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Background
Hidden Markov model [1–5] is a well known probabilistic model in the field of machine 
learning, suitable for detecting patterns in sequential data, such as plain texts, biological 
sequences, and time series data in the stock market. For all these applications, successful 
learning depends, to a large degree, on the amount and, more importantly, the quality 
of the data. In text mining problem, though the data amount is huge, careful labelling 
tasks consume massive human labor [6]. In biological sequence analysis, discovering de 
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novo signal remains challenging because a precise full labeling via wet-lab experiments 
demand even more resources and time, and hence it is considered unfeasible in gen-
eral. Therefore, research is necessary in data handling with different labelling quality 
for applied machine learning community. In this paper, we focus on designing a Baum–
Welch-algorithm based learning method for HMMs to handle the biological problems 
when only partial labeling is available in training data.

This work is inspired by our recent research on detecting de novo plasmodesmata tar-
geting signals in Arabidopsis Plasmodesmata-located proteins (PDLPs). PDLPs are type I 
transmembrane proteins, which are targeted to intercellular pores called plasmodesmata 
that form at the cellular junctions in plants [7]. In our study [8], by building a 3-state 
HMM, we predicted the presence of two different plasmodesmata targeting signals 
(named alpha and beta) in the juxta membrane region of PDLPs. While all the predicted 
signals were successfully verified in wet-lab experiments so far, some predicted signals 
contain residues that do not conform to the true signal; wet-lab experiments showed 
that those residues alone was not sufficient to target the protein to plasmodesmata. 
Because both the cost and time are high for wet-lab experiments, an improved HMM 
would be highly desirable. However, due to the limitation in the number of the training 
examples–Arabidopsis genome encodes only eight PDLP members, further improve-
ments of the model can be hardly achieved. It would require to fully utilize the current 
wet-lab experimental results to train the model, i.e., by labeling the residues that have 
been already shown to be either part of the signals or not part of the signals, given that 
labels are not available for all the residues due to limited experimental results.

In a related work by Tamposis et al., a semi-supervised approach is developed to han-
dle a mixture of training sequences that contains a subset of fully labelled sequences, 
with the remaining sequences having no labels at all or partial labels [9]. Their method 
uses the fully labelled sequences to train the parameters for HMMs and then use Viterbi 
algorithm to predict the missing labels followed by training the model again with the 
predicted labels. This process is iterated until a convergence condition is met. Instead, 
we are specifically interested in situations where no fully labelled sequences are available 
and often the partial labeling is also sparse. In the text mining field, HMM training algo-
rithm of handling partial label was developed especially for active learning purposes and 
designed to fit into text mining special situation: no label scenario, or in other words, 
no meaningful label can be assigned [6]. However the unit of observation in text mining 
and information retrieval is a word, instead of a single letter, corresponding to individual 
amino acid residue as in biological sequences. So, in order to deal with the partial labe-
ling aforementioned, we have designed a novel Baum–Welch based HMM training algo-
rithm to leverage partial label information with techniques of model selection through 
partial labels. Besides the difference in the observation unit, our algorithm differs from 
[6] primarily in how to calculate the expected value for a given partial label at a given 
position: our method sums over hidden state paths that must be subject to constraints 
anywhere given partial labels in the training sequence. In contrast, in [6] the expected 
value for a given partial label at a given position is calculated by summing over paths 
that are only constrained at the position being considered, and anywhere else in the 
sequence the hidden paths are free to go through all possible states (labels) even at posi-
tions where partial labels are given. Moreover, this difference affects how the expected 
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value for a transition is calculated, regardless whether the transition happens to involve 
one partial label, two partial labels, or no partial labels at all. The comparison between 
our method and the method described in [6] showed that our method outperformed in 
both synthetic and real data for decoding task in biological problems.

The rest of this paper is organized as follows. First, the relevant background knowledge 
of HMM is briefly reviewed, and notations are introduced. Then, our method of training 
HMM when only partial label sequences are available is described in details. This is fol-
lowed with experiments and results to examine and demonstrate the modelling power of 
the novel algorithm. Discussion and conclusion are given at the end.

Methods
Hidden Markov model review

In general, a HMM consists of a set of states Si , i = 1 toN  , and a set of alphabets K 
that can be emitted from these states with various frequencies; bj(k) stands for the fre-
quency of letter k ∈ K  being emitted from state Sj , and we use B to denote the emission 
matrix of dimension N × K  , containing bj(k) as elements. Transitions among states can 
be depicted as a graph, often referred as model architecture or model structure: each 
state is represented as a node, and transition from state Si to state Sj is represented by a 
directed edge, with a weight aij being the transition probability, and we use A to denote 
the transition matrix of dimension N × N  , containing aij as elements. Hereafter, we 
often refer to a state Si by its index i.

Given a HMM, let θ stand for collectively all its parameters, namely the emission fre-
quencies bj(k) and transition probabilities aij . Given a sequence of observation O, and its 
elements Ot ∈ K  , where t = 1 . . .T  , a main assumption of using HMM is that each letter 
in the sequence is emitted from a state of the model, so correspondingly there is a state 
sequence, forming a Markov chain, which is hidden from direct observation, hence the 
name: hidden Markov model. One task (decoding) is, therefore, to find the most prob-
able state sequence (also called hidden path) X∗ : X∗ = argmax XPr(O,X |θ) , among all 
possible state sequences that can emit the observation sequence O. The second task is to 
train the model on a set of m training sequences. This task is accomplished by adjusting 
model parameters θ to maximize the likelihood 

∑m
s=1 Pr(O

s|θ) of observing the given 
training sequences Os , where s = 1 . . .m [10].

The decoding task is well studied and straightforward and is solved by Viterbi algo-
rithm efficiently [11]. The technique guarantees to return the optimal answer. Note that, 
in the work by Bagos et al. [12], a modified Viterbi algorithm is developed to incorporate 
prior topological information as partial labels to improve predictions, whereas our focus 
is instead on how to use the partial labels in training the model. However, the second 
task, or the training of a HMM is not guaranteed to reach optimum when labels are not 
given for the training sequences.

The major training algorithms of HMM are the following three in general: maximum 
likelihood, Baum–Welch algorithm, and Viterbi training [13]. Maximum likelihood is 
used when label information is available fully, and it returns the optimal solution. The 
latter two algorithms are used when no label information is available. Interested read-
ers can find a gentle introduction and tutorial for hidden Markov models in [10]. For 
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the purposes of comparison, we adopt notations in [6] for future discussion of both 
the background knowledge and our method. The description of notations is shown in 
Table 1.

In this paper, we focus on a special case for training HMMs when only partial label is 
available. Or in other words, we aimed at finding model θ so that Pr(O|θ) is maximized 
(locally) and the resulting decoded state sequence must satisfy the partial labels given in 
the training sequences at the same time.

Training hidden Markov model with partial label sequences

As introduced in the previous section, when no labels are available, Baum–Welch algo-
rithm is typically used to train HMM and Viterbi training is sometimes used for speed 
and simplicity; when all label information is given, training HMM is straight forward 
by maximum likelihood approach. Currently, training HMM with partial label is mainly 
studied in the field of text mining, with a particular focus on active learning problems, 
such as the work done in [6], with which we compare our proposed method.

Our proposed method is a novel approach to this partial label training problem with 
modification of Baum–Welch algorithm (called constrained Baum–Welch algorithm) 
and a model selection technique, which helps our algorithm leverage available informa-
tion and improve the training and performance in decoding task. In the next two sub-
sections, we discuss in detail our constrained Baum–Welch algorithm and the model 
selection methods respectively and how to combine the two for model training.

Constrained Baum–Welch algorithm

The standard Baum–Welch algorithm is an Expectation-Maximization approach to maxi-
mizing likelihood when the system contains latent variables, which are the state sequences 
for hidden Markov models when training sequences are not labelled. Our constrained 
Baum–Welch algorithm (cBW) is similar to the standard Baum–Welch algorithm except 
that the training sequences are partially labelled, which imposes the constraints on the pos-
sible hidden state paths in calculating the expectation. Standard Baum–Welch algorithm 
is divided into E-step and M-step. The M-step of cBW algorithm is identical to standard 
Baum–Welch’s. The difference is the E-step, computing forward and backward matrices. 

Table 1 Notations

Symbols Explanations

θ Hidden Markov model: θ = (π , A, B)

N States’ number in hidden Markov model

K Symbolic Number in hidden Markov model

A Transition matrix with dimension N × N

aij Probability of state i transition to state j

B Emission matrix with dimension N × K

bj(k) Probability of state j emitted from symbol k

π Initial probability of states with dimension N × 1

Os The sth sequence with length T s

Xs State sequence of Os

m Total number of sequences
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The forward matrix α is of N × T  , where N is the number of states and T is the sequence 
length. An element αi(t) is the probability of the observed sequence up to and including Ot , 
with the symbol Ot being emitted from state i. The backward matrix β is of N × T  dimen-
sion has element βi(t) as the probability of the observed sequence from position t onto the 
end, with the symbol Ot being emitted from state i. The formulas of computing α and β are 
shown as following respectively.

Given the model θ = (π ,A,B) , where π is a N dimension vector, with πi being the prob-
ability that any hidden state path would start with state i. Then, the initial values of forward 
matrix α for one given training sequence O = (O1, . . . ,OT ) is computed as follows.

After calculating the initial values of α , by dynamic programming, the remaining val-
ues at any position for any state are calculated recursively by summing over the possible 
state paths X = (X1, . . . ,XT ) , allowed by the model, that lead to the point whose α value 
is being calculated. However, since we now have partial labels for the training sequence 
O, care must be taken to satisfy the constraints at each position Ot imposed by the par-
tial label, L(Ot) ∈ S ∪ {0} , where a value zero means no label available. Specifically,

In the above equation, the first case is when position Ot+1 is either unconstrained (0) or 
constrained to be state i by the partial label. In such a case, the α value is computed in 
the same way as the standard Baum–Welch algorithm, though the actual value can still 
be affected by partial labels at earlier positions via recursion. The second case is when 
the position t + 1 is constrained by the partial label to be a state other than i. In this case, 
αi(t + 1) = 0 . This latter case is what makes the algorithm different from the standard 
Baum–Welch algorithm in order to “honor” the partial labels. The backward matrix β is 
initialized as the following.

Then, similarly, a recursive procedure is applied for the remaining of backward matrix.

Note that, while the α is calculated the same way as the modified Forward algorithm in 
[12] but the β is calculated differently from their modified Backward algorithm. After the 
calculations of α and β , then we can calculate γ variable, where γi(t) is the probability of 
observing the training sequence O from all possible state paths that are allowed by hid-
den Markov model θ as constrained by the partial labels and go through state i at posi-
tion t. γi(t) is computed as follows.

(1)αi(1) = πbi(O1)

(2)αi(t + 1) =

{

bi(Ot+1)
∑N

j=1 αj(t)aji, if L(Ot+1) = 0 or i

0 if L(Ot+1) �= 0 and L(Ot+1) �= i

(3)βi(T ) = 1

(4)βi(t) =

{

∑N
j=1 βj(t + 1)aijbj(O(t + 1)), if L(Ot) = 0 or i

0 if L(Ot) �= 0 and L(Ot) �= i
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where the last equal sign holds because P(O|θ) =
∑N

j=1 αj(t)βj(t) . The next step is to 
compute ξij(t) , which is the probability of of observing the training sequence O from all 
possible state paths that are allowed by hidden Markov model θ as constrained by the 
partial labels and go through state i at positive t and transition to state j at position t + 1:

Finally, with γ , ξ , the M-step is to update the initial probability π∗ , every elements of the 
transition matrix A∗ : a∗ij , and every elements of the emission matrix B∗ : b∗i (ok).

where IO(t)=ok stands for indicator function, which equals to 1 if O(t) = ok , and 0 other-
wise. Then, for the case of multiple sequences, each sequences indexed by s, total num-
ber of sequences of m, The only changing is the updating of π∗,A∗ , and B∗ as follows.

The procedure above is repeated till either the 
∑m

s log(P(Os|θ)) converge or reaching 
maximum iteration numbers set by the user. As mentioned in the Introduction section, a 
key difference between our method and [6] lies in the E-step for calculating the expected 
value for a given emission or transition. Our method handles the partial label con-
straints recursively for the α and β , whereas [6] calculates α and β without using the par-
tial labels and only uses the partial labels in resetting γ at each partial labelled position 

(5)

γi(t) = P(X(t) = i|θ ,O) =
P(X(t) = i,O|θ)

P(O|θ)

=
αi(t)βi(t)

∑N
j=1 αj(t)βj(t)

(6)
ξij(t) =

P(X(t) = i,X(t + 1) = j,O|θ)

P(O|θ)

=
αi(t)aijβj(t + 1)bj(O(t + 1))

P(O|θ)

(7)π(i)∗ = γi(1)

(8)a∗ij =

∑T−1
t=1 ξij(t)

∑T−1
t=1 γi(t)

(9)b∗i (ok) =

∑T−1
t=1 γi(t)IO(t)=ok
∑T−1

t=1 γi(t)

(10)π(i)∗ =

∑m
s=1 γ

s
i (1)

m

(11)a∗ij =

∑m
s=1

∑Ts−1
t=1 ξ sij(t)

∑m
s=1

∑Ts−1
t=1 γ s

i (t)

(12)b∗i (ok) =

∑m
s=1

∑Ts−1
t=1 γ s

i (t)IOs(t)=ok
∑m

s=1

∑Ts−1
t=1 γ s

i (t)
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independently, as if partial labels elsewhere would have no effect for the position being 
considered. Since E-step in Baum–Welch algorithm invokes forward and backward algo-
rithms, which are essentially a dynamic programming to more efficiently calculate the 
likelihood: Pr(O|θ) = �X∈ŴPr(O,X |θ) with Ŵ being the set of all hidden paths, and hence 
should give the same result when the likelihood is computed by exhaustively summing 
over probability for all possible hidden state paths. Therefore, we believe, the partial 
labels would restrict the possible hidden state paths, Pr(O|θ) = �X∈Ŵ′Pr(O,X |θ) with 
Ŵ′ being the set of all hidden paths constrained by partial labels and such constraints 
should be handled recursively in the dynamic programming. Figure 1 shows an example 
for the forward/backward dynamic programming table construction. Another advantage 
of our method comparing with the method in [6] is that our training method can keep 
the topology of the initial transition and emission guesses for the model as standard 
Baum–Welch does. In other words, if prior knowledge is available for the model topol-
ogy, our training method for partial label data can keep the knowledge to the end of 
training.

Model selection based on partial label information

The second part of our method is model selection based on partial label information. The 
rationale is straightforward: while the constrained Baum–Welch algorithm increases the 
log-likelihood of the given training sequences (with partial labels), iteration after itera-
tion monotonically as ensured by EM approach, there is no direct guarantee that the 
increased log-likelihood would necessarily lead to higher decoding accuracy. Therefore, 
at each iteration of constrained Baum–Welch algorithm, decoding accuracy for the par-
tially labelled training sequence can be calculated and factored into model selection.

Specifically, after reaching convergence condition or maximum number of iterations, 
the total number of iteration is Q and the ith iteration’s model and the corresponding 
log-likelihood can be denoted as θi and 

∑m
s Log(P(Os|θi)) respectively and let the decod-

ing accuracy denote as Accuracy(θi,O,X) . The final model returned by the algorithm 
can be expressed as:

Notice that θ∗ is a set of models in general. Finally, combining the constrained Baum–
Welch and the model selection described above, the overall algorithm of our proposed 
method is given in Algorithm  1. In next section, Tables  2,  3,  4 and  5 will show the 

(13)argmin θ∗Pr(O|θ∗ ≡ { argmax θi∈θ1...Q
Accuracy(θi,O,X)})
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usefulness of both this model selection method and the ability of keeping correct topol-
ogy of cBW method. 

Table 2 Improvements of cBW + model selection, cBW alon vs Scheffer et al., with fully connected 
initial transition matrix for synthetic data with Viterbi algorithm

State #/
training 
sample

Average improvements of cBW + 
model selection in setting 1/2

Average p value of cBW + 
model selection in setting 1/2

Average improvements of 
cBW alone in setting 1/2

3/1600 7.35/8.29% 2.1E−02/6.2E−05 7.61/8.49%

3/2000 7.99/8.82% 3.9E−02/2.6E−09 8.31/9.00%

3/2400 8.47/9.13% 2.8E−03/2.4E−10 8.71/9.18%

3/2800 8.51/9.24% 5.8E−03/6.9E−10 8.65/9.24%

5/1600 12.97/14.75% 7.8E−05/3.3E−05 11.13/12.82%

5/2000 14.63/16.32% 2.5E−03/1.2E−06 12.65/14.11%

5/2400 14.69/16.54% 7.8E−04/6.2E−06 12.73/14.50%

5/2800 15.56/17.22% 1.6E−02/1.3E−07 13.72/15.22%

7/1600 8.61/10.42% 3.5E−02/1.1E−02 5.56/7.20%

7/2000 10.56/12.40% 6.4E−03/6.2E−03 7.87/9.52%

7/2400 11.35/13.21% 8.2E−03/7.8E−03 8.71/10.43%

7/2800 12.16/14.06% 1.0E−03/1.1E−04 9.68/11.41%

Table 3 Improvements of cBW + model selection, cBW alone vs Scheffer et al. in cases of correct 
initial transition matrix for synthetic data with Viterbi algorithm

State #/
training 
sample

Average improvements of cBW + 
model selection in setting 1/2

Average p value of cBW + 
model selection in setting 1/2

Average improvements of 
cBW alone in setting 1/2

3/1600 8.07/8.57% 2.3E−04/4.7E−07 8.11/8.56%

3/2000 8.58/9.05% 1.9E−06/6.5E−09 8.63/9.03%

3/2400 8.93/9.24% 1.6E−07/1.0E−09 8.97/9.20%

3/2800 8.87/9.31% 1.3E−08/1.5E−09 8.94/9.26%

5/1600 11.99/13.24% 1.7E−02/4.5E−06 11.76/13.08%

5/2000 13.07/14.20% 4.1E−02/3.4E−06 12.87/14.11%

5/2400 13.22/14.59% 2.0E−02/1.2E−05 12.94/14.35%

5/2800 13.89/15.20% 4.1E−02/1.6E−07 13.85/15.16%

7/1600 7.85/9.37% 6.7E−02/3.5E−02 6.04/7.34%

7/2000 9.75/11.28% 5.6E−03/4.1E−03 7.93/9.32%

7/2400 10.50/12.10% 1.8E−02/1.9E−02 8.99/10.53%

7/2800 11.39/12.95% 1.4E−03/1.9E−04 9.75/11.29%
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Table 4 Improvements of cBW + model selection, cBW alon vs Scheffer et al., with fully connected 
initial transition matrix for synthetic data with posterior‑Viterbi algorithm

State #/
training 
sample

Average improvements of cBW + 
model selection in setting 1/2

Average p value of cBW + 
model selection in setting 1/2

Average improvements of 
cBW alone in setting 1/2

3/1600 7.08/8.02% 3.6E−02/1.9E−04 7.49/8.35%

3/2000 7.93/8.57% 9.5E−03/3.9E−05 8.32/8.88%

3/2400 8.21/8.85% 1.7E−03/2.5E−05 8.55/9.03%

3/2800 8.43/9.15% 1.8E−03/1.1E−06 8.82/9.36%

5/1600 9.13/10.62% 2.4E−02/3.2E−03 9.08/10.58%

5/2000 10.32/11.68% 1.4E−02/6.2E−05 10.38/11.76%

5/2400 11.26/12.74% 1.1E−02/2.0E−06 11.29/12.84%

5/2800 12.48/13.76% 9.8E−03/2.1E−08 12.56/13.86%

7/1600 8.40/10.08% 6.0E−02/2.5E−02 7.77/9.50%

7/2000 10.22/11.96% 3.2E−02/1.3E−04 9.82/11.65%

7/2400 11.10/12.68% 8.1E−03/1.5E−05 10.60/12.31%

7/2800 12.18/13.89% 1.6E−04/8.4E−08 11.96/13.77%

Table 5 Improvements of cBW + model selection, cBW alone vs Scheffer et al. in cases of correct 
initial transition matrix for synthetic data with posterior‑Viterbi algorithm

State #/
training 
sample

Average improvements of cBW + 
model selection in setting 1/2

Average p value of cBW + 
model selection in setting 1/2

Average improvements of 
cBW alone in setting 1/2

3/1600 7.46/8.01% 2.8E−02/1.7E−02 7.64/8.11%

3/2000 8.09/8.52% 3.0E−02/1.6E−02 8.25/8.60%

3/2400 8.32/8.67% 3.7E−02/5.9E−03 8.49/8.73%

3/2800 8.58/8.99% 4.9E−02/1.2E−03 8.79/9.09%

5/1600 9.52/10.62% 1.1E−01/5.1E−02 9.45/10.59%

5/2000 10.53/11.55% 6.0E−02/8.2E−03 10.47/11.63%

5/2400 11.51/12.58% 2.0E−02/3.5E−04 11.44/12.58%

5/2800 12.49/13.55% 1.7E−02/8.0E−06 12.55/13.61%

7/1600 8.75/10.19% 2.9E−02/2.6E−02 8.27/9.77%

7/2000 10.50/11.99% 2.1E−02/4.2E−03 9.82/11.31%

7/2400 11.15/12.47% 6.9E−02/7.8E−04 10.69/12.11%

7/2800 12.36/13.75% 5.2E−02/1.1E−05 12.05/13.57%
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Results
In this section, we set up experiments using both real biological data and synthetic data 
to test our method for decoding task and compared the results with those from using 
the method in [6]. It has been reported that [14, 15] posterior decoding in general per-
forms better than Viterbi algorithm. So, in order to evaluate how our training method 
can impact on decoding, we carried out the decoding on the testing sequences with the 
trained model using both the standard Viterbi algorithm [10] and posterior-Viterbi algo-
rithm described in [15], and the accuracy was computed by comparing the predicted 
label with the ground truth label at each position to determine the number of correct 
predictions:

The results of these experiments show that our method outperforms Scheffer et  al’s 
method in model training, as evidenced in the improved decoding accuracy, regardless 
which decoding algorithm is used. Specifically, on average, decoding accuracy improves 
by 33% with Viterbi algorithm, 36% with posterior-Viterbi algorithm in real data, and 
improves by 7.35–14.06% with Viterbi algorithm, 7.08–13.89% with posterior-Viterbi 
algorithm in synthetic data with significant p values. Note that, in two cases when the 
sequences are either almost fully labelled (95%) or very sparsely labelled (5%), the differ-
ences between various algorithms are insignificant. This phenomenon is no surprising 
though, as it is expected that the benefit from making good use of partial labels dimin-
ishes when labels are extremely sparse, which makes the various algorithms converge to 
Baum–Welch algorithm, or when sequences are almost fully labelled, which makes the 

Accuracy =
# of correct predicted labels

# of total labels
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various algorithms converge to the maximum likelihood. Therefore, our evaluations are 
divided into two settings for synthetic data. Setting 1 has partial label information from 
5 to 95%. Setting 2 has partial label information from 10 to 90%.

Synthetic data

The method described in [6] is mainly focused on handling text mining problems using 
synthetic data. To make the comparison fair, we have also performed experiments using 
synthetic data, which allowed us to observe our method’s different performance in dif-
ferent situations. In the experiments with synthetic data, the data is generated from 
ground truth HMMs, which are also generated randomly with predefined connections. 
For each experiment, the size for initial guess of transition and emission matrices are 
identical to the corresponding ground truth model. We fixed the number of symbols in 
hidden Markov model to be 20 to mimic the 20 amino acids in protein sequences. To 
test how model complexity may impact the training, we chose three different numbers 
of states: 3, 5, and 7. Moreover, different levels of training sample size were also consid-
ered as an experimental variable. Each experiment (with fixing state number and train-
ing examples) was evaluated for different levels of partial label and repeated for 50 times, 
and the corresponding paired p values were also calculated to assess the statistical signif-
icance of the performance difference between our method and the other method. Since 
our method can maintain the topology of initial guess of transition matrix, experiments 
were divided into two different groups. One was initialized the transition matrix with 
the same connectivity as the ground truth model, and the other was initialized with fully 
connected transition matrix.

Three sets of experimental results with fully connected transition matrix as initial 
guess are shown in Figs. 2, 3 and 4. Additional results are shown in Tables 2, 3, 4 and 5 
for comparison.

Conducted using different numbers of states, training examples, and different decod-
ing algorithms, the results show that our method outperforms the method by Scheffer 
et al. by 7.08–14.06% across different percentage of unlabelled data, with significant p 
value (< 0.05) for majority of the experiments. While both methods achieve a perfor-
mance closer to that of the ground truth model as the level of partial labels increases, 
the improvement of our method over the method of Scheffer et al’s is more pronounced 
when partial labels are sparse, namely the level of unlabelled data is high, as shown in the 
X-axis of the Figures. For example, in Fig. 2, with Viterbi decoding, at the level of 70% 
unlabelled data, i.e., 30% partial labels, our method reaches an accuracy of 62%, which 
is 98% of the ground truth model accuracy, whereas Scheffer et  al’s reaches accuracy 
of 54%, which is 85% of the ground truth model accuracy. Similar trends hold true for 
Figs. 3 and 4 when the model has 5 and 7 states respectively regardless of the decoding 
algorithm used.

Real data

For the real biological data, we adopted data from [16]. The data contains 83 multi-pass 
transmembrane proteins with complete label information. The topology of multi-pass 
transmembrane protein is shown in Fig.  5. The label for each sequence contain three 
different values: i, o, M. They stand for the region of protein sequence inside, outside 
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cell membrane, and the transmembrane domain respectively. While much more sophis-
ticated hidden Markov models have been used for modeling transmembrane protein 
topology [16–19], a simple HMM is used in this study to primarily evaluate the new 
training algorithm for partial labels. The architecture of the HMM is shown in Fig. 6, 
in which a redundant M′  node is introduced as a simple mechanism to avoid a state 
path, such as iiiimmmmiii or oooommmoooo, that does not correspond to the real 
topology of transmembrane protein, in which a membrane domain has to be flanked by 
i on one side and o on the other side. Therefore, the transition matrix is 4 by 4, corre-
sponding to the four states. Note that the amino acid emission frequencies for the trans-
membrane state are calculated by lumping together counts or expectation from both M 
and M’ states. We set up two different experiments with different initial conditions: (1) 
Transition matrix has correct zeros as ground truth model. (2) Transition matrix is fully 
connected. We set up experiments for condition (2) because the method in [6] cannot 
enforce initial zeros to remain zeros during the training, therefore, condition (2) gives 

Cell 
Membrane Inside 

Cell
Outside 

Cell

Fig. 5 multi‑pass transmembrane proteins the red lines represents protein sequence outside of cell 
membrane, the blue lines represents protein sequence inside of cell membrane, and green line represents 
transmembrane domain of the protein sequence. Generated by Google Drawings

M i

M’o

Fig. 6 Topology of 4‑state HMM for multi‑pass transmembrane prediction States i and o represent inside and 
outside cell membrane respectively. Both M and M  stand for transmembrane domain, the redundant M  is 
used to avoid direct connection between state i and o, which is impossible. Generated by Google Drawings
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more fair comparison of the two methods when no prior knowledge is available. The 
HMM is trained by these two different methods in a 10-fold cross validation scheme. 
Different levels of unlabelled data in training examples are actuated by selecting loca-
tions randomly to be unlabelled for each sequence. Since no ground truth model is avail-
able, maximum likelihood method with fully labelled training data is used to mimic the 
role of the ground truth model in experiments with synthetic.

For condition (1), the result shown in Fig.  7 demonstrates that our method (con-
strained Baum–Welch with model selection) outperforms other method (Scheffer et al) 
by 33.59% with Viterbi Algorithm and 36.16% with posterior-Viterbi algorithm. For con-
dition (2), the result shown in Fig. 8 attests that our method outperforms other method 
by 33.20% with Viterbi Algorithm and 36.32% with posterior-Viterbi algorithm. For both 
conditions, the performance of our method with or without model selection technique 
and maximum likelihood are very close.

Discussion
From the results of experiments with synthetic data in Tables 2, 3, 4 and 5, they show: 
(1). constrained Baum–Welch algorithm with or without model selection technique 
achieve significant better performance than Scheffer et al. [6]; (2). constrained Baum–
Welch benefit from having correct topology (comparisons between the 4th columns of 
Tables 2, 3); (3). constrained Baum–Welch algorithm performs better when model selec-
tion technique is used, especially when the task is hard (comparisons between 2nd and 
4th column in Tables); (4). disregarding the training methods, posterior-Viterbi always 
outperforms standard Viterbi for decoding (Shown in Figs. 2, 3, 4, 7, 8).

From the results of experiments with real data, performance of constrained Baum–
Welch with or without model selection are very close to maximum likelihood approach 
across different percentages of partial label. However, the performance of Scheffer et al’s 
drops dramatically after the percentage of unlabelled data is greater than 10%. The rea-
son behind this is the method by Scheffer et al. cannot enforce the correct topology even 
the initial guess is correct. For this problem in particular, have a HMM with correct 
topology is key for higher accuracy.

Moreover, there are a few points worth mentioning for the benefits of those who 
may consider using this method for their applications. First, the ability of keeping cor-
rect topology makes cBW method compatible with more complex HMM, such as pro-
file HMMs. However, as a trade-off, the training time can significantly increase. Second, 
model selection technique, although optional, is highly recommended to be used with 
posterior-Viterbi instead of standard Viterbi for best decoding performance. Lastly, 
our method is designed especially for the task of detecting de novo targeting signals, 
which assumes no fully labelled sequence is available in general. For the cases with relax-
ing constraints: some fully labelled sequences are available, our method is not the only 
choice, interested readers may also consider methods in [9].

Conclusion
In this work, by modifying the standard Baum–Welch algorithm, we developed a novel 
training method, which, along with a model selection scheme, enables leveraging the 
partial labels in the data to improve the training of hidden Markov models. Compared 
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with a similar method, our method achieved significant improvements in training hid-
den Markov models as evidenced by better performance in decoding both synthetic data 
and the real biological sequence data.

For future work, we will further investigate the impact of this training method on 
detecting de novo motifs and signals in biological data. In particular, we plan to deploy 
the method in active learning mode to the ongoing research in detecting plasmodesmata 
targeting signals and assess the performance with validations from wet-lab experiments.

Abbreviations
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Expectation–maximization.
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