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Abstract

Background: The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for
Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim
was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens.

Methodology/Principal Findings: We took a non-biased approach to identify potential immunodiagnostic parasite protein
antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated
using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with
detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic
methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG
fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list
(ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble
recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and
assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64
construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b.
rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic
device.

Conclusions/Significance: Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype
showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These
results provide encouragement to further develop and optimize the lateral flow device for clinical use.
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Introduction

Human African Trypanosomiasis (HAT), also known as

Sleeping Sickness, is a disease caused by Trypanosoma brucei

gambiense and T. b. rhodesiense [1,2,3]. The parasites are transmitted

in sub-Saharan Africa by the bite from an infected tsetse fly. HAT

is of great public health significance, with epidemic outbreaks

recorded several times over the past century with, at times,

estimates of 300,000 or more infected individuals [4]. Today, the

recorded number of new cases has dropped below 10,000 per year,

yet HAT still continues to place a large burden on individuals and

communities in terms of disability-adjusted life years [5,6]. The

identification of infected individuals is crucial for therapeutic and

public health intervention. New tools could aid eradication of this

disease when used in coordination with other efforts [5,7,8].

Infection with T. b. gambiense or T. b. rhodesiense progresses

through two defined stages. The first stage is when trypanosomes

are limited to the blood and lymphatic systems. The second stage

occurs when the parasites invade the central nervous system [2].

The latter leads to neurological damage, sleep cycle disruption,

coma and death if the patient does not receive treatment [9,10,11].

The two stages are treated with different drugs, and those used for

the second stage have severe toxic side effects [12,13]. Staging of

the infection, to select the appropriate therapeutics and follow up,

is currently done by sampling the cerebral spinal fluid to search for

the presence of parasites and/or increased numbers of lympho-

cytes [14]. The view that human trypanosome infections are

invariably fatal if not treated has been challenged recently [15,16]

but, nevertheless, early diagnosis is extremely important both for

individual patient outcomes and for controlling epidemic spread

[17,18].

The identification of infected individuals relies on dedicated

screening teams that visit at-risk communities or patients seeking

medical examination [19]. HAT diagnosis in the field faces many
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difficulties; not least the logistical challenges for the screening

teams to attend communities in rural locations. In endemic areas,

civil disturbance usually increases the incidence of HAT and

decreases the frequency of screening [20,21,22]. Once the

screening teams are with the communities, they face further

challenges to recruit the entire local population into the HAT

screening programme, which can lead to under-reporting and

under-estimations of infection rates [23,24,25,26].

The current HAT screening regimen uses the Card Agglutina-

tion Test for Trypanosomiasis (CATT), a serological test that

detects whether antibodies from an individual are able to

aggregate a suspension of fixed and stained T. b. gambiense

trypanosomes [27], detecting primarily antibodies to the variant

surface glycoproteins (VSGs) on the fixed cells. If patients have a

positive CATT result, microscopic examination of their blood is

carried out to detect trypanosomes. If this is positive, a lumbar

puncture is performed to stage the infection. Over the years, the

CATT test has been optimised to improve sensitivity, specificity

and stability. Such modifications include dilution of the blood

samples, the use of multiple trypanosome clones expressing

different VSG variants and improvements in thermostability

[28,29,30,31]. Despite the usefulness and wide deployment of

the CATT test, it has several widely accepted limitations

[32,33,34,35]. These include varying degrees of sensitivity and

specificity, its inability to detect T. b. rhodesiense infections, the

requirement for trained screening personnel to use it and the

specialised manufacture which precludes production on a scale

necessary to saturate the market [26,36]. There have also been

other post-CATT test diagnostic enhancements. For example, the

concentration of trypanosomes from infected blood to improve

microscopic detection [37,38,39]. Further, the detection of

trypanosome DNA in blood by loop-mediated isothermal ampli-

fication of DNA (LAMP) [40] methods are under investigation and

are summarised in a recent review [41]. However, these diagnostic

methods require relatively sophisticated laboratory equipment. In

summary, there is well accepted case for developing an extremely

simple, low-cost diagnostic device with greater sensitivity and

specificity than current field tests [4].

Lateral flow devices are simple tests that can rapidly detect

nanogram amounts of antibodies or antigens in finger-prick blood

samples without the need for any ancillary equipment [42]. T. b.

gambiense infections are characterised by very low parasitemias,

often ,1000/ml, the equivalent of ,5 ng total trypanosome

protein/ml blood. Thus, using currently available technology, it is

not feasible to directly detect a trypanosome protein and a lateral

flow test that detects host antibodies is perhaps more likely to have

the required sensitivity and specificity. The manufacture of large

numbers of lateral flow devices requires milligram to gram

amounts of diagnostic antigen, therefore potential diagnostic

antigens for such devices should preferably derive from recombi-

nant or synthetic sources. Recently the Foundation for Innovative

New Diagnostics (FIND) has invested in developing new diagnostic

tests for human African Trypanosomiasis [43]. With a similar aim

in mind, we also set out to identify novel diagnostic antigens, and

to create a prototype lateral flow test device, but using a non-

biased (proteomics) approach to select potential biomarker

antigens. The results of this antigen selection and the performance

of a prototype lateral flow device are reported here.

Materials and Methods

Ethics statement
All human serum samples were collected with the informed

consent of the patients that they could be used anonymously for

diagnostic development. Rodents were used to propagate sufficient

T. brucei parasites to make the detergent lysates for immunoaffinity

chromatography and proteomics. The animal procedures were

carried out according the United Kingdom Animals (Scientific

Procedures) Act 1986 and according to specific protocols approved

by The University of Dundee Ethics Committee and as defined

and approved in the UK Home Office Project License PPL 60/

3836 held by MAJF.

Serum samples and storage
Two sets of human serum samples were used, the first was

kindly provided by Philippe Büscher (Institute of Tropical

Medicine, Antwerp) and consisted of nine sera from T. b.

gambiense infected patients and nine from matched non-infected

patients. These samples underwent virus inactivation using a

procedure that retains antibody reactivity [44]. Briefly, 1% Tri(n-

butyl)phosphate (TnBP) and 1% Triton X-45 were added to

thawed serum samples and incubated at 31uC for 4 h. Sterile

castor oil was added, mixed and the samples were centrifuged

(38006 g, 30 min). The oil-extraction was repeated three times

and the virus-inactivated sera (lower phases) were aliquoted and

stored at 280uC. The second set of 145 patient sera (200 ml

aliquots) was obtained from the WHO Human African

Trypanosomiasis specimen bank [45]. Serum samples were

aliquoted and stored at either 280uC for long-term storage or

in 50% glycerol at 220uC when prepared for ELISA analysis.

Freeze-thawing was kept to a minimum; samples from P. Büscher

and WHO were freeze-thawed three times and twice, respec-

tively, prior to use in ELISA tests.

IgG purification from serum
Following virus inactivation, 125 ml of sera from four infected

and four uninfected (control) patients were pooled. Each pool was

applied to a 1 ml protein G column (GE Healthcare) equilibrated

in phosphate buffered saline (PBS). The columns were washed

with 10 ml of PBS and the bound IgG antibodies were eluted with

50 mM sodium citrate pH 2.8, and collected in 1 ml fractions into

tubes containing 200 ml of 1 M Tris-HCl, buffer pH 8.5. Peak

fractions containing IgG were combined and dialysed for 16 h

against coupling buffer (0.1 M NaHCO3, 0.5 M NaCl, pH 8.3).

Author Summary

Human African Trypanosomiasis is caused by infection
with Trypanosoma brucei gambiense or T. b. rhodesiense.
Preliminary diagnosis of T. b. gambiense infection relies
mainly on a Card Agglutination Test for Trypanosomiasis
(CATT), which has acknowledged limitations. New ap-
proaches are needed, first to identify new diagnostic
antigens and, second, to find a more suitable platform for
field-based immunodiagnostic tests. We took an unbiased
approach to identify candidate diagnostic antigens by
asking which parasite proteins bind to the antibodies of
infected patients and not to the antibodies of uninfected
patients. From this list of twenty-four candidate antigens,
we selected four and from these we selected the one that
worked the best in conventional immunodiagnostic tests.
This antigen, ISG65, was used to make lateral flow devices,
where a small sample of patient serum is added to a pad
and thirty minutes later infection can be inferred by simple
optical read out. This simple prototype device works as
well as the CATT test and may be developed and
optimized for clinical use in the field.

A Diagnostic Device for African Trypanosomiasis
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Coupling of IgG to CNBr-activated Sepharose
CNBr-activated Sepharose (GE Healthcare) was hydrated in

1 mM HCl and then equilibrated in coupling buffer. Aliquots

(0.75 ml packed volume) were mixed with 7.2 mg of purified

infection IgG or purified control IgG in a final volume of 3 ml

coupling buffer for 16 h at 4uC. The coupling of IgG was

confirmed by measuring the absorbance of the supernatant at

280 nm before and after coupling. The Sepharose-IgG conjugates

were centrifuged at 5006 g (10 mins, 4uC) and the beads were

resuspended in 15 ml 1 M ethanoamine, pH 9, to block remain-

ing amine-reactive sites for 2 h at room temperature. Following

this, the IgG-Sepharose beads were washed with three cycles of

0.1 M Tris-HCl, pH 8.0, 0.5 M NaCl followed by 0.1 M sodium

acetate buffer, pH 6.0, 0.5 M NaCl and finally washed and stored

in PBS containing 0.05% NaN3.

Preparation T. b. brucei lysate
Six BalbC mice were injected with T. b. brucei Lister 427 variant

MITat 1.4 cells. After three days, infected mouse blood was

harvested with citrate anticoagulant, adjusted to 107 parasites per

ml with PBS and aliquots of 0.5 ml were injected into the

peritoneal cavity of 12 Wistar rats. The rat blood was harvested

after 3 days with citrate anticoagulant and centrifuged at 10006 g

for 10 min at 4uC. Plasma was removed and the buffy layer was

resuspended in separation buffer plus glucose (SB + glucose;

57 mM Na2HPO4, 3 mM KH2PO4, 44 mM NaCl, 10 g/l

glucose) and applied to a DE52 DEAE-cellulose (Whatman)

column that had been pre-equilibrated with SB + glucose. The

trypanosomes were washed through the column with SB + glucose,

counted, centrifuged (900 g, 15 min, 4uC), resuspended in 1 ml

PBS and then adjusted to 16109 parasites/ml in ice-cold lysis

Figure 1. Recombinant protein antigens used in this study. A generic representation of the ISGs is shown at the top and a representation of
GRESAG4 is shown at the bottom. All have cleavable N-terminal signal peptides and internal transmembrane domains, typical of type-1 membrane
proteins. The constructs prepared and expressed and the soluble proteins successfully purified, are indicated.
doi:10.1371/journal.pntd.0002087.g001

A Diagnostic Device for African Trypanosomiasis
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buffer (50 mM Na2PO4, pH 7.2, 2% n-octyl b-D-glucopyranoside

(nOG) detergent, 1 mM PMSF, 1 mM TLCK, 1 mg/ml aprotinin,

1 mg/ml leupeptin and 16Roche protease cocktail minus EDTA).

The lysate was incubated for 30 min on ice and then centrifuged

at 100,000 g for 1 h at 4uC.

Immunoprecipitation
Aliquots of T. b. brucei lysate (1010 cell equivalents) were

incubated with 0.75 ml packed volume of each of the Sepharose-

IgG (infection and non-infection/control) gels, rotating for 3 h at

4uC. The gels were then packed into disposable 10 ml columns

and washed with 10 ml of 10 mM Na2PO4, pH 7.2, 200 mM

NaCl, 1% nOG, followed by 10 ml of 5 mM Na2PO4 pH 7.2, 1%

nOG. The trypanosome proteins were eluted 3 times with 750 ml

of 250 mM sodium citrate, pH 2.8, 1% nOG and the eluates were

pooled and neutralised with 1.5 M Tris-HCl, pH 9 and further

concentrated to 140 ml using a centrifugal concentrator (Millipore,

0.5 ml capacity with 3 kDa MW cut off membrane). To remove

eluted IgG, this fraction was mixed with 30 ml PBS-equilibrated

Protein G agarose beads (Pierce) and incubated for 10 min and

removed by centrifugation. The supernatant, containing the

trypanosome proteins, were then transferred to low binding

Eppendorf tubes and the proteins were precipitated by adding

1 ml ice-cold ethanol and incubation for 34 h at 220uC.

Proteomic protein identification
Following ethanol precipitation, the proteins eluted from the

infection IgG and control IgG gels were dissolved in SDS sample

buffer, reduced with DTT and run on a precast 4–12% BisTris

gradient SDS-PAGE gel (Invitrogen) using the MES running

system. The gel was stained with colloidal Coomassie blue and

equivalent regions of the infection and control lanes were cut out,

reduced and alkylated with iodoacetamide and digested in-gel with

trypsin. The tryptic peptides were analysed by LC-MS/MS on a

Thermo Orbotrap XL system and MASCOT software was used to

match peptides to the predicted trypanosome protein databases

(combined GeneDB and UniProt predicted protein sequences).

Selection of antigens and the cloning and sequencing of
antigen gene segments

Trypanosome proteins identified uniquely in the infection IgG

immunopurified fractions were considered for recombinant

expression. Within these, proteins with high MASCOT scores,

likely to be the most abundant, were prioritised for recombinant

expression and purification trials. These proteins included Gene

Related to Expression Site Associated Gene (GRESAG) 4,

Invariant Surface Glycoprotein (ISG) 75, ISG65 and ISG64.

The identified protein sequences were used to BLAST search the

T. b. brucei predicted protein database, revealing several related

protein sequences in each family. CLUSTALW2 alignments were

carried out in order to better understand sequence sub-groups

within those protein families. Representative gene segments from

each protein sub-group that contained the peptide sequences

Figure 2. Immuno-affinity chromatography and identification
of potential diagnostic antigens. (A) Schematic representation of
the preparation of IgG-Sepharose from T. b. gambiense infection and

non-infection (control) sera, the immune-affinity capture of trypano-
some antigens from a whole detergent lysate and their subsequent
elution and concentration by ethanol precipitation. (B) Colloidal
Comassie blue stained SDS-PAGE gel of the proteins eluted from
infection IgG-Sepharose (lane 1) and non-infection (control) IgG-
Sepharose (lane 2). The gel lanes were excised in 18 slices per lane,
as indicated between lanes 1 and 2, and analysed by LC-MS/MS after
reduction, S-alkylation and tryptic digestion. The positions of molecular
weight markers are indicated on the left.
doi:10.1371/journal.pntd.0002087.g002

A Diagnostic Device for African Trypanosomiasis
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identified by mass spectrometry were amplified from EA-

TRO1125 genomic DNA (for ISG65-1, ISG65-2, ISG64-2,

ISG64-3 and ISG75-1) or from stain 427 genomic DNA (for

ISG64-1 and GRESAG4) by PCR using the primers described in

the Supporting Information (Table S1). In each case, the products

of three separate PCR reactions were cloned into a TOPO-TA

vector (pCR2.1) for sequencing (DNA Sequencing Service,

College of Life Sciences, University of Dundee).

Recombinant protein expression and purification
The amplified ISG gene segments were cloned into various pET

bacterial expression plasmids that provide a His-tag fused either to

the N-terminus or C-terminus of the protein, in some cases via a

TEV protease cleavage site, as indicated in (Figure 1). Multiple

constructs were designed for GRESAG4 encoding the predicted

full-length extracellular domain and several small globular

domains based on predictions from GLOBplot software [46]

(Figure 1). These constructs were amplified from genomic DNA

using the primers described in the Supporting Information (Table

S1), cloned into TOPO-TA vector pCR2.1 and verified by DNA

sequencing. The constructs were either cloned into the pET15b-

TEV vector, such that the proteins they encode are fused at the N-

terminus to a His tag, or into a pGEX-TEV vector such that the

protein is fused at its N-terminus to a glutathione S-transferase

(GST) sequence via a TEV cleavage site (Figure 1). The details of

protein expression in E. coli and subsequent purification are

described in the Supporting Information (Text S1).

Enzyme-linked immunosorbent assays (ELISA)
White (Costar) un-treated 96 well plates were coated at 50 ml/

well for 16 h at 4uC with 2 mg/ml recombinant protein diluted in

plating buffer (0.05 M NaHCO3, pH 9.6). Plating solution was

removed and wells were blocked with PBS containing 5% BSA,

200 ml/well for 3 h at 22uC or 16 h at 4uC. Plates were stored at

4uC and used within 24 h. Aliquots (50 ml) of serial serum dilutions

(see below) were transferred in triplicate by a liquid handling

device (Bio-Tek, Precision) to the ELISA plates and incubated for

1 h at room temperature, aspirated and 150 ml ELISA wash buffer

was added to each well by the liquid handling device, left for

10 min and aspirated. This wash cycle was performed three times.

Biotinylated goat anti-human-IgG (Jackson Immunoresearch) was

diluted to 1:5000 and 50 ml aliquots were applied to each well.

After 1 h incubation at room temperature the secondary antibody

solution was removed and wells were washed three times, as

described above. Horseradish peroxidase (HRP) conjugated to

NeutrAvidin (Sigma) was diluted to 1:4000 and applied to the wells

(50 ml/well) for 1 h at room temperature. Wells were washed as

before. Finally, chemiluminescent Femto substrate (Pierce) diluted

1:5 (i.e., 0.5 ml solution A, 0.5 ml solution B with 4 ml PBS) was

applied to the wells at 50 ml/well and plates were read using an

Envision plate reader after 2.5 min incubation at 22uC.

ELISA measurements were made with both pooled and

individual serum samples. Serum pools were made by combining

patients sera from; stage 1 T. b. gambiense patients (n = 10), stage 2

T. b. gambiense patients (n = 40) and matched uninfected patients

Table 1. Trypanosome proteins selectively recognised by T. b. gambiense infection IgG.

MASCOT score Protein description Protein/Gene ID Mass
Peptides
matched

2796 75 kDa Invariant Surface Glycoprotein (ISG) Uniref100_Q26769 58591 100

1456 Gene related to Expression site-associated gene (GRESAG) 4 Tb927.7.7530 137920 67

1152 Expression site-associated gene (ESAG) 7 Tb427 telo10 v1 145 38433 31

1098 65 kDa ISG Uniref100_Q26712 48192 39

582 64 kDa ISG Tb927.5.1410 46867 23

510 Polyubiquitin Tb11.01.1680 76556 10

368 Hypothetical protein 3020 Tb927.6.3020 32198 8

256 ESAG6 Uniref100_Q8WPU1 44221 10

235 ESAG2 Tb927.1.4890 53686 7

220 Flagellar calcium-binding protein TB-17 UniRef100_P17882 25477 6

209 Hypothetical protein 0210 Uniref100_Q386P9 51028 3

202 Hypothetical protein 2120 Tb927.7.2120 46341 6

185 Phosphoribosylpyrophosphate synthetase, Tb10.6k15.0970 40452 7

156 ESAG11 Tb927.1.4900 32032 5

140 Hypothetical protein 4180 Tb927.6.4180 16317 2

121 ESAG3 UniRef100_Q8WPR9 42744 5

89 Gp63-3 surface protease homology Uniref100_Q4FKH2 70254 2

82 Hypothetical protein 1300 Tb927.3.1300 46343 2

70 RNA binding protein (RBP29) Tb10.61.3200 41052 5

70 Hypothetical protein 2570 Tb927.7.2570 52912 2

59 Flagellum-adhesion glycoprotein Tb927.8.4060 64947 1

56 Hypothetical protein 4300 Tb11.02.4300 48868 2

56 Hypothetical protein 1910 Tb11.02.1910 36953 2

52 Hypothetical protein 2100 Tb927.5.2100 49921 2

doi:10.1371/journal.pntd.0002087.t001
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(n = 50); and from stage 1 T. b. rhodesiense patients (n = 5), stage 2 T.

b. rhodesiense patients (n = 20) and matched uninfected patients

(n = 25). The pooled sera were diluted to 1:60 in 50% glycerol,

PBS and 1% BSA and stored at 220uC. For ELISA assays, the

1:60 diluted pooled sera were further diluted to 1:1000 in PBS,

0.1% BSA and then serially diluted (doubling dilutions) to

1:32,000. For the individual sera, the 1:60 diluted samples were

further diluted to 1:1000 immediately before use.

Randomisation of sera
Sera were randomised by a member of the University of

Dundee Tissue Bank. Forty T. b. gambiense infected patients sera

and forty T. b. gambiense uninfected patients sera were randomly

selected from the fifty T. b. gambiense infected and fifty uninfected

WHO patient sera. These eighty serum samples were then

randomised and coded.

Prototype lateral flow test
Serum aliquots (5 ml) were diluted with 15 ml PBS and applied

to the sample pad. Chase buffer (80 ml of PBS, 0.05% Tween 20)

was added to the sample pad and the test was allowed to develop

for 30 min. The test line was visually scored and the device was

opened and the sample pads (at top and bottom of nitrocellulose

membrane) were removed to prevent backflow. The lateral flow

tests were photographed and scanned using a densitometer

(CAMAG TLC scanner 3, CAMAG).

Statistics
Bar graphs and scatter plots (x by y) were generated by

Microsoft Excel. Box plots, Receiver Operator Characteristic

(ROC) curves, antigen scatter plots (y axis only) were generated by

SigmaPlot 12. Statistical analysis included Mann-Whitney (Rank

Sum Test) and Dunn’s post-hoc (Analysis of Variance (ANOVA)

Figure 3. ELISA results with pooled human sera. (A) Pooled human sera representing stage 1 T. b. gambiense infections (pool of 10 sera), stage
2 T. b. gambiense infections (pool of 40 sera) and matched uninfected controls (pool of 50 sera) were diluted 1:1000 and used in triplicate on ELISA
plates coated with the rISG75, rISG65-1, rISG65-2, rISG64-1, rISG64-2, rISG64-3 and rGRESAG4a recombinant proteins described in (Figure 2). The mean
ELISA signals 6 SEM are plotted against the recombinant protein used in the ELISA. (B) As panel A but using pooled human sera representing stage 1
T. b. rhodesiense infections (pool of 5 sera), stage 2 T. b. rhodesiense infections (pool of 20 sera) and matched uninfected controls (pool of 25 sera).
doi:10.1371/journal.pntd.0002087.g003

A Diagnostic Device for African Trypanosomiasis
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Figure 4. ELISA results using individual T. b. gambiense infection and matched control sera. (A–F) Box plots (generated by Cleveland
method) represent the 25th percentile to the 75th percentile boundaries in the box with the median line within the box, the whiskers indicate the 10th

and 90th percentiles. The box plots show ELISA signals for each recombinant protein ELISA plate: (A) rISG64-1, (B) rISG64-2, (C) rISG64-3, (D) rISG65-1,
(E) rISG65-2 and (F) rISG75) tested against individual sera diluted 1:1000 from stage 1 T. b. gambiense infections (n = 10), stage 2 T. b. gambiense

A Diagnostic Device for African Trypanosomiasis
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on rank) in SigmaPlot 12. Data were tested for normality by

Kolmogorov-Smirnov test and were further processed by Mann-

Whitney or Dunn’s post-hoc tests. The P values were recorded for

Mann-Whitney with ,0.05 set as the cut off for statistical

significance.

Results

Antigen identification
We took a non-biased proteomics approach to identify proteins

that adsorb selectively to pooled infection IgG, and not to pooled

control IgG (Figure 2A). Each serum pool contained four individual

sera of patients clinically defined as having an infection with T. b.

gambiense or as being uninfected. IgG fractions were purified from

the pooled sera by affinity chromatography on protein G and then

immobilised to cyanogen bromide-activated Sepharose beads.

Equal amounts of infection and control IgG-Sepharose were

incubated with equal amounts of T. b. brucei detergent cell lysate.

Proteins that bound to the IgG columns were eluted by low pH,

precipitated with cold ethanol, dissolved in SDS-sample buffer,

reduced, separated by SDS-PAGE and stained with colloidal

Coomassie blue (Figure 2B). More protein was seen in the eluate

from the infection IgG column, consistent with infection-specific

anti-trypanosome immune responses. Equivalent sections were cut

out from the infection and control lanes, as indicated (Figure 2B).

The excised gel pieces underwent in-gel S-alkylation and tryptic

digestion, and the tryptic peptides were analysed by LC-MS/MS.

Mascot software matched the peptide spectra to proteins in the T. b.

brucei predicted protein database and scored the quality of the

identifications. Lists of the proteins retained by infection IgG-

Sepharose and control IgG-Sepharose were compared in each gel

section. Twenty-four proteins with a MASCOT protein score above

50 were found uniquely in the infection IgG eluate and these are

described in (Table 1). Several of the infection-specific proteins were

defined as ‘hypothetical’, but other hits included known cell surface

proteins, such as: Invariant Surface Glycoprotein (ISG) 75, ISG65,

ISG64, Gene Related to Expression Site Associated Gene

(GRESAG) 4, and the transferrin receptor subunits ESAG 6 and

7. As a starting point, the proteins with high MASCOT scores were

prioritised. The rationale for this selection was that, by using an

excess of trypanosome lysate in the affinity purification step, the

amount of an eluted antigen should reflect, to a first approximation,

the relative amount of antigen-specific immobilised IgG. The latter

should, in turn, correspond to the immune response to that antigen

in infected patients. Using this criterion, the protein antigens

selected for study were ISG75, ESAG7, GRESAG4, ISG65, ISG64

and ESAG6 (Table 1). Next, we looked into the likely ease of protein

expression of these antigens in E. coli. At this stage, we de-selected

ESAG6 and ESAG7 because they form a heterodimer (adding the

complication of dual expression) and because successful (but low

level) protein expression has only been reported in a eukaryotic

baculovirus expression system [47]. On the other hand, E. coli

recombinant expression of domains of ISG75, ISG65 and ISG64

had either been reported in the literature [48] or were known to the

authors (Mark Carrington, unpublished data). Consequently, we

selected all three ISGs for protein expression trials. Finally, we

performed expression trials on the predicted extracellular domain of

GRESAG4, for which there was no literature precedent.

Initial ELISA screens with pooled sera
The selected purified recombinant trypanosome proteins, see

Supporting Information (Figure S1), were used to prepare ELISA

plates, as described in Experimental Procedures, and these were

screened against various pooled human sera. These pools were

derived from the 145 individual serum samples provided by the

WHO Human African Trypanosomiasis specimen bank. The

pooled sera were for stage 1 T. b. gambiense patients (n = 10), stage 2

T. b. gambiense patients (n = 40) and matched uninfected patients

(n = 50); and from stage 1 T. b. rhodesiense patients (n = 5), stage 2 T.

b. rhodesiense patients (n = 20) and matched uninfected patients

(n = 20). The results indicated that both stage 1 and stage 2 T. b.

gambiense infection sera have significant antibody titres against all of

the rISG64 and rISG65 proteins, compared to pooled non-

infection sera (Figure 3A), whereas infection sera titres against

rISG75 and GRESAG4a were much closer to those for the control

sera. The best performing recombinant protein was ISG65-1,

which had the highest infection to control signal. For the T. b.

rhodesiense pooled sera, the signals were generally significantly

lower, with the stage 2 pooled sera giving a significantly higher

signal than the stage 1 pooled sera. There was one exception to

this; the T. b. rhodesiense stage 1 pool had the highest antibody titre

against rISG75 (Figure 3B). However, as will be described later,

the rISG75 result was due to a very high antibody titre in a single

individual. From these results, all the rISG proteins were taken

forward and screened against the individual sera but GRESAG4a

(rG4a) was abandoned at this stage because it had poor infection

versus non-infection discrimination.

ELISA screens with individual sera
Recombinant protein ELISA plates that performed well in the

pooled sera ELISAs were further screened against all of the

individual sera. These antigens included three rISG64 proteins,

two rISG65 proteins and one rISG75 protein. In this case, a total

of 163 individual serum samples (145 from the WHO HAT

specimen bank and 18 from the Institue of Tropical Medicine,

Antwerp) were diluted and applied in triplicate to wells coated

with single recombinant proteins. T. b. gambiense and T. b. rhodesiense

patient sera ELISA results were analysed separately (Figure 4) and

(Figure 5), respectively. The data are shown as box plots for each

different recombinant antigen ELISA plate (Figures 4A and 5A) to

provide a visualisation the range of antibody titres and the heat

maps provide a different view of the same data (Figures 4B and

5B). Both views suggest that rISG65 proteins provide the highest

detection sensitivity whereas the rISG64-1 may provide slightly

greater specificity. The rISG75 protein did not perform as well as

the rISG65 or rISG64 proteins by both criteria and, indeed, only

the stage 2 sera had statistically significant levels of IgG to rISG75-

1 compared to controls (Q = 4.616, P = ,0.05). Dunn’s post-hoc

tests (not shown) demonstrated that, whereas there are significantly

higher levels of anti-rISG64 and anti-rISG65 IgG antibodies in

both stage 1 and stage 2 sera compared to uninfected controls,

there is no statistically significant difference between the stage 1

and stage 2 groups. In other words, relative immunoreactivity to

rISG64 or rISG65 antigens cannot be used to stage of the disease.

Formal sensitivity (i.e., the proportion of correct positive results)

and specificity (i.e., the proportion of correct negative results)

parameters for each test were calculated by ROC curve analysis

(Figure 4C and 5C) and are collated in (Table 2). The

infections (n = 40) and matched uninfected controls (n = 50). (G) Heat maps of the same data for the individual sera versus the recombinant protein
ELISA plates. (H) Receiver operating characteristics (ROC) plots of the same data. The output statistics for sensitivity and specificity are shown in
(Table 2).
doi:10.1371/journal.pntd.0002087.g004
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Figure 5. ELISA results using individual T. b. rhodesiense infection and matched control sera. (A–F) Box plots (generated by Cleveland
method) represent the 25th percentile to the 75th percentile boundaries in the box with the median line within the box, the whiskers indicate the 10th

and 90th percentiles. The box plots represent the ELISA signals for each recombinant protein ELISA plate: (A) rISG64-1, (B) rISG64-2, (C) rISG64-3, (D)
rISG65-1, (E) rISG65-2 and (F) rISG75) tested against individual sera diluted 1:1000 from stage 1 T. b. rhodesiense infections (n = 5), stage 2 T. b. rhodesiense
infections (n = 20) and matched uninfected controls (n = 20). (G) Heat maps of the same data for the individual sera versus the recombinant protein ELISA
plates. (H) Receiver operating characteristics (ROC) plots of the same data. The output statistics for sensitivity and specificity are shown in (Table 2).
doi:10.1371/journal.pntd.0002087.g005
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recombinant antigens that best discriminated between T. b.

gambiense infected and control patients by ELISA were rISG65-1

and rISG64-1, which had areas under the ROC curve of 0.99 and

0.98 respectively (Figure 4C). The rISG65-1 ELISA antigen had

sensitivity of 96.6% (with a 95% Confidence Interval (CI) of 88.3

to 99.6%) and specificity of 93.2% (95% CI of 83.5 to 98.1%),

whereas sensitivity and specificity of rISG64-1 antigen was 93.2%

(95% CI of 83.5 to 98.1%) and 94.9% (95% CI of 85.9 to 98.9%),

respectively (Table 2).

It was more difficult to find a recombinant protein antigen that

reliably discriminated T. b. rhodesiense infected patient sera from

non-infected sera. The box plots, heat maps (Figure 5A and B) and

Dunn’s post hoc analyses (not shown) all indicate that, whereas the

stage 2 sera show statistically significant immunoreactivity to all

the antigens compared to controls, the immunoreactivities of the

stage 1 sera are not statistically significant. rISG65-2 was the most

sensitive at identifying T. b. rhodesiense infection sera 92% (95%, CI

of 74 to 99%), but at a cost to specificity 85% (95%, CI 62.1 to

97%) (Figure 5C and Table 2). As mentioned above, the pooled

sera ELISA experiments had indicted that stage 1 T. b. rhodesiense

infection sera might have high antibody titres towards rISG75.

However this proved not to be the case and was due to a single

serum sample with a very high anti-rISG75 titre.

Lateral flow prototype development to detect T. b.
gambiense infections

Based on the ROC curve analyses of the performances of the

ELISA plates, we selected rISG65-1 (ROC curve area 0.99 for T.

b.gambiense sera) for development of a lateral flow prototype.

Purified rISG65-1 was supplied to BBInternational (Dundee,

www.bbigold.com) a company that specialises in lateral flow

technology. The lateral flow approach that was utilised is

illustrated in (Figure 6). Thus, rISG65-1 was both immobilised

in a band on a nitrocellulose membrane and coupled to colloidal

gold that was then localised in the conjugate pad. When the sera

and chase buffer are applied to the sample pad, the rISG65-

colloidal gold conjugate is resuspended. The absorbent pad at the

top of the lateral flow device draws the liquid across the

nitrocellulose membrane. During this time, any anti-rISG65

antibody in the serum binds to the rISG65-gold conjugate and

when the antibodies reach the rISG65 test band, one Fab arm of

the IgG binds to the immobilised rISG65 while the other Fab

domain bridges to the rISG65-gold-conjugate. Accumulation of

this specific antibody sandwich generates a visible test line. The

Table 2. Sensitivities and specificities of the recombinant ISG
ELISAs.

Antigen
Infectious
species Sensitivity 95% CI Specificity 95% CI

rISG65-1 T. b.
gambiense

96.6 88.3 to 99.6 93.2 83.5 to 98.1

T. b.
rhodesiense

84 63.9 to 95.5 75 50.9 to 91.3

rISG65-2 T. b.
gambiense

83.1 71 to 91.6 72.9 59.7 to 83.6

T. b.
rhodesiense

92 74 to 99 85 62.1 to 97

rISG64-1 T. b.
gambiense

93.2 83.5 to 98.1 94.9 85.9 to 98.9

T. b.
rhodesiense

84 63.9 to 95.5 75 50.9 to 91.3

rISG64-2 T. b.
gambiense

88.1 77 to 95.1 86.4 75 to 94

T. b.
rhodesiense

92 74 to 99 80 56.3 to 94.3

rISG64-3 T. b.
gambiense

86.4 75 to 94 83.1 71 to 91.6

T. b.
rhodesiense

88 68.8 to 97.5 85 62.1 to 97

rISG75-1 T. b.
gambiense

72.9 59.7 to 83.6 72.9 59.7 to 83.6

T. b.
rhodesiense

72 50.6 to 87.9 75 50.9 to 91.3

doi:10.1371/journal.pntd.0002087.t002

Figure 6. Prototype lateral flow device for detecting antibodies to rISG65-1 protein. Representative results using serum samples from a
matched uninfected patient (left) and a stage 2 T. b. gambiense infected patient (right). The visual scores for these test lines were 0 and 5, respectively,
and the CAMAG densitometry measurements were 24.2 and 597.4, respectively. The inset shows the principle of detection, with patient antibody to
ISG65 forming a bridge between rISG56-1 immobilised on the nitrocellulose strip and the colloidal gold-coupled rISG65-1 picked up from the sample
pad.
doi:10.1371/journal.pntd.0002087.g006
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control line is an internal positive control for the lateral flow test

and does not relate to the infection status of the patient but

indicates successful test flow. The final reading of this test should

be as follows; the appearance of only a control line (upper band)

indicates non-infected sera, whereas, the appearance of two lines, a

control and test line (upper & lower bands) indicates infected sera,

examples are shown in (Figure 6). Absence of a control line (upper

band) indicates an invalid test, irrespective of the appearance of

the test line and the test should be repeated.

Prototype validation
Eighty randomised and coded WHO ‘test’ T. b. gambiense sera,

comprising forty infected and forty non-infected sera were

applied to the lateral flow prototypes. Each serum sample (5 ml)

was diluted with 15 ml of PBS and applied to a lateral flow device

sample pad. Within about 30 s, 80 ml of chase buffer was added

and the test was left for 30 min, at which point a visual score was

recorded. The sample pads were removed to prevent back flow

and the visual scores were decoded (Figure 7). Sensitivity and

specificity were calculated by ROC curve analysis, and for visual

scores a cut off of 2.5 gave 100% sensitivity (95% CI of 91.1 to

100) and 87.5% specificity (95% CI of 73.2 to 95.8%). An

analysis of the test lines was also carried out using a densitometer,

where an arbitrary cut off at 265.6 RU gave 100% sensitivity

(95% CI of 91.2 to 100%) and 92.5% specificity (95% of CI 79.6

to 98.4%) (Table 3) indicating there is potential for separation

between infection and non-infected individual scores. Principally

the end user will interpret the results visually therefore further

optimisation of the test line will be necessary to reduce false

positive results due to non-specific binding. A checklist, Support-

ing Information (Table S2), and flow diagram, Supporting

Information (Figure S2), are provided according to the STAn-

dards for the Reporting of Diagnostic accuracy studies (STARD)

guidelines.

Figure 7. Performance of the prototype lateral flow device in a blinded study with eighty randomised serum samples. (A) Visual
scores of test line density from rISG65-1 prototype lateral flow devices (scored in increments of 1 from 0 to 5, with very faint test line shadows
represented as 0.5) are plotted against the subsequently decoded patient status (stage 1 T. b. gambiense infections (n = 8), stage 2 T. b. gambiense
infections (n = 32) and matched uninfected controls (n = 40). (B) The same test strips were removed from the devices and scanned by CAMAG
densitometer. The data are plotted directly below the results for the visual scores for the same samples. The R2 of a scatter plot was 0.96, showing
very good correlation between visual score and CAMAG reading. (C–E) Box plots of the results for the same serum samples analysed by (C) rISG65-1
ELISA, (D) rISG65-1 lateral flow prototype with visual scoring and (E) rISG65-1 lateral flow prototype with CAMAG scanner scoring.
doi:10.1371/journal.pntd.0002087.g007
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Discussion

The overall goal of this project was to develop an immuno-

diagnostic lateral flow prototype for human African trypanoso-

miasis that might be developed into a field-based device to

replace the CATT screening tool. To do this, we needed to

identify potential diagnostic antigen candidates, investigate

whether they could be adequately expressed and purified and

assess their diagnostic potential with patient sera. We took an

unbiased proteomics approach to identify more than twenty

potential diagnostic protein antigens, several of which were

known cell-surface glycoproteins. This list was filtered pragmat-

ically; first, the proteins with high proteomic MASCOT scores,

generally synonymous with their abundance, were selected

because, by using an excess of trypanosome lysate in the affinity

purification step, the amount of an eluted antigen should reflect

the relative amount of antigen-specific IgG in infection sera. The

latter should, in turn, correspond to the immune response to that

antigen in infected patients. From this list we eliminated ESAG6,

since it is known to form a heterodimer with ESAG7 and is,

therefore, relatively complicated to express [46]. Our attempts to

express parts of the extracellular domain of GRESG4 in E. coli

were not very successful, although we were able to isolate the A-

domain fused to GST. However, this G4a construct and the

ISG75 protein construct did not perform well in the ELISA

studies and were removed from this study. Nevertheless, these

antigens should not be ignored for diagnostic development as

they may simply have been miss-folded in the absence of

endoplasmic reticulum folding and quality control components

[49]. Indeed, recombinant ISG75 has been shown to have

diagnostic potential for T. b. brucei animal infections [47]. Future

expression attempts might include bacterial expression systems

that target recombinant proteins into the periplasmic space [49]

and/or eukaryotic expression systems such as insect cells and

Pichia pastoris.

Our data on the diagnostic potential of ISGs 64, 65 and 75 for

detecting T. b. rhodesiense infections were somewhat hampered by

the small number of sera available for testing. Nevertheless, it is

clear from the ELISA data that IgG antibody responses to these

antigens are lower than in T. b. gambiense infections. Further, the

IgG responses are particularly low in stage 1 T. b. rhodesiense patient

sera. This may be due to the differing nature and speed of

progression of the infections; T. b. rhodesiense infections are usually

acute and progress faster whereas T. b. gambiense infections are

chronic and progress over months or years [50], which could in

turn lead to a greater amount and diversity of antibodies present in

these sera. A previous study also struggled to identify diagnostic

antigens for T. b. rhodesiense infections [51]. A good approach may

be to repeat the procedures described here using immobilised IgG

from T. b. rhodesiense patient sera.

Further research is also required to measure the half-life of

antibodies in patients after they have been treated for HAT, as

persistent antibodies may lead to false positives. It has been

described that antibodies can persist up to 3 years post cure,

however it is not known which class of antibodies persist or which

antigens they recognise [52]. Ideally, a longitudinal study could be

carried out to gain a greater insight into this and how it could

affect the diagnostic potential of any future lateral flow test relying

on antibodies [32]. Lateral flow tests, whilst having limitations,

could potentially be more suitable for use in the field because of

their stability and the fact that they can be used by non-specialists

[53].

In summary, we report here the selection of ISG65-1 as a

potential diagnostic antigen for T. b. gambiense infections and its

performance in both conventional ELISA and prototype lateral

flow device assays looks promising. The performance of the

prototype ISG65 lateral flow device encourages us to further

develop and optimize it, perhaps adding an additional antigen or

antigens to improve sensitivity and specificity, while aiming for a

production cost of ,US$1 per unit.
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