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Abstract

The ensemble Kalman filter (EnKF) is a data assimilation technique that uses an ensemble

of models, updated with data, to track the time evolution of a usually non-linear system. It

does so by using an empirical approximation to the well-known Kalman filter. However, its

performance can suffer when the ensemble size is smaller than the state space, as is often

necessary for computationally burdensome models. This scenario means that the empirical

estimate of the state covariance is not full rank and possibly quite noisy. To solve this prob-

lem in this high dimensional regime, we propose a computationally fast and easy to imple-

ment algorithm called the penalized ensemble Kalman filter (PEnKF). Under certain

conditions, it can be theoretically proven that the PEnKF will be accurate (the estimation

error will converge to zero) despite having fewer ensemble members than state dimensions.

Further, as contrasted to localization methods, the proposed approach learns the covari-

ance structure associated with the dynamical system. These theoretical results are sup-

ported with simulations of several non-linear and high dimensional systems.

1 Introduction

The Kalman filter is a well-known technique to track a linear system over time, and many vari-

ants based on the extended and ensemble Kalman filters have been proposed to deal with non-

linear systems. The ensemble Kalman filter (EnKF) [1, 2] is particularly popular when the

non-linear system is extremely complicated and its gradient is infeasible to calculate, which is

often the case in geophysical systems. However, these systems are often high dimensional and

forecasting each ensemble member forward through the system is computationally expensive.

Thus, the filtering often operates in the high dimensional regime where the number of

ensemble members, n, is much less than the size of the state, p. It is well known that even when

p/n! const. and the samples are from a Gaussian distribution, the eigenvalues and the eigen-

vectors of the sample covariance matrix do not converge to their population equivalents, [3, 4].

Since our ensemble is both non-Gaussian and high dimensional (n� p), the sample covari-

ance matrix of the forecast ensemble will be extremely noisy. In this paper, we propose a vari-

ant of the EnKF specifically designed to handle covariance estimation in this difficult regime,
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but with weaker assumptions and requiring less prior information on the state covariance

structure than competing approaches.

1.1 Related work

To deal with the sampling errors, many schemes have been developed to de-noise the forecast

sample covariance matrix. These schemes “tune” the matrix with variance inflation and locali-

zation, [5–18]. However, these schemes are often not trivial to implement because they require

carefully choosing the inflation factor and using expert knowledge of the true system to set up

the localization. Additionally, the EnKF with perturbed observations introduces additional

sampling errors due to the perturbation noise’s lack of orthogonality with the ensemble. Meth-

ods have been devised that construct perturbation matrices that are orthogonal, [19]; however

these methods are computationally expensive, [20]. This has led to the development of matrix

factorization versions of the EnKF such as the square root and transform filters, [20–27],

which do not perturb the observations and are designed to avoid these additional sampling

errors. Recent work [28] has also revisited the stochastic EnKF, which perturbs the modeled

observations instead of the observations themselves arguing that in regimes with skewed likeli-

hoods, this method is more accurate.

The ensemble Kalman filter is closely related to the particle filter [29, 30], although it uses a

Gaussian approximation of the conditional state distribution in order to get an update that is a

closed form expression for the analysis ensemble (as opposed to one that requires numerical

integration). While the particle filter does not use this approximation, it also requires an expo-

nential number of particles to avoid filter collapse, [31]. Recently, there has been significant

effort to apply the particle filter to larger scale systems using equal weights, [32, 33], and merg-

ing it with the ensemble Kalman filter to form hybrid filters, [29, 34–37]. The EnKF is also

related to the unscented Kalman filter, [38, 39], which handles nonlinearity by propagating a

carefully selected set of “sigma points” (as opposed to the randomly sampled points of the

EnKF) through the nonlinear forecast equations. The results are then used to reconstruct the

forecasted mean and covariance.

Most similar to our proposed work are [40] and [41], which also propose methods that use

sparse inverse covariance matrices. Both methods justify the appropriateness of using the

inverse space with large scale simulations or real weather data. The former reports that their

computational complexity is polynomial in the state dimension and requires the stronger

assumptions of Gaussianity and structural knowledge. The latter algorithm can be implement

in parallel making it very efficient, however, the paper [41] still makes the much stronger

assumptions of Gaussianity and known conditional independence structure among the states.

1.2 Proposed method

We propose a penalized ensemble Kalman filter (PEnKF), which uses an estimator of the fore-

cast covariance whose inverse is sparsity regularized. While the localization approaches effec-

tively dampen or zero out entries in the covariance, our approach zeros out entries in the
inverse covariance, resulting in a sparse inverse covariance. This provides two advantages. First,

it makes a weaker assumption about the relationship between state variables. Second, our

approach does not require anything like localization’s detailed knowledge of which covariance

entries to fix at zero or how much to dampen. Instead, it merely favors sparsity in the inverse

covariance. Additionally, our method is very easy to implement because it just requires using a

different estimator for the covariance matrix in the EnKF. We can explicitly show the improve-

ment of our estimator through theoretical guarantees.
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1.2.1 Outline. In Section 2, we explain the assumptions in our high-dimensional system

and we give background on the EnKF and ℓ1 penalized inverse covariance matrices. In Section

3, we give details on how to modify the EnKF to our proposed PEnKF and provide theoretical

guarantees on the filter. Section 4 contains the simulation results of the classical Lorenz 96 sys-

tem and a more complicated system based on modified shallow water equations.

2 Background

In this paper, we consider the scenario of a noisy, non-linear dynamics model f(�), which

evolves a vector of unobserved states xt 2 R
p

through time. We observe a noisy vector yt 2 R
r
,

which is a transformation of xt by a function h(�). Both the process noise ωt and the observa-

tion noise �t are independent of the states xt. We assume both noises are zero mean Gaussian

distributed with known diagonal covariance matrices, Q and R. Often, it is assumed that the

dynamics model does not have noise, making ωt a zero vector, but for generality we allow ωt to

be a random vector.

xt ¼ f ðxt� 1Þ þ ωt Dynamics Model

yt ¼ hðxtÞ þ �t Observation Model

As with localization methods, we make an assumption about the correlation structure of

the state vector in order to handle the high dimensionality of the state. In particular, we assume

that only a small number s� ð p
2
Þ of pairs of state variables have non-zero conditional correla-

tion, Cov(xi, xj|x−(i, j)) 6¼ 0 where x−(i, j) represents all state variables except xi and xj. This

means that, given all of the rest of the state, xi and xj are conditionally uncorrelated. They may

have a dependency, meaning that the marginal correlation between them is non-zero, but such

dependency is entirely explained by conditional dependence on other parts of the state. An

example is given by a one-dimensional spatial field with three locations x1, x2, and x3 where x1

and x3 are both connected to x2, but not each other. In this case, it might be reasonable to

model x1 and x3 as uncorrelated conditioned on x2 although they are not necessarily margin-

ally uncorrelated. Their marginal correlation might not be zero, but their conditional or partial

correlation is zero. Rather than assuming that the zero pattern in the matrix of conditional cor-

relations has a specific structure, we place no assumption on the zero pattern, only on the

number of zeros (sparsity) of this matrix. In other words, we will allow the data to determine

the specific pattern.

The assumption that the set of non-zero conditional correlations is sparse is equivalent to

the assumption that the inverse correlation matrix of the model state is sparse with few non-

zero off-diagonal entries [42]. We can also quantify the sparsity level as d, which is the maxi-

mum number of non-zero off-diagonals in any row. Thus the sparsity assumption can be

stated as d2�p2. Note that our assumption is on the conditional correlation or lack of it, and

we do not make any claims on independence between states. This is because xt is not Gaussian

when f(�) is non-linear so lack of correlation does not imply any independence. Thus the zeros

in the inverse covariance matrix do not imply conditional independence. This assumption is

weaker than the one commonly made in localization. This common assumption is equivalent

to assuming that the marginal covariance matrix itself is sparse whereas our assumption of

sparse conditional covariance admits a dense covariance. Finally, because we do not assume

that the conditionally correlated state variable interactions are the same for different time

points, we allow the support set E t (set of non-zero conditional correlations) and its size st to

change over time.
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While we assume f(�) can be highly non-linear, which occurs in many geophysical systems,

we assume the measurement system h(�) is relatively linear, e.g, piece-wise linear, with gradi-

ents that are feasible to calculate. In the following subsections, we will use H to represent a lin-

ear operator equal to the Jacobian of h(�) when the measurement system is non-linear, under

the assumption that H adequately approximates h(�). Additionally we assume that the additive

noise ω in the measurement system is Gaussian.

2.1 Ensemble Kalman filter

The EnKF of [19] is a well studied algorithm and there are numerous improved models [20–

27] that build on its foundation. At time t = 0, n samples are drawn from an initial distribution,

which is often chosen as the standard multivariate normal when the true initial distribution is

unknown, to form an initial ensemble A 2 Rp�n
. Subsequently, at every time point t, the obser-

vations yt are perturbed n times with Gaussian white noise, Zj � Nð0;RÞ, to form a perturbed

observation matrix Dt 2 R
p�n, where dj

t ¼ yt þ Z
j.

The forecast covariance estimator P̂ f is often defined as the sample covariance of the fore-

cast ensemble, equal to S ¼ 1

n� 1
ðA0 �

�A0ÞðA0 �
�A0Þ

T
, where �A0 is a p × n matrix whose col-

umns are the sample mean vector 1

n

Pn
j¼1

aj0, but it can be another estimator such as a localized

estimator (one that is localized with a taper matrix), or a penalized estimator as proposed in

this paper.

2.2 Bregman divergence and the ℓ1 penalty

Below, we give a brief overview of the ℓ1-penalized log-determinant Bregman divergence and

some properties of its minimizer, as described in [43]. We denote S to be any arbitrary sample

covariance matrix, and S ¼ EðSÞ to be its true covariance matrix, where E(�) is the expectation

function.

Bregman divergence B(ΘkO) between two functions Θ and O is a measure of difference

between the two functions. Here the functions to be compared are covariance matrices. Since

we are interested in finding a sparse positive definite estimator for the inverse covariance

matrix, it is natural to include a barrier function that forces positive definiteness of any mini-

mizer Θ, e.g., −log det(�), which has a domain restricted to positive definite matrices. Our opti-

mal estimator Θ for the inverse covariance matrix S−1 is defined as the following Bregman

divergence minimizer

arg min
Θ2Sp�p

þþ

BðΘkS� 1Þ ¼ arg min
Θ2Sp�p

þþ

� log detðΘÞ � log detðSÞ þ trðSðΘ � S� 1ÞÞ
ð1Þ

where Sp�p
þþ

is the set of all symmetric positive definite p × p matrices. When the covariance

matrix S is unknown the empirical equivalent, the sample covariance S, will be used in its

place. The Bregman minimizer (1) does not encourage sparsity of Θ so a sparsity penalty will

be introduced. This penalty also ensures strict convexity.

The empirical Bregman divergence minimizer with barrier function −log det(�) and an ℓ1

penalty term reduces to

arg min
Θ2Sp�p

þþ

B̂lðΘkS� 1
Þ ¼ arg min

Θ2Sp�p
þþ

� log detðΘÞ þ trðΘSÞ þ lkΘk1 ð2Þ

where λ� 0 is a penalty parameter, and k�k1 denotes the element-wise ℓ1 norm. This can be

generalized so that each entry of Θ can be penalized differently if λ is a matrix and using a ele-

ment-wise product with the norm.
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This objective has a unique solution, Θ ¼ ð~SÞ� 1
, which satisfies

@

@Θ
B̂lðΘkS� 1

Þ ¼ S � Θ� 1
þ l@kΘk1 ¼ 0 ð3Þ

where @kΘk1 is a subdifferential of the ℓ1 norm defined in Eq (9) in the Appendix. The solu-

tion ð~SÞ
� 1

is a sparse positive definite estimator of the inverse covariance matrix S−1, and we

can write its inverse explicitly as ~S ¼ Sþ l~Z, where ~Z is the unique subdifferential matrix

that makes the gradient zero. See [43] or [44] for a more thorough explanation of ~Z.

Reference [43] shows that for well-conditioned covariances and a certain minimum sample

sizes, the estimator ð~SÞ
� 1

has many nice properties including having, with high probability,

the correct zero and signed non-zero entries and a sum of squared error that converges to 0 as

n, p, s!1. These properties will allow our method, described in the next section, to attain

superior performance over the standard EnKF.

3 ℓ1 penalized ensemble Kalman filter

Our penalized ensemble Kalman filter, whose pseudo code is shown in Algorithm 1, modifies

the EnKF by using a penalized forecast covariance estimator ~Pf . This penalized estimator is

derived from its inverse, which is the minimizer of Eq (2), and can be determined using stan-

dard numerical optimization methods [45–47]. Thus, from Section 2.2, it can be explicitly

written as ~Pf ¼ P̂ f þ l~Z, implying that we learn a matrix ~Z, and use it to modify our sample

covariance P̂f so that ðP̂f þ l~ZÞ
� 1

is sparse. From this, our modified Kalman gain matrix is

~K ¼ ðP̂f þ l~ZÞH
T
ðHðP̂ f þ l~ZÞH

T
þ RÞ

� 1
¼ ðð~P f Þ

� 1
þ H

T
R
� 1
HÞ
� 1
H

T
R
� 1
: ð4Þ

The intuition behind this forecast covariance estimator is that since only a small number of

the state variables in the state vector xt are conditionally correlated with each other, the forecast
inverse covariance matrix ðPf

Þ
� 1 will be sparse with many zeros in the off-diagonal entries. Fur-

thermore, since minimizing Eq (2) gives a sparse estimator for ðP
f
Þ
� 1

, this sparse estimator

will accurately capture the conditional correlations and uncorrelations of the state variables.

Thus ~P f will be a much better estimator of the true forecast covariance matrix P
f

because the

ℓ1 penalty will depress spurious noise in order to make ð~Pf Þ
� 1

sparse, while the inverse of the

sample forecast covariance ðP̂f Þ
� 1

, when it exists, will be non-sparse. In addition, because the

estimator of the covariance ~Pf is positive definite, standard matrix inversion techniques can be

used to convert it to an estimator of the precision matrix.

As in most penalized estimators, ~Pf is a biased estimator of the forecast covariance, while

the standard covariance is unbiased. But because the forecast distribution is corrected in the

analysis step, it is acceptable to take this bias as a trade-off for less variance (sampling errors).

A more in-depth study of the consequences of bias in ℓ1 penalized inverse covariance matrices

and their inverses is described in [44]. Additionally, this bias due to penalization in the inverse

covariance can be attributed as naturally occurring variance inflation where the bias on the

diagonal of ð~P f Þ
� 1

is due to the inflation factor λ. Hence the bias in the forecast covariance esti-

mator is not necessarily disadvantageous. Finally, since we do not assume the state variables

interact in the same way over all time, we re-learn the matrix ~Z every time the ensemble is

evolved forward.

We can choose the penalty parameter λ in a systematic fashion by calculating a regulariza-

tion path, solving Eq (2) for a list of decreasing λs, and evaluating each solution with an
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information criterion, such as an extended or generalized Akaike information criterion (AIC)

or Bayesian information criterion (BIC) [48, 49]. Additionally, if we have knowledge or make

additional assumptions about the moments of the ensemble’s distribution, we can calculate an

optimal penalty parameter λ up to a constant factor (see proof of Theorem 1). Thus, we can

refine the penalty parameter by calculating a regularization path for an optimal order penalty

function. In Section 4, we describe a practical approach to choosing λ using a free forecast

model run like in [37] and using the BIC.

Algorithm 1 Penalized Ensemble Kalman Filter
Input: initial ensemble A ¼ ½a1; . . . ; an�, measurement operator H, process
and observation noise covariance matrices Q and R, perturbed observa-
tion matrix Dt for t 2 {1, . . ., T} do
1) Evolve each ensemble member aj forward in time aj0 ¼ f ðajÞ þ wj 8j 2

f1; . . . ; ng where wj � Nð0;QÞ
2) Calculate the sample covariance for (2) S ¼ 1

n� 1
ðA0 �

�A0ÞðA0 �
�A0Þ

T

where �A0 ¼
1

n

Pn
j¼1

aj0
� �

1T

3) Estimate the modified Kalman gain matrix ~K ¼ ~P fH
T
ðH~P fH

T
þ RÞ

� 1 where
~P f ¼ Θ� 1 and Θ is the solution to (2)
4) Update the ensemble with the observations A ¼ A0 þ

~KðDt � HA0Þ

5) Predict using the analysis ensemble mean ~x t ¼ 1

n

Pn
j¼1

aj

end for
Output: ~x t;At

3.1 Implications on the Kalman gain matrix

The observations Dt come into the EnKF through the ensemble update (step 4 of Algorithm

1), which depends linearly on the Kalman gain matrix K. So, having an accurate estimator of

the true Kalman gain matrix K will ensure that data is properly merged into the ensemble.

Since the true Kalman gain matrix inherits many of the properties of the forecast covariance

matrix P
f
, in view of the relation in step 3 of Algorithm 1, the accuracy of our modified Kal-

man gain matrix ~K will depend strongly on the accuracy of the forecast covariance estimator

~Pf .

The quality of the estimated forecast covariance matrix ~Pf will depend on the structure of

the true unknown forecast matrix P
f
. If P

f
is close to singular or contains many entries with

magnitudes smaller than the root mean square noise level, it will be difficult to accurately esti-

mate. In the following theorem, we assume that the forecast covariance matrix is well-behaved

in the sense that it satisfies standard regularity conditions (incoherence, bounded eigenvalue,

sparsity, sign consistency and monotonicity of the tail function) found in [43, 44], which are

defined in the Appendix. Additionally, the rate at which the estimator converges depends on

the distribution of the ensemble members. For example, if the ensemble members follow a

light tailed distribution, more specifically a sub-Gaussian distribution [50], the estimator will

typically have a faster rate of convergence than if the ensemble follows a heavy tailed

distribution.

Theorem 1. Let K̂ be the Kalman gain of the standard EnKF and let ~K be the modified Kal-
man gain in the proposed penalized EnKF in Algorithm 1. Under regularity conditions and for
the system described in Section 2, when l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 logðpÞ=n

p
for sub-Gaussian ensembles and l �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p3=m=n

p
for ensembles with bounded 4mth moments,

Sum of Squared Errors of ~K≲ Sum of Squared Errors of K̂
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and as long as the sample size is at least o(n) = 3d2 log(p) for sub-Gaussian ensembles and
o(n) = d2 p3/m for ensembles with bounded 4mth moments,

Sum of Squared Errors of ~K ! 0 with high probability as n; p; s!1:

The above theorem gives us a sense of the performance of the modified Kalman gain matrix

in comparison to the sample Kalman gain matrix. It shows that with high probability, the mod-

ified Kalman gain matrix will have an asymptotically smaller (≲) sum of squared error (SSE)

than a Kalman gain matrix formed using the sample forecast covariance matrix. Also, for a

given state dimensionality p, the theorem provides the minimum ensemble size n required for

our modified Kalman gain matrix to be a good estimate of the true Kalman gain matrix. The

sub-Gaussian criterion, where all moments are bounded, is actually very broad and includes

any state vectors with a strictly log-concave density and any finite mixture of sub-Gaussian dis-

tributions. However even if not all moments are bounded, the larger the number of bounded

fourth-order moments m, the smaller the necessary sample size. In comparison, the sample

Kalman gain matrix requires o(n) = p2 samples in the sub-Gaussian case, and also significantly

more in the other case (see Appendix for exact details). When the minimum sample size for a

estimator is not met, good performance cannot be guaranteed because the asymptotic error

will diverge to infinity instead of converge to zero. This is why when the number of ensemble

members n is smaller than the number of states squared p2, just using the sample forecast

covariance matrix is not sufficient. Additionally the theorem also gives us a way to search for

the optimal penalty parameter. It tells us how the penalty parameter λ should be chosen to

scale asymptotically� as a function of the dimensions of the state p, the ensemble size n, when

the ensemble distribution follows either a sub-Gaussian or has m bounded moments.

3.2 Implications on the analysis ensemble

It is well known that, due to the additional stochastic noise used to perturb the observations,

the covariance of the EnKF’s analysis ensemble, dCovðAÞ is not equivalent to its analysis covari-

ance calculated by the Gaussian update P̂a ¼ ðI � K̂HÞP̂f . This has led to the development of

deterministic variants such as the square root and transform filters, which do have

dCovðAÞ ¼ P̂a. However, in a non-linear system, this update is sub-optimal because it uses a

Gaussian approximation of p(xt|yt−1), the actual conditional distribution of forecast ensemble

A0 after t iterations of Algorithm 1. Denote P
a

as the true analysis covariance defined in terms

of the posterior state distribution p(xt|yt) as

Z

ðxtÞ
2pðxtjytÞdxt �

Z

xtpðxtjytÞ dxt

� �2

ð5Þ

where p(xt|yt) = p(yt|xt)p(xt|yt−1)/p(yt) may not be Gaussian. Thus when p(xt|yt) is not Gauss-

ian, EðP̂aÞ 6¼ P
a

and there will always be an analysis error regardless of whether dCovðAÞ ¼ P̂a

or not.

In fact, as mentioned in [34], none of the analysis moments of the EnKF are consistent with

the true moments, including the analysis mean. This analysis error is present in all methods

that do not use unbiased estimates of the posterior distribution, e.g., particle filters. Thus the

proposed penalized EnKF will suffer from the same types of biases as other EnKF approxima-

tions. However, as established in Theorem 1 and in our experimental results, the effect of these

biases on the Kalman gain and on forecasting performance is no worse than other EnKFs.
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3.3 Computational time and storage issues

The computational complexity of solving for the minimizer of Eq (2) with the GLASSO algo-

rithm from [45] is O(sp2) because it is a coordinate descent algorithm. Although the final esti-

mator ð
~
P
f
Þ
� 1

is sparse and only requires storing s + p values, the algorithm requires storing p ×
p matrices in memory. However, by using iterative quadratic approximations to Eq (2), block

coordinate descent, and parallelization, the BIGQUIC algorithm of [46] has computational

complexity O(s(p/k)) and only requires storing (p/k) × (p/k) matrices, where k is the number

of parallel subproblems or blocks.

The matrix operations for the analysis update A ¼ A0 þ
~KðDt � HA0Þ can also be linear in

p if R is diagonal and H is sparse (like in banded interpolation matrices) with at most h� r

non-zero entries in a row. Then ðð
~
P
f
Þ
� 1
þ H

T
R
� 1
HÞ has at most (s + p + rh2)� p2 non-zero

entries and can be computed with O(s + p + rh2) matrix operations. Furthermore u ¼

~KðDt � HA0Þ only takes O(n(s + p + rh2)) matrix operations because it is composed of the

solutions to the sparse linear systems ðð
~
P
f
Þ
� 1
þ H

T
R
� 1
HÞu ¼ H

T
R
� 1
ðDt � HA0Þ, where the

right-hand side takes O(pr2 + rpn) matrix operations to form.

We also point out that EnKF methods do not need to calculate the p × p sample covariance

matrix P̂f explicitly, which may be difficult in high-dimensional systems. Instead it only needs

to compute on the ensemble matrix, which is only of size p × n, when n� p. This makes these

methods computationally feasible for large p; however, they are implicitly using a rank defi-

cient estimator, whose rank is n. In order to accurately estimate all dimensions of the system, a

full rank estimator is needed of the sample covariance, but this comes with the higher compu-

tational cost of order p2 instead of order pn. Similarly, EnKF methods also have low memory

requirements because they only need to store the n × p ensemble matrix. In contrast to previ-

ous EnKFs, the proposed PEnKF predictor must store the p × p matrix solution Θ to (2). How-

ever, for sufficiently large sparsity penalty λ the solution Θ and its inverse ~Pf , will be sparse

reducing considerably the memory requirements. The PEnKF can also benefit from dividing

the storage up into k blocks of size (p/k)×(p/k). In any case, memory storage limitations of

PEnKF can be rectified by using distributed storage, e.g., cloud virtual disk memory, at the

cost of increased overall run time.

4 Simulations

In all simulations, we compare the proposed PEnKF to an ensemble Kalman filter where the

forecast covariance matrix is localized with a taper matrix generated from equation (4.10) in

[51]. The taper matrix parameter for localization c is chosen using the true interactions of the

system, so the localization should be close to optimal for simple systems. We use this B-Loc

EnKF as the baseline because if the PEnKF can do as well as this filter, it implies that the

PEnKF can learn a close to optimal covariance matrix, even without the need to impose

known sparsity structure. This would imply that the PEnKF can learn some structure that is

not captured by the commonly implemented EnKF method that incorporates localization with

a taper matrix.

4.0.1 Choosing the penalty parameter

In order to choose the penalty parameter for the PEnKF, we model the state variables in our

examples as sub-Gaussian. In this case, we can set l ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R logðpÞ=n

p
for some appropriate

choice of cλ (see the proof of Theorem 1, where R is the observation noise’s variance. To esti-

mate cλ, we generate a representative ensemble (which may also be our initial ensemble) using
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a free forecast run like in [37] in which a state vector is drawn at random (e.g. from Nð0; IÞ)
and evolved forward. The representative ensemble is produced by taking a set of equally spaced

points (e.g. every 100th state vector) from the evolution. This ensemble is used to choose cλ
from some predefined interval by minimizing the extended Bayesian information criterion

(eBIC) of [48] if p> n or the BIC of [52] if p< n. If we believe that the penalty parameter

should not be constant for all states, e.g. we have multiple types of states in the second simula-

tion scenario, we can search for multiple cλ in a similar fashion.

Of course because Eq (2) has the form of a Gaussian likelihood function, it will only be the

correct likelihood if the states are actually Gaussian. As the state transition function f(x) is

non-linear, the states will not generally be Gaussian distributed, and hence, the selection of an

optimal penalty λ using an information criterion like BIC can introduce bias. One way to

reduce this bias is to correct our information criterion for the misspecification as in [49]. How-

ever, such a correction can be quite difficult. We leave an in-depth exploration of this bias cor-

rection problem for future work. Here, we assume the misspecified information criterion is

close to the correct information criterion. Our experimental results below show that, despite

the bias, it performs well.

4.0.2 Metrics

We define the root mean squared error (RMSE) for performance evaluation

RMSEt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkx̂ t � xtk2Þ
2
=p

q

; ð6Þ

where RMSEt is an element of a vector RMSE at any time point t, xt is a vector of the true hid-

den state variables, x̂ t is a filter’s predictor for the true state vector, and k�k2 is the ℓ2 norm. We

will refer to statistics such as the mean or median RMSE to be the mean or median of the ele-

ments of the RMSE vector.

4.1 Lorenz 96 system. The 40-state Lorenz 96 model is one of the most common systems

used to evaluate ensemble Kalman filters. The state variables are governed by the following dif-

ferential equations

dxit
dt
¼ xiþ1

t � xi� 2

t

� �
xi� 1

t � xit þ 8 8i ¼ 1; � � � ; 40 ð7Þ

where x41
t ¼ x1

t ; x
0
t ¼ x40

t ; and x� 1
t ¼ x39

t .

We use the following simulation settings. We have observations for the odd state variables,

so yt ¼ Hxt þ �t where H is a 20 × 40 matrix with ones at entries {i, j = 2i − 1} and zeros every-

where else and �t is a 20 × 1 vector drawn from a Nð0; 0:5 IÞ. We initialize the true state vector

from a Nð0; IÞ and we assimilate at every 0.4t time steps, where t = 1, . . ., 2000. The system is

numerically integrated with a 4th order Runge-Kutta method and a step size of 0.01. The main

difficulties of this system are the large assimilation time step of 0.4, which makes it significantly

non-linear, and the lack of observations for the even state variables.

Since the exact equations of the Lorenz 96 model are fairly simple, it is clear how the state

variables interact with each other. This makes it possible to localize with a taper matrix that is

almost optimal by using the Lorenz 96 equations to choose a half-length parameter c. How-

ever, we do not incorporate this information in the PEnKF algorithm, which instead learns

interactions by extracting it from the sample covariance matrix. We set the penalty parameter

l ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 logðpÞ=n

p
by using an offline free forecast run to search for the constant cλ in the

range [0.1, 10] as described at the beginning of this section.
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We average the PEnKF estimator of the forecast inverse covariance matrix at the time

points 500, 1000, 1500, and 2000 for 50 trials with 25 ensembles members, and we compare it

to the “true” inverse covariance matrix, which is calculated by moving an ensemble of size

2000 through time. In Fig 1, each line represents the averaged normalized rows of an inverse

covariance matrix and the lines are centered at the diagonal. The penalized inverse covariance

matrix does a qualitatively good job of capturing the neighborhood information and success-

fully identifies that any state variables far away from state variable i, do not interact with it.

Because the PEnKF is successful at estimating the structure of the inverse covariance matrix

and thus the forecast covariance matrix, we expect it will have good performance for estimat-

ing the true state variables. We compare the PEnKF to the B-Loc EnKF and other estimators

Fig 1. Each line represents the normalized values of a row of the inverse covariance matrix averaged over 50 trials. The x-axis shows

the entries of a row i ordered from i − 20 to i + 20, so that the middle of the x-axis is the “diagonal” of the row and the values further from

the center of the x-axis are further from the “diagonal”. The PEnKF algorithm is successful at identifying that the state variables far away

from variable i have no effect on it, even though there are fewer ensemble members than state variables.

https://doi.org/10.1371/journal.pone.0248046.g001
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from [34, 35, 53, 54] by looking at statistics of the RMSE. Note that in order to have compara-

ble statistics to as many other papers as possible, we do not add variance inflation to the B-Loc

EnKF (like in [35, 53, 54] and unlike in [34]). Also, like in those papers, we initialize the

ensemble from a Nð0; IÞ, and we use this ensemble to start the filters. Note that in this case, the

initial ensemble is different than the offline ensemble that we use to estimate the PEnKF’s pen-

alty parameter. This is because the initial ensemble is not representative of the system and its

sample covariance is an estimator for the identity matrix. The B-Loc EnKF, which is simply

called the EnKF in the other papers, is localize by applying a taper matrix where c = 10 to the

sample covariance matrix.

We show the mean, median, 10%, and 90% quantiles of the RMSE averaged over 50 inde-

pendent trials for ensembles of size 400, 100, 25, and 10 in Table 1. For 400 ensemble members,

the PEnKF does considerably better than the B-Loc EnKF and its relative improvement is

larger than that of the XEnKF reported in [53] and similar to those of the NLEAF, EnKPF, and

XEnKF reported in [34, 35, 54] respectively. For 100 ensemble members, the PEnKF does do

worse than the B-Loc EnKF and EnKPF of [35]; this we suspect may be do to the bias-variance

trade-off when estimating the forecast covariance matrix. The PEnKF has the most significant

improvement over the B-Loc EnKF in the most realistic regime where we have fewer ensemble

members than state variables. For both 25 and 10 ensemble members, the PEnKF does consid-

erably better than the B-Loc EnKF and it does not suffer from filter divergence, which [35]

report occurs for the EnKPF at 50 ensemble members.

While it is clear the PEnKF does well even when there are fewer ensemble members than

state variables, 40 variables is not enough for the problem to be considered truly high-dimen-

sional. We now consider simulation settings where we increase the dimension of the state

space p while holding the number of ensemble members n constant. We initialize the ensemble

from the free forecast run and set λ and the taper matrix in the same way as in the previous

simulations. We examine the mean RMSE averaged over 50 trials and its approximate 95%

confidence intervals in the Fig 2. The mean RMSE of the PEnKF is significantly smaller than

the mean RMSE of the B-Loc EnKF for all p. Additionally the confidence intervals of the mean

RMSE are much narrower than the ones for the B-Loc EnKF. This suggest that there is little

variability in the PEnKF’s performance, while the B-Loc EnKF’s performance is more depen-

dent on the trial, with some trials being “easier” for the B-Loc EnKF than others.

Table 1. Mean, median, 10% and 90% quantile of RMSE averaged over 50 trials. The number in the parentheses is

the summary statistics’ corresponding standard deviation.

n = 400 10% 50% Mean 90%

B-Loc EnKF 0.580 (.01) 0.815 (.01) 0.878 (.02) 1.240 (.03)

PEnKF 0.538 (.02) 0.757 (.03) 0.827 (.03) 1.180 (.05)

n = 100 10% 50% Mean 90%

B-Loc EnKF 0.582 (.01) 0.839 (.02) 0.937 (.03) 1.390 (.06)

PEnKF 0.717 (.04) 0.988 (.04) 1.067 (.04) 1.508 (.05)

n = 25 10% 50% Mean 90%

B-Loc EnKF 0.769 (.04) 1.668 (.13) 1.882 (.09) 3.315 (.11)

PEnKF 0.971 (.03) 1.361 (.03) 1.442 (.03) 2.026 (.04)

n = 10 10% 50% Mean 90%

B-Loc EnKF 2.659 (.07) 3.909 (.06) 3.961 (.05) 5.312 (.06)

PEnKF 1.147 (.02) 1.656 (.02) 1.735 (.02) 2.437 (.04)

https://doi.org/10.1371/journal.pone.0248046.t001
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4.2 Modified shallow water equations system

While the Lorenz 96 system shows that the PEnKF has strong performance because it is suc-

cessful at reducing the sampling errors and is capable of learning the interactions between

state variables, the system is not very realistic in that all state variables are identical and the

relationships between state variables are very simplistic. We now consider a system based on

the modified shallow water equations of [55], which models cloud convection with fluid

dynamics equations, but is substantially less computationally expensive than full scale numeri-

cal weather prediction models. The system has three types of state variables: fluid height, rain

content, and horizontal wind speed, which are shown in (S1)(S2)(S3) of the Appendix.

To generate observations from this system we use the R package “modifiedSWEQ” created

by the authors of [56], and use the same simulation settings as in [37]. So we always observe

the rain content, but wind speed is only observed at locations where it is raining and fluid

height is never observed. Explicitly for the R function generate.xy(), we use hc = 90.02, hr = 90.4

for the cloud and rainwater thresholds, a 0.005 rain threshold, σr = 0.1, σu = 0.0025 to be

the standard deviation of the observation noise for rain and wind respectively, and

R ¼ diagð½R2
r ¼ 0:0252 R2

u ¼ s
2
u�Þ to be the estimated diagonal noise covariance matrix. All

other parameters are just the default ones in the function. The initial ensemble is drawn from a

free forecast run with 10000/60 time-steps between each ensemble member. We give a snap-

shot of the system at a random time point in Fig 3. There are p = 300 state variables for each

type, making the state space have 900 dimensions and we assimilate the system every 5 seconds

Fig 2. The RMSE of the B-Loc EnKF and PEnKF over 50 trials using 25 ensemble members. The darker lines of each linetype are the

mean and the colored areas are the 95% confidence intervals. There is clear separation between the RMSE of the two filters with the

PEnKF’s error being significantly smaller.

https://doi.org/10.1371/journal.pone.0248046.g002
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for a total time period of 6 hours. Like in [37], we choose to use only 50 ensemble members

and we do not perturb rain observations that are 0, because at these points there is no measure-

ment noise.

The B-Loc EnKF uses a 3p × 3p taper matrix with c = 5, however the entries off the p × p
block diagonals are depressed (they are multiplied by 0.9). The NAIVE-LEnKPF uses the same

settings as in [37], so a localization parameter of 5km, which gives the same taper matrix as the

one used in the B-Loc EnKF, and an adaptive γ parameter. For the PEnKF, we set the penalty

parameter to be a 3p × 3p matrix, L ¼ cl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λRλ
T
R logð3pÞ=n

q

, where the first p entries of the vec-

tor λR are reference units and the rest are to scale for the perturbation noise of the different

state types. So the first p are 1 (reference) for fluid height, the second p are Ru for wind, and the

last p are Rr for rain. We choose the constant cλ with eBIC like before and search in the range

[.005, 1].

Fig 4 shows the mean and approximate 95% confidence intervals of the RMSE for fluid

height, wind speed, and rain content over 6 hours of time using 50 trials. The mean RMSE for

all three filters are well within each others’ confidence intervals for the fluid height and wind

variables. For the rain variables, the mean RMSE of neither the B-Loc EnKF nor the NAIVE-

LEnKPF are in the PEnKF’s confidence intervals and the mean RMSE of the PEnKF is on the

Fig 3. Fluid height, rain, and wind at 300 different locations at an instance of time. The blue dots are observations;

rain is always observed, wind is only observed when the rain is non-zero, fluid height is never observed. The dashed

lines in fluid height are the cloud and rainwater thresholds.

https://doi.org/10.1371/journal.pone.0248046.g003
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boundary of the other two models’ confidence intervals. This strongly suggests that the

PEnKF’s rain error is statistically smaller than the rain errors of the other two filters. Since this

simulation is not as simple as the previous ones, the interactions between the state variables

are most likely not as effectively captured by the taper matrix or other localization methods,

and the results from this simulation suggest that the PEnKF is learning more accurate interac-

tions for the rain variables. We do not show the results of the BLOCK-LEnKPF of [37] because

Fig 4. The RMSE of the B-Loc EnKF, NAIVE-LEnKPF, and PEnKF over 50 trials. The darker lines of each linetype

are the mean and the colored areas are the 95% confidence intervals. All three filters are pretty indistinguishable except

for the PEnKF’s rain error, which is statistically smaller than the others.

https://doi.org/10.1371/journal.pone.0248046.g004
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the algorithm suffered from filter divergence in 27 of the 50 trials, and in the trials where it did

not fail, it performed very similar to the NAIVE-LEnKPF.

5 Discussion

We propose a new algorithm based on an unstructured ensemble Kalman filter that is designed

for superior performance in non-linear high dimensional systems when dependency structure

in the state vector is unknown. This algorithm we call the penalized ensemble Kalman filter

because it uses the popular statistical concept of penalization/regularization in order to make

the problem of estimating the forecast covariance matrix well-defined (strictly convex). This in

turn both decreases the sampling errors (variance) in the forecast covariance estimator by trad-

ing it off for bias and prevents filter divergence by ensuring that the estimator is positive defi-

nite. The PEnKF is computationally efficient in that it is not significantly slower than the

standard EnKF algorithms and easy to implement since it only adds one additional step. This

step uses the well-established GLASSO algorithm, available in almost any scientific computing

language, for sparse estimation of inverse covariance matrices. We give theoretical results that

prove that the Kalman gain matrix constructed from this estimator will converge to the popu-

lation Kalman gain matrix under the non-simplistic asymptotic case of high-dimensional scal-

ing, where the sample size and the dimensionality increase to infinity.

Through simulations, we show that the PEnKF can do at least as well as, and sometimes bet-

ter than, localized filters that use much more prior information. We emphasize that by doing

just as well as the B-Loc EnKF, which has a close to optimal taper matrix, the PEnKF is effec-

tively correctly learning the structure of interactions between the state variables. Thus the

PEnKF is able to infer from the ensemble the true conditional correlation between the states as

opposed to having it or the correlation pre-defined. In a non-simulation setting where there is

possibly more uncertainty in the prior knowledge of the interactions between state variables,

correct localization is much more difficult, making any localized filter’s performance likely

sub-optimal. In contrast, since the PEnKF does not use any explicit prior knowledge, its per-

formance will not differ in this way between simulations and real-life situations. The more

complicated simulation, based on the modified shallow water equations, highlights this advan-

tage of the PEnKF through its substantial superior performance in estimating the hidden states

of the rain variables. This is because the relationship between states from different types (e.g.

rain and fluid height) is far less obvious than the relationship between states of the same type,

which is heavily influenced by physical location. Another feature of the approach is that it

seems to require less variance inflation. None was applied to any algorithm in our comparison,

but the PEnKF approach never collapsed. The penalization of the inverse covariance actually

produces a slight inflation on the diagonal of the covariance, which seems to help in this

regard.

We propose a simple, but effective BIC penalty method to search for a penalty parameter

for the PEnKF that performs well in the simulations. However, it is well known that such sim-

ple methods are biased and other more sophisticated methods can result in penalties that are

closer to optimal. Since the PEnKF can be sensitive to the penalty parameter, we think that it

will be worthwhile to investigate improved penalty parameter selection methods for the

PEnKF. We also think that such an improvement may be very challenging due to the more

complex mapping imposed by the ℓ1 penalty that we use to enforce sparsity. This topic is a

very active area of research in theoretical statistics, which may enable advances enabling

improved PEnKF methods. Additionally, there have been interesting new developments in the

mathematical behavior of the modes of a dynamical system; specifically in [57] where they

show that the number of ensemble members n needs only to be of the size of the growing and
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neutral modes in the dynamical system because the decaying modes do not hamper forecast-

ing. This role of the modes of a dynamical system in our more general non-linear dynamical

system model would be a promising avenue for future work.

6 Appendix

Definition.

(D1) sminðAÞ and smaxðAÞ denote the minimum and maximum singular values of any matrix A.

(D2) The spectral k�k2 and Frobenius k�kF norms are submultiplicative kABk � kAkkBk
and unitary invariant kAUk ¼ kU

T
Ak ¼ kA

T
k where UU

T
¼ I. So

kABkF ¼ kAUDV
T
kF ¼ kAUDkF � kAUsmaxðDÞkF ¼ kAUkFkDk2

¼ kAkFkBk2

(D3) kA� 1
k2 ¼ smaxðA

� 1
Þ ¼ 1=sminðAÞ

(D4) K and ~K can be decomposed like

K ¼ P
f
H

T
ðHP

f
H

T
þ RÞ

� 1

¼ P
f
H

T
ðR
� 1
� R

� 1
HððP

f
Þ
� 1
þ H

T
R
� 1
HÞ
� 1
H

T
R
� 1
Þ

¼ ðP
f
� P

f
ððP

f
Þ
� 1
ðH

T
R
� 1
HÞ
� 1
þ IÞ

� 1
ÞH

T
R
� 1

¼ ðP
f
� P

f
ððH

T
R
� 1
HÞ
� 1
þ P

f
Þ
� 1
P
f
ÞH

T
R
� 1

¼ ððP
f
Þ
� 1
þ H

T
R
� 1
HÞ
� 1
H

T
R
� 1
:

ð8Þ

(D5) E is the edge set corresponding to non-zeros in ðPf
Þ
� 1 and Ec is its complement. Γ is the Hes-

sian of Eq (2).

(D6) @kΘk1 can be any number between -1 and 1 whereΘ is 0 because the derivative of an abso-
lute value is undefined at zero. Thus, it is the set of all matrices Z 2 Sp�p such that

Zij ¼

( signðΘijÞ if Θij 6¼ 0

2 ½� 1; 1� if Θij ¼ 0 :
ð9Þ

(D7) A bounded 4mth moment is the highest fourth-order moment of a random variable that is
finite, where m is the number of fourth-order moments.

Lemma 1.1. Because H is a constant matrix, it does not affect the asymptotic magnitude of
the modified or sample Kalman gain matricies under any norm.

Proof of Lemma 1.1. k~Kk � kHk k~Kk � kH~Kk under any norm where H~K

¼ H~P fH
T
ðH~P fH

T
þ RÞ

� 1
¼ ðIþ RðH~PfH

T
Þ
� 1
Þ
� 1

¼ RR
� 1
ðR
� 1
þ ðH~P fH

T
Þ
� 1
Þ
� 1
R
� 1

¼ I � RðH~P fH
T
þ RÞ

� 1

ð10Þ

The same argument holds for K̂, where ðHP̂ fH
T
Þ
� 1

is the pseudoinverse if the inverse does

not exist.

Assumptions. The following assumptions are necessary for the minimizer of Eq (2) to have
good theoretical properties, [43]. Thus we assume they are true for the theorem.
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(A1) There exists some α 2 (0, 1] such thatmax
e2Ec
kGeEðGEEÞ

� 1
k1 � ð1 � aÞ.

(A2) The ratio between the maximum and minimum eigenvalues of Pf is bounded.

(A3) The maximum ℓ1 norms of the rows of P
f

and ðGEEÞ
� 1 are bounded.

(A4) The minimum non-zero value of ðPf
Þ
� 1

is Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpÞ=n

p
Þ for a sub-Gaussian state vector

and Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p3=m=n

p
Þ for state vectors with bounded 4mth moments.

Our assumptions are stronger than necessary, and it is common to allow the error rates to
depend on the bounding constants above, but for simplicity we give the error rates only as a func-
tion of the dimensionality n, p and sparsity s, d parameters.

Proof of Theorem 1. From [58] and [43], we know that for sub-Gaussian random variables

and those with bounded 4mth moments respectively, the SSE of the sample covariance matrix

are

Oðp2=nÞ

Oððlog
2
log

2
ðpÞÞ4pðp=nÞ1� 1=m

Þ

8
<

:
ð11Þ

and with high probability and the SSE of ð~Pf Þ
� 1

are

Oð3ðsþ pÞ logðpÞ=nÞ for l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 logðpÞ=n

p

Oððsþ pÞp3=m=nÞ for l �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p3=m=n

p

8
<

:
ð12Þ

with probability 1 − 1/p.

kHK̂ � HKk
2
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So, the second factor has the rates in Eq (11) and the final factor is a constant. The first factor

is also a constant because

kRðHP̂ fH
T
þ RÞ

� 1
Hk

2

2
� kðHP̂fH

T
R
� 1
þ IÞ

� 1
k

2

2
kHk

2

2

¼ kHk
2

2
=ðsminðHP̂fH

T
R
� 1
þ IÞÞ

2
� kHk

2

2
:

ð14Þ

Thus kHK̂ � HKk
2

F also has the rates in Eq (11) and from Lemma 1.1, kK̂ � Kk
2

F does too.

k~K � Kk
2
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� 1
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ð15Þ

The first term is a constant and the second term has the rates in Eq (12). The final term is also

a constant because k~Kk
2

2
� kH~Kk

2

2
¼ 1=sminðIþ RðH~PfH

T
Þ
� 1
Þ � 1. Thus k~K � Kk

2

F also has

the rates in Eq (12).
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Shallow water equations. The following equations are the modified shallow water equa-

tions described in [55].

(S1) @u
@t þ u @u

@x þ
@ð�þgH0rÞ

@x ¼ K @2u
@x2 þ �u @

@x ðexpf� ðx � xnÞ
2
=l2gÞ

(S2) @h
@t þ

@ðuhÞ
@x ¼ K @2h

@x2

(S3) @r
@t þ u @r

@x ¼ Kr
@2r
@x2 � ar �

b @u
@x ; Z > Hr and @u

@x < 0

0; otherwise

(

which are centered around location xn with length scale l, and where u is the fluid
velocity and �u is its amplitude, h is the fluid depth, and r is the mass fraction of rain water.
The geopotential φ is based on the height of the fluid surface and defined as

� ¼
�c þ gH; Z > Hr and

@u
@x

< 0

gðH þ hÞ; otherwise

8
<

:
where H is the height of the topography with

thresholds Hc and Hr for convection and rainwater respectively, and H0 is the initial absolute
fluid layer height. α and β are physical parameters that can be varied to produce realistic
space and time scales for the cloud models.
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