetic galactose (SGal)medium for 14 hours before 

being resuspended in fresh SGal for 4 hours to minimize autofluorescence. After 18 hours of 

total induction, the cells are uniformly illuminated with 405 nm violet light for 25 minutes 
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to convert a highly reproducible ratio of the mEos3.1 from the green donor form to the red 

acceptor form.

DAmFRET cytometric assay

Following photoconversion, acceptor fluorescence intensity and FRET are measured using 

a flow cytometer. The ratio of indirect and direct acceptor fluorescence (595 ± 10 nm 

when excited with 488 nm or 561 nm light, respectively) is referred to as AmFRET, 

and this is used to measure the extent of ordered assembly within each cell. In the 

original implementation of the DAmFRET assay, the acceptor intensity, excited directly, 

was converted into units of concentration by dividing it by the measured cytosolic volume 

of the cell. In this work, cell imaging during flow cytometry measurements was bypassed 

to increase throughput by greater than 150-fold. The acceptor fluorescence intensity is still 

measured and used to monitor expression level, and this serves as a useful proxy for protein 

concentration in the cell.

Additional details for the generation of the synthetic dataset

The number of points generated, which mimics the number of cells being interrogated in a 

DAmFRET measurement, was randomly selected to be between 104 and 1.5 104. In order to 

represent different distributions of points across the concentration range, an additional 104–

1.5 104 points were added to each dataset in three ways: points were chosen from a uniform 

distribution spanning the full range from 2.0 to 8.0, only at concentrations above the c50, or 

only at concentrations below c50. The values of AmFRET for these additional points were 

determined as described above. Data were also generated without these additional points to 

simulate datasets obtained using fewer measurements. These smaller datasets had between 

104 and 1.5 × 104 points in total, rather than 2 × 104 or 3 × 104 points.

Method for classification of DAmFRET histograms

For each replicate, non-overlapping slices are made along log10(Expression). These slices 

are made in intervals of 0.5 (synthetic data), and 0.2 (real data). To reduce noise 

contributions at the extrema, our method uses a low cutoff of 3.0 and a high cutoff of 

10.0 in log10(Expression) for synthetic data, and slices are only collected between these 

limits. A low cutoff of 1.5 and a high cutoff of 5.0 is employed for real data. For each slice, 

a normalized 1D histogram of the AmFRET counts is determined by binning the synthetic 

data in intervals of 0.1, while the real data is binned in intervals of 0.02. That histogram is 

fit to the sum of two Gaussians. The first Gaussian is centered at AmFRET = 0, while the 

second Gaussian is centered at the position corresponding to highFRET. Here, highFRET is 

calculated by taking the mean of AmFRET > 0.5 (synthetic data) or AmFRET > 0.05 (real 

data) in each expression level slice and taking the maximum of this value over all expression 

slices. The R2 value of the fitted function is saved to be utilized later on.

Using the fitted parameters, each Gaussian is numerically integrated to extract the area under 

the curve, yielding the quantities g1 and g2, for the first and second Gaussians, respectively. 

The fraction assembled in a given expression level, i, is then given by fA,i = g2/(g1 + g2). To 

determine if no transition is observed in the DAmFRET histogram the change in the fraction 

assembled, ΔfA, is calculated as:
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ΔfA = fA, n − min fA, i

where f A,n is the fraction assembled in the last expression level slice. We define an 

assembly threshold, Δf A,thresh, for one-state assembly as 0.10 (synthetic data) and 0.15 (real 

data). If Δf A < Δf A,thresh, then the DAmFRET histogram does not show a transition and 

can be classified as one-state. If the mean AmFRET < 0.5 (synthetic data) or AmFRET < 

0.05 (real data), then the DAmFRET histogram is classified as one-state: no assembly at 

all expressions (blue). Else, the DAmFRET histogram is classified as one-state: assembled 

at all expressions (black). To determine the confidence in either assignment, we calculate a 

confidence score of the system using the deviation of Δf A from Δf A,thresh :

Confidence ScoreBLUE & BLACK = ΔfA, tℎresℎ − ΔfA /ΔfA, tℎresℎ .

Since this score is normalized, it ranges from 0 to 1.

If Δf A ≥ Δf A,thresh, the system is likely to be undergoing some kind of transition. Therefore, 

we fit a logistic function to fraction assembled profile using the equation: 1/(1 + exp(−(c - 

c50)/m)). Here, c is the log10(Expression) of a given slice, c50 is the log10(concentration at 

which 50% of cells are in the assembled state), and m is the inverse of the slope. Thus, we 

can extract c50 from the fit of the fraction assembled to the logistic function.

To account for the fact that real data can limited and/or noisy at the extrema of the 

expression level range, we add a couple additional checks for one-state behavior when 

analyzing real data. If c50 ≤ 1:5, i.e., below the lower limit of log10(Expression) used in our 

analysis of the real data, then this implies the system transitioned at low log10(Expression) 

values at which we have limited and/or noisy information. Thus, we also classify these 

histograms as one-state: assembled at all expressions (black). For these cases, the confidence 

score is just set to one.

At this point we perform our final check on whether a system has undergone no assembly 

at all expression levels. If c50 ≤ 4:0, then we check the number of measurements that are 

above c50. If this number is less than or equal to 20, then we ascribe these points to noise 

and the corresponding DAmFRET histogram is classified as one-state: no assembly at all 

expressions (blue). If c50 > 4:0, then the transition is at the edge of the expression level 

range, which implies c50 is not likely well defined. Thus, we just examine the number of 

points with AmFRET > 0.05 corresponding to an expression level above c50. This checks 

the number of points that are genuinely in the assembled state above c50. If this number is 

less than or equal to 20, then we also ascribe these points to noise and the corresponding 

DAmFRET histogram is classified as one-state: no assembly at all expressions (blue). In 

both cases, the confidence score of these assignments is set to one.

Next, we check whether there is enough data to classify the transition. This check was not 

part of the method to analyze the synthetic data, but this checkwas added for the real data to 

account for cases in which there was not enough data to classify the transition. If the fraction 

of cells above the c50 (f c50) is less than 10% of the total number of cells for that replicate, 
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the system is classified as undergoing an infrequent transition (yellow). Unlike the one-state 

classes, our check for this class involves first eliminating the DAmFRET histogram as 

being classified as one-state. Thus, our confidence score in the assignment of an infrequent 

transition must reflect the multiple checks that are performed to lead to this assignment. 

We calculate Score1 = min (1, Δf A - Δf A,thresh)/(0.5 - Δf A,thresh)) and Score2 = (0.1 - 

fc50)/0.1. Here, Score1 checks the deviation from the one-state criterion and Score2 checks 

the deviation from the infrequent transition criterion. The final confidence score is set to be 

the minimum of Score1 and Score2.

The remaining DAmFRET histograms undergo some sort of transition. Thus, we utilize the 

R2 values of the fit to the sum of two Gaussians to determine features of the transition and 

further classify these histograms. Histograms that show a two-state continuous transitions 

should have low R2 values around c50 given that a majority of the points will be _between 

AmFRET = 0 and AmFRET = high FRET. Thus, we identify an expression level window 

of c50 ±1. If c50 + 1 exceeds the expression level range, then the last four expression 

slices are used for the window. Then, within this identified window both the maximum 

absolute change in consecutive R2 values, max ΔRw
2 , and the minimum R2 value, min Rw

2 , 

is recorded. Here, the subscript w denotes that we are only examining the R2 values that 

correspond with expression level slices around c50 as described above. If max ΔRw
2 > 0.08

and min Rw
2 < 0.6, then the DAmFRET histogram is classified as undergoing a two-state 

continuous transition (red). The confidence score in this classification is then the minimum 

confidence of the preceding three checks. Specifically, we calculate Score1 = min(1, (Δf 

A- Δf A,thresh)/(0.5 - Δf A,thresh)) and Score2 = min(1, f c50 – 0.1)/(0.3 – 0.1)) and Score3 

= min 1, 0.6 − min Rw
2 /(0.6 − 0.3)). Here, Score1 checks the deviation from the one-state 

criterion, Score2 checks the deviation from the infrequent transition criterion, and Score3 

checks the deviation from the two-state continuous transition criterion. The final confidence 

score is then the minimum of these three values.

Next, we sought to determine if any of the remaining DAmFRET histograms showed 

multistate transition behavior. From the synthetic 2-step data, we noticed that the R2 values 

tended to linearly decrease with increasing expression level slice. This is due to the fact 

that the extracted high FRET value is a convolution of several high AmFRET states that 

are overlapping in their expression level range and thus neither high AmFRET state ever 

fits well to the sum of two Gaussians. To classify DAmFRET histograms that show this 

behavior, we fit the full R2 profile to a linear fit and restricted the maximum slope of that fit 

to be zero. Then the R2 value of this fit was extracted, Rl
2. If Rl

2 > 0.6, then the DAmFRET 

histogram was classified as undergoing a higher order state transition (magenta). As before, 

the confidence score in this classification was calculated using the previous checks. Here, we 

have Score1 = min(1, Δf A - Δf A,thresh)/(0.5 - Δf A,thresh)) and Score2 = min(1, f c50 – 0.1)/

(0.3 – 0.1)) and Score3 = min(Rw
2 ) and Score4 = Rl

2 − 0.6 /(1 − 0.6). The final confidence 

score is the minimum of all four values.

Finally, the remaining DAmFRET histograms were classified as undergoing a two-state 

discontinuous transition (green) as the data did not show any features that led to the data 

Posey et al. Page 21

J Mol Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



failing the null hypothesis. The confidence score for this classification was set to the 

minimum of the following four scores: Score1 = min(1, (ΔfA − ΔfA,thresh)/(0.5 − ΔfA,thresh)) 

and Score2 = min(1, fc50 − 0.1)/(0.3 − 0.1)) and Score3 = min(Rw
2 ) − 0.6)/(1 − 0.6) and 

Score4 = (0.6 − 0.6 − Rl
2 /0.6)/0.6.

Alberti et al. dataset and creation of DAmFRET histograms

DAmFRET histograms were collected for all 94 Alberti et al. cPrDs, 93 were performed 

in quadruplicate and one construct was performed with eight repeats. Each replicate is 

composed of 0–170,000 individual cell measurements of AmFRET at a given expression 

level. Figure S7 shows the distribution of the number of cell measurements for all 

replicates. Given the wide range in the number of individual cell measurements performed 

across the dataset, we used an information theoretic approach to identify the ideal 

common grid size for our two-dimensional DAmFRET histograms of expression level and 

AmFRET. To determine an acceptable grid size which could be applied to all replicates 

for subsequent analysis, we examined the information density quantified by the Shannon 

Entropy, S = − ∑i = 1
nx ∑j = 1

ny pijlogpij, and its change as a function of increasing grid size, 

on a subset of replicates. Our analysis, shown in Figure S8 and described in further detail 

in the supplementary material, led to the choice of a 300 × 300 common grid size. This 

grid size was chosen to maintain a large amount of information across varying numbers of 

individual cell measurements. However, given that replicates at lower measurement counts 

tend to experience significant |ΔS| loss at the 300 × 300 grid size, any subsequent analysis 

may be impaired. Hence, we excluded cPrDs who had at least one replicate with <2 × 104 

individual cell measurements. This left us with 84 cPrDs for subsequent analysis.

Determining the degree of discontinuity in the transition of a cPrD classified as 
undergoing a two-state transition

The R2 value around the expression slice that corresponds to log10(c50) yields information 

on how well a sum of two Gaussians can capture the 1-dimensional AmFRET histogram 

at the transition. Thus, we sort the cPrDs by their mean minimum R2 in the region that 

corresponds to the expression level slices within the window of log10(c50) ±1, min(Rw
2 ), 

to order them by the degree of discontinuity in the transition. To color the data in plots 

Figure 5(E), Figures 11 and 12 we take advantage of the fact that one of the criteria for 

classification of DAmFRET data into the two-state continuous class is that min(Rw
2 ) must 

be less than 0.6. Thus, any cPrD that has a mean min(Rw
2 ) of less than 0.6 is colored red 

(two-state continuous) and any cPrD that has a mean min(R2 w Þ of greater than 0.6 is 

colored green (two-state discontinuous). Then, the alpha color for each of the two-state 

cPrDs/cPrD replicates is based on how far the min Rw
2 /min Rw

2  is from the threshold 

of 0.6. For those cPrDs classified as two-state discontinuous the alpha color is set to α 
= min Rw

2 − 0.6 /(1 − 0.6). For those cPrDs classified as two-state discontinuous the alpha 

color is set to α = min 1, 0.6 − min Rw
2 /(0.6 − 0.3). A lower limit of 0.3 rather than 0.0 is 

used in the latter case given that R2 values rarely ever drop below 0.3.
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Microscopy

Yeast cells expressing ASC-mEos3.1 were grown overnight in synthetic media containing 

2% dextrose while shaken at 30 °C. Cells were then loaded into a CellASIC ONIX 

microfluidic device (Millipore Sigma B04A03). Media containing 2% galactose was flowed 

through the microfluidic device at a rate of 5 kPa from 2 wells at a time. Timelapse images 

were acquired on an Ultraview Vox (Perkin Elmer) Spinning Disc (Yokogawa CSU-X1). 

Images were collected with an alpha Plan Apochromat 100x objective (Zeiss, NA 1.4) onto 

an Orca R2 camera (Hamamatsu, C10600–10B). mEos3.1 was excited with a 488 nm laser, 

and the fluorescence emission was collected through a 525–50 nm bandpass filter. Images 

were collected as z-stacks with 0.5 lm steps (41 slices) and a 30 ms camera integration time 

every 5 minutes. Additionally, a single transmitted light image was acquired in the middle 

of the z stack with an integration time of 200 ms. Each time point was sum projected and 

the resulting time course was registered to reduce movement of the cells. Regions of interest 

were then drawn in individual cells and the mean intensity of the sum projected fluorescence 

was measured from the beginning of the time course until the end.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of disorder–order transitions and details of the DAmFRET assay. (a) At low 

(1) and medium (2) protein concentrations there is a free energy barrier for nucleation of 

ordered assemblies, whereas at high (3) protein concentrations this barrier is eliminated. 

Here, the protein concentration in (1) corresponds to a system that is subsaturated 

and protein concentrations in (2) and (3), respectively correspond to systems that are 

supersaturated. (b) DAmFRET is performed using a chimera of an aggregation-prone or 

prion-like protein of interest and a photoconvertible fluorescent protein mEoS3.1. This 
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allows for the examination of FRET in live cells and AmFRET can be measured using 

flow cytometry for thousands of cells with different expression levels. We assume that 

steady-state assembly is reached instantaneously upon nucleation, at least given the temporal 

resolution of measurements and the rapid timescales one is likely to associate with actual 

barrier crossings, i.e., transition path dynamics in typical physico-chemical reactions.46 

At low concentrations, the system is subsaturated, and nucleation is highly disfavored so 

all cells should have low AmFRET values indicating the protein remains in the dilute 

phase (off-white color). At intermediate concentrations, the system is supersaturated and 

the barrier for nucleation is reduced and now some cells maintain a dilute population and 

low AmFRET, whereas other cells undergo nucleation and thus the formation of ordered 

assembles as indicated by high AmFRET (bright yellow). At high concentrations the system 

is significantly supersaturated, and there is no longer a barrier for nucleation and most cells 

show high AmFRET.
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Figure 2. 
Schematic of the method used to classify synthetic DAmFRET data. (a) Row one shows 

representative synthetic DAmFRET histograms for the five different classes we aim to 

classify. (b) Each synthetic DAmFRET histogram is sliced into expression level windows 

and the corresponding 1-dimensional AmFRET histograms are fit to a sum of two Gaussians 

where the position of the first peak is set to AmFRET = 0 and the position of the second 

peak is set to the maximum mean AmFRET across all expression slices after removal of 

AmFRET values around zero. Here, example fits are shown for the expression level slice 

of 6–6.5. For the other expression slices see Figure S1. (c) The fits are used to extract the 

fraction of cells that undergo assembly in each expression slice by taking the area under the 

curve of the second peak and dividing it by the total area under both curves. If the change 
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in fraction assembled from the last expression slice minus the minimum fraction assembled 

is less than 0.1, then the profile is classified as one state and the mean AmFRET across all 

expression slices determines whether the protein is in the no assembly versus all assembled 

class. (d) For all profiles that are not classified as one-state, we use the R2 values of the fit 

to the sum of two Gaussians across the expression slices to rule out histograms that do not 

show two-state discontinuous behavior. Profiles that show a minimum in R2 values around 

log10(c50) are classified as two-state continuous and profiles that show a continuous decrease 

in R2 values across expression slices are classified as three-state discontinuous. All other 

profiles pass the test of the null hypothesis and are thus classified as two-state discontinuous.
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Figure 3. 
Classification of synthetic DAmFRET histograms. Each histogram is colored by its 

classification and the shade of the color indicates the confidence of that classification. The 

darker the shade the more confident the method is in its classification (Table S1). For a 

non-shaded version of Figure 3 see Figure S3. Each row denotes a different replica. Each 

column is denoted by the log10(c50) (1.0, 2.0, 4.0, 6.0, 8.0, 10.0, or 12.0), the function 

(Sigmoid, Step, or 2 Step), and the noise level (Low, Medium, or High) used to generate the 

synthetic DAmFRET histograms.
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Figure 4. 
Actual log10(c50) values versus the log10(c50) values extracted from the logistic fit of the 

fraction assembled profiles for all two-state DAmFRET histograms (Figure 2(c)). Boxplots 

show distributions of log10(c50) extracted from 54 histograms for log10(c50) = 4.0, 6.0, and 

8.0 and 38 histograms for log10(c50) = 10.0.
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Figure 5. 
Classification of DAmFRET histograms of 84 cPrDs previously examined by Alberti et al. 

(a) Number of cPrDs in each type of phase transition class. (B)–(D) List of cPrDs that 

were classified as two-state (b), mixed classification having replicates belonging to multiple 

classes (c), assembled at all expression values (d-black), undergoing an infrequent transition 

(d-yellow), and showing no assembly at all expression values (d-blue). For the checkboard 

plots, each square represents an experimental replicate, and the color of the square denotes 

the classification. The darker the shade the more confident the method is in the classification 

Posey et al. Page 33

J Mol Biol. Author manuscript; available in PMC 2021 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Table S2). The classifications not shaded by confidence score are showed in Figure S5. The 

PAPA prion score for each cPrD is listed in parentheses. The cPrDs classified as undergoing 

a two-state transition are sorted by the degree of discontinuity of the transition. The cPrDs 

for all other classes are sorted by their PAPA prion score.50 (e) Representative DAmFRET 

histograms of cPrDs that were classified as undergoing a two-state transition. The color 

corresponding to each histogram denotes the degree of discontinuity in the transition (see 

Materials and Methods).
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Figure 6. 
Assessment of cPrDs classified as undergoing a discontinuous two-state transition. For 

the eight DAmFRET profiles that were classified as two-state discontinuous we examined 

whether or not the associated cPrDs formed (a) foci, (b) SDS resistant assemblies, (c) 

heritable assemblies, and (d) ThT positive assemblies in the assays conducted by Alberti et 

al.16
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Figure 7. 
Classification of DAmFRET histograms of the 16 bona fide prion-forming domains 

identified by Alberti et al. and analyzed with DAmFRET. For the checkboard plots, each 

rectangle represents an experimental replicate of one of the prion domains and the color 

of the rectangle denotes the classification. The darkness of the shade denotes the degree 

of confidence in that classification, with darker shades corresponding to more confidence. 

Those prion domains classified as two-state are sorted by the degree of discontinuity at the 

transition.
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Figure 8. 
Modeling assembly probability as a function of time and concentration. Assembly 

probability versus time and assembly probability versus concentration are orthogonal 

planes forming a surface when plotted in three dimensions (time, concentration, assembly 

probability). As an approximation, DAmFRET data are in the assembly probability vs. 

concentration plane, at a single fixed time (black circles and line).
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Figure 9. 
Modeling assembly probability using knowledge of protein expression trajectories. (a) 

Monitoring of protein expression in DAmFRET cells shows variability in accumulation 

of protein over time due to differences in plasmid copy number, as designed. Fluorescence 

intensity is used as a proxy for protein concentration. The data (open circles) are fit using a 

logistic function (lines). The raw data were from video S1 in the work of Khan et al.39 (b) 

To relate the expression trajectory to the three-dimensional plot more accurately, the data are 

converted to time elapsed at each concentration (i.e., time elapsed from when concentration 

Ci is reached (tCi) to the time of measurement (tm), see text). Characteristic fast (red), 

intermediate (maroon) and slow (blue) trajectories were selected from the expression data 

for analysis in three dimensions. With the fit parameters from the red and blue traces as 

upper and lower limits, all combinations of parameters were used to calculate the range of 

possible logistic expression trajectories within these limits (gray fill). (c) Two-dimensional 

projection of the three-dimensional model with characteristic fast (red), intermediate 

(maroon) and slow (blue) trajectories selected from the expression data. The blue line is 
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not visible because low expression did not result in appreciable assembly probability. The 

endpoints of the trajectories, defined as 99% of max concentration, provides a lower bound 

for assembly probability (green line). The upper bound for assembly probability at any 

concentration corresponds to the fastest expression rate (red line). (d) Protein expression 

versus elapsed time trajectories are plotted in three dimensions illustrating how the change 

in concentration over time during an experiment maps to the assembly probability landscape.
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Figure 10. 
Relationship between the parameters m and c50, and the parameters from classical 

nucleation theory. Overall, we find that c50 is linearly correlated with csat, whereas m is a 

complex convolution of contributions from A, B, and csat. Assuming the highest expression 

rate (see text), and by varying one of the three parameters A, B, and csat, while keeping 

the other two fixed, we generated curves for nucleation probabilities using the Poisson 

distribution model. The resulting data in three dimensions were projected onto distinct 

planes and plotted (panels a, d, and g, open circles) in order to simulate points acquired 
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from fits to slices of DAmFRET data. A logistic function (solid lines) was fit to these 

points in order to obtain a slope, m, and midpoint c50. (a) The parameter A was varied 

from 1013 (dark blue) to 1015 (dark red) with B fixed at 3.0 and csat fixed at 1.0. (b) The 

relationship between slope, m and A. Colors correspond to those used in panel (a). Panel 

(c) The midpoints, c50, of the fitted curves in panel (a) are plotted against A. Panels (d), 

(e) and (f) are equivalent to panels (a), (b) and (c), except that the parameter B was varied 

between 1.0 and 5.0, while A was fixed at 1014 and csat was fixed at 1.0. Panels (g), (h), and 

(i) correspond to panels (a), (b), and (c), except that the parameter csat was varied between 

1.0 and 2.0, while the parameter A was fixed at 1014 and the parameter B was fixed at 1.0. 

Panel (j) shows the fitted values of c50 represented by marker size for all combinations of 

parameters A, B and csat. The positive linear correlation between c50 and csat holds for all 

combinations of A, B and csat. In panel (k) the fitted values of m are represented by marker 

size as a function of all combinations of parameters A, B and csat. Many combinations of 

these parameters result in similar intermediate slopes, while the largest slopes arise for high 

values of A and low values for B and csat.
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Figure 11. 
Extracted c50 values for all 23 cPrDs which were classified as undergoing a two-state 

transition from the DAmFRET data. The color and shade of each bar corresponds to the 

degree of discontinuity in the transition.
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Figure 12. 
Correlation between amino acid frequency and degree of discontinuity for all 23 cPrDs 

classified as undergoing a two-state transition. Each point corresponds to an experimental 

replicate. The color of each point denotes the degree of discontinuity of the transition. 

Numbers indicate the Pearson r-values used to quantify positive or negative correlations.
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