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Biallelic truncation variants in ATP9A are associated with a
novel autosomal recessive neurodevelopmental disorder
Francesca Mattioli 1,11, Hossein Darvish2,11, Sohail Aziz Paracha3, Abbas Tafakhori4, Saghar Ghasemi Firouzabadi5, Marjan Chapi4,
Hafiz Muhammad Azhar Baig6, Alexandre Reymond 1✉, Stylianos E. Antonarakis7,8✉ and Muhammad Ansar7,9,10

Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the
identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected
individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique
opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive
neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing
of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these
putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a
causative role of ATP9A in these patients, a previously described Atp9a−/− mouse model showed behavioral changes.
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INTRODUCTION
Intellectual disability (ID) or delayed psychomotor development
are common and highly heterogeneous phenotypes of genetic
origin, affecting 1–3% of the general population1,2 which pose a
significant socio-economic burden on the affected families, the
health care system, and society in general3. Despite considerable
progress in genetic diagnosis after the introduction of high
throughput sequencing technologies, the genetic cause of more
than half of ID cases remains undetermined4. The leading genetic
cause of ID in individuals from outbred populations is de novo
variants5,6; in contrast a substantial fraction of autosomal recessive
(AR) disorders cause ID in families with multiple affected
individuals that practice consanguinity7. It is estimated that
worldwide 10.4% of marriages occur among close relatives8.
Consanguinity increases the extent of homozygous genomic
regions and brings to homozygosity deleterious alleles resulting in
birth defects and infant mortality9,10. Large consanguineous
families with (multiple) affected individuals thus provide a unique
opportunity to identify novel recessive causative genes.
P4-ATPases are transmembrane lipid flippases11, that function

in vesicles formation and trafficking. They regulate the asymmetric
distribution of phospholipids in membranes of eukaryotic
cells11,12. There are 14 different P4-ATPases in humans that can
be phylogenetically grouped in five classes13. ATP9A and its 75%
similar paralog ATP9B are the unique members of class II. They are
the only P4-ATPase that do not require the CDC50 β-subunit for
normal function and cellular localization14. They show different
intracellular and tissue distribution: ATP9A is found in early and
recycling endosomes and at a lower level at the plasma
membrane, while ATP9B is only found in the trans-Golgi
network12,14–16. Similarly, the genes encoding ATP9A and ATP9B
present with overlapping but different expression patterns with

ATP9A mainly expressed in the brain (Human Protein Atlas, GTEx).
Suggestive of an important role of ATP9A in intercellular
communication, this P4-ATPase inhibits extracellular vesicles
release15,16.
Here we report two consanguineous families with homozygous

pathogenic variants predicted to alter ATP9A splicing and we
propose ATP9A as a novel cause of a recessive neurodevelop-
mental disorder.

RESULTS
Clinical report
We identified three affected individuals from two unrelated
consanguineous families of Pakistani and Iranian origin. The main
clinical features of the affected individuals are reported in Table 1
and in Fig. 1.
Family 1 is from the Khyber Pakhtunkhwa region of Pakistan. As

indicated in the pedigree, the unaffected parents (III:3 and III:4),
who are first cousins, have six children. The oldest and youngest
siblings (IV:1 and IV:7) exhibited similar clinical features that
include delayed childhood milestones, severe ID, mild hypotonia,
attention deficit hyperactivity disorder (ADHD), aggressive beha-
vior, bilateral eye squints, and impaired vision. The oldest affected
daughter (IV:1) presented with microcephaly (<1st percentile,
−3.12 SD), however the head circumference of the second
affected sibling, the youngest daughter, (IV:2) is in the normal
range (39th percentile). We could not perform brain magnetic
resonance imaging (MRI) because the family lives in a very remote
area and did not agree to travel due to COVID19 outbreak and the
high rate of infections in the region. While the other siblings (IV:2,
IV:3, IV:4, and IV:5) were unaffected, we note that pregnancy IV:6
was not carried to term (Fig. 1).
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The proband (IV:1) of the Iranian family 2 is the only child born
from a couple of first cousins (Fig. 1). Childbirth was unremarkable.
The parents noticed a delay in the development of both language
and walking (18 months). The proband started epileptic episodes
at 3 years of age and seizures were controlled with sodium
valproate. An abnormal EEG with epileptiform activity was
reported. Brain MRI was normal. At the time of the last visit, the
child did not present motor paralysis or coordination deficit, but
he had an abnormal gait. At 11 years of age, height, weight, and
head circumference were in the normal range with 140 cm, 45 kg,
and 53 cm, respectively. Eye contact was impaired and there was
complete language dysfunction. He is presenting with severe ID,
prominent stereotypic movement disorder, and autistic features.
The proband has arched eyebrows with round, downturned eyes,
thin lips, bulbous nose, and a short philtrum. The proband’s cousin
was also reported to be affected by a neurodevelopmental
disorder. He is presenting with moderate ID, autistic features, and
epilepsy. However, he does not have any motor or coordination
problem. The different severity of ID, growth parameters, and the
absence of motor impairment are possibly indicative of a different
genetic etiology.

Exome analysis
In family 1, whole-exome sequencing (WES) was performed in the
proband (IV:1) to exclude variants in genes previously reported to
cause ID or developmental delay. Subsequently, SNP-array was
performed in both affected individuals (IV:1 and IV:7), parents (III:3
and III:4) and an unaffected sibling (IV:3). Homozygosity mapping
revealed a 2.5Mb region of homozygosity (chr20[GRCh37]:49010965-
51638043) common in both patients (IV:1 and IV:7) but not in the

parents (III:3 and III:4) and an unaffected sibling (IV:3). In total, six
homozygous variants from the WES data of the proband (IV:1) were
present in the segregating ROH (chr20:49010965-51638043) (as
mentioned in the Supplementary Table 1), but the splicing variant
(NM_006045.3:c.799+ 1 G > T) in ATP9A was the only mutation with
the MAF < 1% (in any of the population in the gnomAD database).
(Fig. 1). The variant was not present in gnomAD17, Bravo (https://
bravo.sph.umich.edu/freeze5/hg38/) or our local database of >500
Pakistani controls. Its segregation in the family was confirmed by
Sanger sequencing, in particular, the youngest sister and second
affected sibling is homozygous for this variant (Fig. 1). The change at
the conserved first nucleotide of the donor splice site was predicted
to cause abnormal splicing by SpliceAI17 (score DS_DL= 0.99),
MaxEntScan18 (MaxEntScan_diff = 8.504), and NNsplice19. RNA
samples from affected individuals were not available to assess RNA
splicing.
Our search for more cases led to the identification of a second

family. The WES of proband IV:1 from family 2 also revealed the
presence of a homozygous splicing variant in ATP9A, a base pair
substitution in intron 3 of ATP9A (NM_006045.3:c.327+ 1 G > T).
This variant is absent from the gnomAD17 and Bravo databases,
the Iranome (i.e. 800 healthy individuals from eight different
Iranian ethnic groups, http://www.iranome.ir/) and our local
database of >250 Iranian controls. Multiple predictions tools
indicated a likely loss of the canonical donor splice site (NNsplice,
SpliceAI score DS_DL= 0.95, MaxEntScan_diff = 8.504). The
abnormal splicing could either result in the skipping of the
inframe exon 3, leading to the deletion of 38 amino acid residues,
or utilization of an alternative donor site resulting in partial
intronic retention and the appearance of a premature stop codon.

Table 1. Clinical features of patients with homozygous ATP9A splicing variants.

Family 1 1 2

Individual IV:1 IV:7 IV:1

Sex F F M

Origin Pakistani Pakistani Iranian

Consanguineous parents Yes Yes Yes

Age at last evaluation (years) 28 21 11

ATP9A variant (gDNA) Chr20:50305602 C > A Chr20:50305602 C > A Chr20:50342357 C > A

General characteristic

Head circumference (cm) 51 54 53

Height (cm) 149 169 140

Weight (kg) 64 67 45

Microcephaly + − −

Strabismus + + −

Facial dysmorphism + + +

Neurodevelopment

Severe Intellectual disability + + +

Motor delay + + +

Speech delay/ dysfunction + + +

Fine motor impairment + + +

Epilepsy – – +

Brain MRI anomalies n.d. n.d. –

Behavioral anomalies

ADHD + + n.d.

Stereotypic movement n.d. n.d. +

Autistic features – – +

Aggressiveness + + n.d.

n.d. not determined, ADHD attention deficit hyperactivity disorder.
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Testing of the aberrant RNA splicing was not possible due to the
unavailability of the patient’s RNA or cells. Sanger sequencing
confirmed the segregation of the potentially causative variant (Fig.
1), i.e., the variant is heterozygous in the proband’s parents (III:2
and III:3), his aunt (III:4) and absent in his uncle (III:1).
Homozygosity mapping of proband 1 revealed that the ATP9A
variant is embedded in a putative 6.83 Mb region of homozygosity
(ROH) (chr20[GRCh37]: 45358223-52192534). While we did not
find any likely pathogenic variants in known ID genes in proband
IV:1 of family 2 (based on the Panelapp gene list for ID20;
Supplementary Table 2), we cannot exclude those variants besides
the ATP9A one might play a role in the patient’s phenotype. In
particular, we identified homozygous variants in CCDC88C
(NM_001080414.4: c.1126 C > T, p.Arg376Trp) and ZNF407
(NM_017757.3: c.5497 > T, p.Pro1833Ser), two genes previously
implicated in neurodevelopmental disorders but associated with
phenotypes different than the one found in our proband. Bi-allelic
variants in CCDC88C were associated with a form of congenital
hydrocephalus21–23, while variants in ZNF407 have been recently
implicated in an AR form of ID with microcephaly, short stature,
hypotonia, and ocular anomalies24,25.

DISCUSSION
Autosomal recessive ID is characterized by extensive genetic
heterogeneity. Still, many patients do not receive a molecular

diagnosis, suggesting that a considerable number of causative
genes have not yet been identified4,26. We described three
individuals from two consanguineous families with different
homozygous splicing variants in canonical splice sites of the
ATP9A gene. All three patients present with severe ID, motor delay,
speech and fine motor impairment, and behavioral anomalies.
Both affected sisters (IV:1 and IV:7) of family 1 had an attention
deficit hyperactivity disorder-like phenotype combined with
aggressiveness, whereas proband IV:1 from family 2 presented
with autistic features, including prominent stereotypic move-
ments, and lack of eye contact.
ATP9A is under constraint (intolerance to missense variants z-

score= 4.15; pLI= 1; LOEUF= 0.2) according to gnomAD27. Its
yeast homolog, NEO1, was shown to be an essential gene28, while
the absence of the C. elegans orthologous TAT-5 resulted in
disrupted cell adhesion and morphogenesis in worms’ embryos29.
Whereas ablation of the mouse orthologous Atp9a did not
diminish survival, the Atp9a−/− mice engineered and phenotyped
by the International Mouse Phenotyping Consortium were
hyperactive and showed a significant increased exploration in
new environment reminiscent of the behavioral symptoms of our
patients30,31. Depletion of ATP9A were lethal in human hepatoma
HepG2 cells but not in other cell lines including HeLa, HEK293T,
MCF-7, and THP-1, suggesting that the absence of ATP9A could be
tolerated in certain tissues but not in others12,15. ATP8A2, another
P4-ATPase highly expressed in the brain, has been implicated in a

Fig. 1 Pedigrees and Sanger sequencing. The pedigrees and the available genotypes of the Pakistani (family 1, top) and Iranian families
(family 2, bottom) are depicted on the left. Sanger sequencing chromatograms confirming the segregation of the ATP9A NM_006045.3:
c.799+ 1 G > T (six top traces) and NM_006045.3:c.327+ 1 G > T variants (bottom five traces) are shown on the right. Inserts showing the facial
features of the two affected sisters IV:1 and IV:7 of family 1 are presented below the Pakistani pedigree.
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recessive disorder characterized by cerebellar ataxia, ID, and
disequilibrium syndrome (CAMRQ, MIM 615268), or severe
hypotonia, ID, and optic atrophy with or without encephalo-
pathy32–36. A de novo balanced translocation leading to haploin-
sufficiency of this gene has been also proposed as the cause of
moderate ID and hypotonia37.
Downregulation of ATP9A has been associated with a significant

increase of extracellular vesicles release, in particular the
exosome15,16. Extracellular vesicles release is an important form
of intercellular communication that enables the transport of
several different signaling molecules—including proteins and RNA
—without the need of direct cell-to-cell contacts. It is involved in a
wide range of biological processes, such as blood coagulation and
immune response38,39. Different physiological roles in the central
nervous system have been proposed for extracellular vesicles,
including neurite outgrowth and neuronal survival38,40. Depletion
of ATP9A reduces the plasma membrane expression of the
glucose transporter GLUT1 and increases its level in the
endosome, altering its recycling12. Deficiency of GLUT1 has been
associated with a neurological disorder with a variable phenotype
including epilepsy, movement disorders, mild to severe ID, and
acquired microcephaly in some cases41,42. Similarly, alteration in
the recycling endosomal processes by mutations in the SLC9A6
sodium exchanger have been associated with Christianson
syndrome (MIM 300243), a neurodevelopmental disorder char-
acterized by ID, speech impairment, epilepsy, postnatal micro-
cephaly, truncal ataxia, and hyperactivity43,44.
Since the original submission of this paper and the deposit of our

data in medrxiv, a study describing additional ATP9A cases was
published45. This latter study reports three affected individuals from
two consanguineous families with homozygous loss of function
variants, p.(Arg290*) and c.642+ 1 G > A; p.(Ser184Profs*16) in
ATP9A, and phenotypic manifestations similar to our study. Patients
are all presenting with mild or severe ID, motor and speech delay.
Behavioral anomalies, including attention deficit, were also
reported in all affected individuals. All patients were noted to have
microcephaly, a feature observed only in individual IV:1 of family 1
but not in her sister, IV:7. They were all reported to have short
stature and failure to thrive, which are not observed in our patients.
In the other cohort, strabismus was reported for only another
affected individual but not in his brother, while here it is observed
in both affected Pakistani sisters. Combined with ours, these results
strengthen the hypothesis of the causative role of ATP9A biallelic
truncation variants in a novel neurodevelopmental syndrome.
In conclusion, we describe a novel AR neurodevelopmental

disorder. In two unrelated consanguineous families, we identified
variants predicted to affect the splicing of ATP9A. The three individuals
homozygous for these putatively truncating variants presented with
severe ID, motor and speech impairment, and behavioral anomalies.
Consistent with a causative role of ATP9A in the patients’ phenotypes,
Atp9a−/− mouse model showed behavioral changes.

METHODS
Recruitment
The current study was approved by the IRBs of the Khyber Medical
University, Peshawar, Pakistan, and the University Hospitals of Geneva,
Switzerland (Protocol number: CER 11-036). Informed consent forms were
obtained from guardians of all affected individuals who participated in this
study. Informed consent was obtained for the publication of photos from
the guardians of the affected individuals of family 1.

Exome sequencing
The proband IV:1 of family 1 was subjected to exome sequencing (ES). DNA
was enriched using SureSelect Human All Exon v6 capture kit (Agilent
Technologies, Santa Clara, CA, USA) and sequenced on an Illumina HiSeq
4000 platform, with an average coverage of 120x at each nucleotide
position. ES data were analyzed with an in-house customized pipeline8 that

is based on published algorithms including BWA, SAMtools46, PICARD
(http://broadinstitute.github.io/picard/) and (GATK)47. Initial screening for
known or novel pathogenic mutations in the reported ID genes was
performed. The 720 K SNP array was performed in parents (III:3 and III:4),
affected (IV:1 and IV:7) and unaffected individuals (IV:3 and IV:5) of family
1to identify Runs of Homozygosity (ROH) using PLINK as described
previously48–50. ROH and exome sequencing data were analyzed with
CATCH51 to determine variants that were present in ROHs of patients (IV:1
and IV:7) but not in normal individuals of family 1. Subsequently, the
variants were filtered manually by using the criteria described in published
studies49,50.
The exome of IV:1 from family 2 was captured using the xGen Exome

Research Panel v2 (Integrated DNA Technologies) and sequenced using
the Illumina HiSeq 4000 platform according to the manufacturer’s
protocols. The overall mean-depth base coverage was 153-fold and 97%
of the targeted region was covered at least 20-fold. Read mapping and
variant calling were performed as described52 using the Varapp software53.
Homozygous and hemizygous variants with a MAF < 1% in the general
population (1000genome, EVS, gnomAD) were retained and screened for
variants in reported ID genes (Supplementary Table 1). Homozygosity
mapping was performed with AutoMap, which uses Variant Call Format
(VCF) files from WES54.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon request. The identified variants have been submitted to ClinVar under
accession numbers SCV001911505-506.
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