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Introduction
COVID‑19 became a global public health 
challenge in late 2019, and til October 2021, 
has produced over 219 million infections 
worldwide and killed 4.55 million patients 
during the first 16 months.[1,2] Coronaviruses 
have an average diameter of 100 nm, and 
they are spherical or oval viruses that stain 
as negative particles with large spikes of 
glycoproteins on the surface inducing a typical 
crown‑like shape when observed by electron 
microscopy.[3,4] Coronavirus is a positive‑sense 
single‑stranded RNA virus that harbors the 
largest genome among currently known 
RNA viruses with a genome length of about 
26–32 kb.[5,6] According to current clinical 
records, coronaviruses cause mild respiratory 
tract disorder and also lead to cardiovascular 
and renal dysfunction[7‑11] [Figure 1]. Death 
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Abstract
The current pandemic coronavirus disease‑19 (COVID‑19) is still a global medical and economic 
emergency with over 244 million confirmed infections and over 4.95 million deaths by October 
2021, in less than 2 years. Severe acute respiratory syndrome (SARS), the Middle East respiratory 
syndrome coronavirus (MERS), and COVID‑19 are three recent coronavirus pandemics with major 
medical and economic implications. Currently, there is no effective treatment for these infections. 
One major pathological hallmark of these infections is the so‑called ‘cytokine storm,’ which 
depicts an unregulated production of inflammatory cytokines inducing detrimental inflammation 
leading to organ injury and multiple organ failure including severe pulmonary, cardiovascular, and 
kidney failure in COVID‑19. Several studies have suggested the potential of curcumin to inhibit 
the replication of some viruses similar to coronaviruses. Multiple experimental and clinical studies 
also reported the anti‑inflammatory potential of curcumin in multiple infectious and inflammatory 
disorders. Thus, we hypothesized that curcumin may provide antiviral and anti‑inflammatory effects 
for treating COVID‑19. Although these studies suggest that curcumin could serve as an adjuvant 
treatment for COVID‑19, its molecular mechanisms are still debated, especially its potential to 
modulate the toll‑like receptors/TIR‑domain‑containing adapter‑inducing interferon‑β/nuclear factor 
kappa‑light‑chain‑enhancer of activated B cells (TLR/TRIF/NF‑κB) pathway. The preliminary 
results showed that curcumin modulates the nuclear factor kappa‑light‑chain‑enhancer of activated 
B cells (NF‑κB) pathway, a common pathway controlling cytokine production in multiple infectious 
and inflammatory disorders. Here, we hypothesize and discuss whether curcumin treatment may 
provide antiviral and anti‑inflammatory clinical advantages for treating COVID‑19 by modulating 
the TLR/TRIF/NF‑κB pathway. We also review the current data on curcumin and discuss potential 
experimental and clinical studies that require defining its potential clinical implications in COVID‑19.
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in coronavirus infections is normally due to 
cardiovascular and respiratory failure.[2,12‑14] 
Along with the effects of these viruses on 
various body systems, recent studies reveal 
that the main cause of death from coronavirus 
infections is the so‑called inflammatory 
cytokine storm, a chaotic production of 
inflammatory cytokines causing detrimental 
inflammation, cytotoxicity, and coagulopathies 
leading to acute lung, cardiovascular, and 
kidney failure. This inflammatory storm is a 
fatal consequence of coronavirus infections 
and a major clinical target for treating these 
infectious disorders.[15,16]

Cytokine Storm and Its Role in 
the Pathophysiology of COVID‑19 
Disease
The cytokine storm syndrome (CSS) is a 
form of systemic inflammatory response 
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syndrome (SIRS) that can be triggered by a variety of 
clinical conditions including viral infections.[17‑19] The 
cytokine storm syndrome occurs when large numbers of 
immune cells are activated by an infection and release 
inflammatory cytokines, which in turn, induces the 
recruitment and activation of additional immune cells 
and triggers an inflammatory waterfall.[19‑21]  Activated 
immune cells including monocytes, macrophages, B, T, 
natural killer, and dendritic cells release inflammatory 
cytokines, which other immune cells in a positive 
feedback loop of pathogenic inflammation.[19,22,23] The 
immune cells are activated by pathogens, stressed, or 
infected cells through receptor‑ligand interactions.[19] 
Toll‑like receptors play a critical role in recognizing 
pathogens and activating the immune cells to fight the 
infection. Immune cytokines recruit more effector immune 
cells such as T‑cells and inflammatory monocytes (which 
differentiate into macrophages) into the site of infection 
such as the lung tissue.[19,24,25] This process is the 
critical immune response to fight infections, but when 
unregulated, overzealous production of inflammatory 
cytokines becomes life‑threatening which can be more 
dangerous than the original infection and can cause a 
chaotic inflammatory storm inducing cardiovascular 
shock, and multiple organ failure.[26,27] During this 
cytokine storm, in coronavirus infections, large amounts 
of inflammatory cytokines such as interferons (IFN‑α, 
IFN‑γ), interleukins (IL‑1β, IL‑6, IL‑12, IL‑18, 
IL‑33), tumor necrosis factor‑alpha (TNF‑α), etc.) and 
chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9, 
CXCL10, etc.) attack the lung and produce respiratory 
failure.[16,28,29] The cytokine storm depicts a chaotic 
detrimental immune response that causes tissue damage 
leading to lethal multiple organ failure such as severe 
pulmonary, cardiovascular, and kidney failure in 
SARS‑CoV‑2 infection[30,31] [Figure 2].

Toll‑like Receptors (TLR) Signaling Pathway
At the molecular level, the TLR/TRIF/NF‑κB pathway 
is a common factor in activating cytokine production in 
multiple infectious and inflammatory disorders.[32,33] Thus, 
this pathway can also be a potential therapeutic target to 
blunt detrimental inflammation in COVID‑19. However, the 
effects of coronaviruses on this pathway are not clarified 
exactly. However, in recent years, some limited studies 
evaluated the role of toll‑like receptors (TLR) in the 
pathogenesis of COVID‑19 which is discussed below.[34,35] 
Toll‑like receptors (TLR) are a transmembrane protein that 
belongs to the pattern recognition receptor (PRR) family and 
it is critical in bacterial infections by recognizing bacterial 
endotoxin. As part of the innate immune system, TLR4 
triggers intracellular signaling activating NF‑κB, and thereby, 
inflammatory cytokine production. NF‑κB (nuclear factor 
kappa‑light‑chain‑enhancer of activated B cells) is a protein 
complex that controls DNA transcription for inflammatory 
cytokines during bacterial or viral infections.[33,36] In between, 
TIR‑domain‑containing adapter‑inducing interferon‑β (TRIF) 
is a mediator adapter for TLR intracellular signals. It 
mediates the rather delayed cascade of two TLR‑associated 
signaling cascades such as NF‑κB[37,38] [Figure 3].

TLRS in the Pathogenesis of SARS‑COV‑2
Based on the previous studies, TLRs could play a crucial role 
in the COVID‑19 disease. It was suggested that activation of 
the TLRs in COVID‑19 infection could lead to the production 
of pro‑inflammatory cytokines, such as IL‑1β.[34,35] Moreover, 
immunological and pathological concerns of and one of 
the main causes of death in COVID‑19 patients are due to 
the interaction of TLRs with virus particles.[34] Studies on 
COVID‑19 have indicated that the pathologic role of TLR4 
in excessive inflammation in COVID‑19 patients as it leads 
to activation of death signals in infected patients.[39,40] Also, 
other studies indicated that TLR3/TLR4 adaptor TRIF plays 

Figure 1: Effects of coronaviruses on multiple body organ systems
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a critical role in the pathogenesis of COVID‑19.[34] Also, 
it was indicated and suggested that TLR3 and TLR‑7 may 
contribute to some inflammation and production of NF‑κB 
in viral diseases such as influenza and COVID‑19.[34,41] 
While about the role of TLR‑4 this effect is not direct and 
after involving patients with secondary bacterial infections in 
viral diseases the TLR‑4 can be a trigger.[40] It was indicated 
that stimulation of TLR2 leads to activation of the innate 
immune response during viral diseases such as COVID‑19 
and similar diseases,[34,42] According to the mentioned concept 
about the role of multiple types of TLR in the pathogenesis 

of COVID‑19 and based on mentioned limit studies it could 
conceivably be hypothesized that TLRs have both harmful 
and possibly beneficial effects in COVID‑19 infection. Thus 
using of Both antagonists and agonists of TLRs, based on 
the type of the TLR, should be examined to determine the 
therapeutic and harmful effects in COVID‑19 infection.[34]

Suggesting of Therapeutic Approaches Based on 
TLRs in the Pathogenesis of SARS‑COV‑2
Recent studies have shown the therapeutic potential of 
some synthetic and naturally occurring compounds, which 

Figure 2: Coronavirus infections can trigger a pulmonary inflammatory ‘cytokine storm’. (A) Coronaviruses infect lung epithelial cells and activate alveolar 
macrophages to release immune cytokines/chemokines (including interferons). (B) These factors can activate other immune cells triggering positive 
feedback in a pathogenic inflammatory loop causing a more extensive immune response and the inflammatory cytokine storm. (C) These factors attract 
more inflammatory cells and cause migration of leukocytes from blood vessels into the site of inflammation (lung), and these cells release additional 
factors contributing to the cytokine storm leading to lung inflammation and fibrosis

Figure 3: TLR/TRIF/NF‑κB pathway. TLRs  family  recognizes pathogens on  the cell  surface. Then,  these  receptors  recruit  adaptor  (TRIF and TRAF6) 
proteins and activate downstream signaling cascades to activate nuclear factor kappa‑B (NF‑κB). NF‑κB is an inducible transcription factor that activates 
the transcription of inflammatory factors. NF‑κB targets inflammation not only directly by inducing inflammatory cytokines, chemokines, and adhesion 
molecules, but also by regulating the cell proliferation, apoptosis, morphogenesis, and differentiation
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are often used in inflammatory pulmonary disorders 
similar to those produced by coronaviruses.[43,44] Other than 
flavonoids, phenols such as curcumin (diferuloylmethane) 
have significant anti‑inflammatory and antioxidant 
properties[45‑47] [Figure 4]. Curcumin can attenuate 
inflammatory responses during influenza infections by 
inhibiting the NF‑κB pathway.[48‑51] Curcumin can inhibit 
virus infection by either inhibiting viral replication 
or suppressing cellular signaling pathways such as 
NF‑κB.[46,52,53] Despite the antiviral and anti‑inflammatory 
potential of curcumin in some viral infections, it is unknown 
whether curcumin can affect coronavirus infections or its 
molecular mechanism of action. However, in recent year 
efforts for evaluation of the role of the herbal compound 
such as curcumin for COVID‑19 treatment were increased 
and these studies have been reinforced that curcumin 
could serve as an adjuvant drug. Despite the absence of 
specific studies addressing the mechanism of action of 
curcumin in the treatment of COVID‑19, and also because 
there is no specific study that can accurately identify the 
exact mechanisms of this compound against COVID‑19, 
especially clarification TLR/TRIF/NF‑κB pathway, thus we 
hypothesize that curcumin may control inflammation by 
inhibiting the NF‑κB pathway. If so, curcumin may provide 
clinical advantages or critical insights to treat coronavirus 
infections including the current COVID‑19 pandemic.

Hypothesis
Given the current COVID‑19 pandemic and the lack 
of effective treatment to either inhibit viral replication 
or detrimental inflammation, we evaluated potential 
therapeutic strategies for treating COVID‑19 patients and 
their pulmonary, cardiovascular, and renal dysfunction. 
Based on the previous studies reporting the potential of 
curcumin in several viral infections, we hypothesized that 
curcumin may modulate NF‑κB over‑activation during 
COVID‑19, and thereby blunt detrimental inflammation 
and even viral replication.

Evaluation of the Hypothesis
Data bank search such as Scopus, PubMed, Web of 
Science, Google Scholar, Elsevier, Science Direct, Core 
Collection, and Cochrane using keywords curcumin and 
coronavirus such as SARS, MERS, or COVID‑19 were 
performed to evaluate published studies on the antiviral 
and immunomodulatory role of curcumin in coronavirus 
infected subjects. We also searched for curcumin plus 
coronavirus and the TLR/TRIF/NF‑κB. Although in recent 

year efforts for evaluation of the role of herbal compounds 
such as curcumin for COVID‑19 treatment were increased 
and these studies have been suggested that curcumin could 
serve as an adjuvant treatment of COVID‑19,[54‑57] but 
there is no specific study that can accurately identify the 
exact mechanisms of this compound against COVID‑19, 
especially clarification TLR/TRIF/NF‑κB pathway, thus we 
did not find any specific paper or article about the role of 
curcumin in the management of TLR/TRIF/NF‑κB pathway 
in COVID‑19 pathogenesis.

Discussion
The current COVID‑19 outbreak is an international 
health emergency affecting millions of people worldwide. 
Coronaviruses are a group of viruses that cause respiratory 
diseases in mammals and birds.[58,59] In humans, 
coronaviruses cause respiratory tract infections that are 
typically mild, such as the common cold, though rarer 
forms such as SARS (Severe Acute Respiratory Syndrome), 
Middle East respiratory syndrome coronavirus (MERS), 
and COVID‑19 (coronavirus disease‑19) can be lethal.[58,59] 
Symptoms vary in humans, but according to current data, 
they cause upper respiratory tract diseases, and around 3‑5% 
of infected patients can die especially elderly or patients 
with comorbidities. Also, there is significant information 
about the long‑term respiratory sequels of the infection, but 
its pathologic mechanism remains unknown. Recent studies 
show that the pathogenesis of coronaviruses is mediated 
by an inflammatory cytokine storm.[15,60] Coronavirus 
infections induce an overwhelming inflammatory response 
in some patients, activating the production of inflammatory 
cytokines and progressively recruiting new hordes of 
immune cells, which further exacerbate the inflammatory 
response.[61‑63] The mechanisms inducing this “cytokine 
storm” and their contribution to fatal COVID‑19 are 
still under investigation.[63,64] In many infected patients, 
the “cytokine storm” caused severe acute respiratory 
distress syndrome, when the lungs are unable to provide 
enough oxygenation.[65,66] The cytokine storm is associated 
with a dramatic increase of inflammatory cytokines, 
particularly those that control migration and activation 
of macrophages.[65,67,68] Large amounts of inflammatory 
cytokines (IFN‑α, IFN‑γ, IL‑1β, IL‑6, IL‑12, IL‑18, IL‑33, 
TNF‑α, TGFβ, etc.) and chemokines (CCL2, CCL3, 
CCL5, CXCL8, CXCL9, CXCL10, etc.) are produced in 
the lung,[65,68,69] and they induce detrimental inflammation 
that can cause organ dysfunction and lethal multiple organ 
failure[70] [Figure 2]. Also, these inflammatory cytokines 
bind their cognate receptors on immune cells to further 
induce cytotoxic effects.[70,71] The molecular mechanism 
leading to this inflammatory storm during coronavirus 
infections is unknown,[71] but it is expected that NF‑κB, a 
key intracellular pathway controlling cytokine production, 
can play a critical role in COVID‑19.[72] Recent studies have 
reported that the TLR/TRIF/NF‑κB pathway plays a critical Figure 4: Chemical structures of curcumin
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role in inducing a cytokine storm in other viral infections 
such as influenza,[73,74] suggesting that this pathway can be 
a pivotal target to control this detrimental inflammatory 
process in diverse conditions.[27,75,76] However, the clinical 
implication of the NF‑κB pathway in coronavirus infections 
is unknown. Previous studies reported that SARS‑CoV 
infections induce IL‑6 and TNF‑α production via NF‑κB, 
which is activated through I‑κBα degradation. These 
results suggest that the SARS‑CoV spike protein may play 
an important role in the pathogenesis to induce cytokine 
production.[77‑80] These studies also provided comprehensive 
insights that host cell transcriptome changes after 
coronavirus infection are induced by NF‑κB,[77‑80] and also 
the critical role of TLRs contributing to highly pathogenic 
coronavirus infections,[81‑83] but their clinical role is still 
unknown. TLRs, modulate multiple inflammatory pathways 
and cytokines during coronavirus and other similar viral 
infections.[84] TLRs family is a transmembrane protein 
that belongs to the pattern recognition receptor (PRR) 
family. TLRs trigger intracellular signaling activating 
NF‑κB and inducing inflammatory cytokine production to 
initiate the innate immune response to pathogens. NF‑κB 
is a protein complex that controls DNA transcription for 
inflammatory cytokines to trigger a defensive response 
to bacterial or viral infections.[84,85] TRIF is an adapter 
contributing to the intracellular signaling of TLRs. TRIF 
mediates TLR‑associated signaling cascades such as 
NF‑κB.[86,87] These studies reveals that the TLR/TRIF/
NF‑κB pathway plays a critical role inducing the innate 
inflammatory response to fight infections, but at the 
same time over‑activation of this pathway can cause 
an overwhelming production of multiple inflammatory 
factors leading to organ failure. The specific inhibition 
of all these factors represents a major clinical challenge, 

but NF‑κB may represent a specific target to control 
the complex inflammatory response of diverse factors. 
Thus, it is important to study NF‑κB in coronavirus 
infections to determine the pathological factors inducing 
this inflammatory storm but also to gain insights for new 
treatments against infectious disorders such as COVID‑19.

Of course, it is important to mention this point according to 
current knowledge about the role of multiple types of TLR 
in the pathogenesis of COVID‑19 studies hypothesized that 
TLRs have both harmful and possibly beneficial effects in 
COVID‑19 infection. It suggested that TLR3 and TLR‑7 
may contribute to some inflammation and production of 
NF‑κB in viral diseases such as influenza and COVID‑19, 
but this was not approved yet.[72,88,89] While about the role of 
TLR‑4 this effect is not direct and after involving patients 
with secondary bacterial infections in viral diseases the 
TLR‑4 can be a trigger.[40] Also, it was suggested that TLR2 
leads to activation of the innate immune response during 
viral diseases such as COVID‑19 and similar diseases.[34,42]

Because there is no specific study that clarified and 
accurately identifies the exact role of the TLR/TRIF/NF‑κB 
signaling pathway on the pathogenesis of COVID‑19, thus 
it seems that doing a study with this goal of evaluation of 
TLR/TRIF/NF‑κB signaling pathway on the pathogenesis 
of COVID‑19 is necessitates.

As mentioned above, COVID‑19 is a global medical 
challenge without effective treatment, potential therapeutic 
approaches and protective agents with antiviral and/
or anti‑inflammatory potential are critical and urgent 
needs. Curcumin is a suitable candidate that may provide 
both antiviral and anti‑inflammatory advantages for 
COVID‑19.[46,48,49,51,53] Curcumin (diferuloylmethane) the 
most abundant component of turmeric is extracted from 

Figure  5: Curcumin may  inhibit  coronaviruses  replication,  and  inhibit  the TLRs/TRIF/NF‑κB pathway to blunt cytokine production and deleterious 
inflammation in the infected patients
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rhizomes of the plant Curcuma longa.[90‑92] This non‑nutritive 
yellow pigment is an established nutraceutical dietary 
phenol and has significant medicinal and pharmacological 
values.[93‑95] Curcumin exerts biological effects through its 
antioxidant, anti‑apoptotic, and anti‑inflammatory activity.
[96] Recent studies performed in vertebrate and invertebrate 
experimental models revealed that curcumin can provide 
therapeutic advantages in multiple metabolic and 
infectious diseases.[93,97‑99] Curcumin treatment can blunt 
inflammation by reducing inflammatory biomarkers and 
improving the symptoms of patients with inflammatory and 
autoimmune diseases.[100,101] Furthermore, chronic curcumin 
administration reduces TNF‑α, IL‑1β, and Tumor Growth 
Factor‑Beta1 (TGF‑β1) levels in different experimental 
models of inflammatory disorders such as sepsis‑induced 
acute lung injury and.[101,102] The potential of curcumin 
to inhibit different viral infections can provide critical 
information about the common mechanism regulating these 
infections and the potential to design curcumin derivatives 
that can increase its effectiveness.[45,47] Some of the most 
significant results about curcumin in viral infections 
show its potential to control both viral replication and 
inflammation in influenza infections.[47,103] These studies 
strongly suggest the potential of curcumin for treating other 
viral infections affecting the respiratory tract.

Recent studies also reported the potential of curcumin 
and artemisinin combination therapy as an anti‑microbial 
strategy in malaria, it is thus tempting to propose 
similar curcumin and artemisinin‑based oral spray for 
COVID‑19.[104,105] Multiple studies have shown the 
anti‑inflammatory potential of curcumin.[106,107] Curcumin is 
a highly pleiotropic molecule capable of interacting with 
numerous targets involved in inflammation. Multiple studies 
including cell culture, animal research, and clinical trials 
concur in showing that curcumin has beneficial effects in 
multiple disorders such as inflammatory bowel diseases, 
pancreatitis, arthritis, chronic anterior uveitis, and certain 
types of cancer.[100,107] Consistent with its anti‑inflammatory 
potential, curcumin blocks cytokine production including 
critical inflammatory factors such as IL‑1, IL‑6, and TNFα 
in different experimental models. These effects correlate with 
the potential of curcumin to blunt the inflammatory cytokine 
storm and thereby the clinical symptoms of patients with 
viral infections such as influenza or Ebola.[46,108] Although 
curcumin has been investigated in some viral infections, 
its effects on coronavirus infectious are unknown.[46,108] The 
potential of curcumin to modulate the TLR/TRIF/NF‑κB 
pathway was clarified in some studies about autoimmune 
human and experimental models.[109,110] However, most of 
these studies focused on the potential of curcumin to blunt 
inflammation,[110,111] but its potential role on COVID‑19 
infection and the possible role of this herbal compound on 
the management of TLR/TRIF/NF‑κB signaling pathway 
during the pathogenesis of COVID‑19 is still not well 
characterized and need for assessment.

Conclusions
In summary, scientific literature shows the antiviral and 
anti‑inflammatory potential of curcumin in multiple 
experimental and clinical studies. Although some initial 
results suggest that curcumin can control influenza virus 
replication, it is uncertain the molecular mechanism 
of action and whether it applies to other viruses. The 
stronger results suggest that curcumin can provide 
clinical advantages to control inflammation in multiple 
experimental and clinical studies. These studies suggest 
that curcumin may regulate a common pathway to all 
these disorders, and preliminary results strongly suggest 
the potential of curcumin to regulate the TLR/TRIF/
NF‑κB pathway [Figure 5]. According to these studies, 
curcumin may provide clinical advantages for its antiviral 
and anti‑inflammatory potential to control detrimental 
inflammation in COVID‑19 patients. However, the specific 
target(s) of curcumin and its molecular mechanism of 
action and specificity are still unknown, and especially its 
role on TLR/TRIF/NF‑κB signaling pathway during the 
pathogenesis of COVID‑19 is still not well defined and thus 
its clinical implications for treating COVID‑19 infectious 
and its inflammatory consequences need for evaluation in 
an experimental and or clinical study.
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