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High-density microelectrode arrays (HDMEA) have been recently introduced to study

principles of neural function at high spatial resolution. However, the exact nature of

the experimentally observed extracellular action potentials (EAPs) is still incompletely

understood. The soma, axon and dendrites of a neuron can all exhibit regenerative

action potentials that could be sensed with HDMEA electrodes. Here, we investigate the

contribution of distinct neuronal sources of activity in HDMEA recordings from low-density

neuronal cultures. We recorded EAPs with HDMEAs having 11,011 electrodes and then

fixed and immunostained the cultures with β3-tubulin for high-resolution fluorescence

imaging. Immunofluorescence images overlaid with the activity maps showed EAPs

both at neuronal somata and distal neurites. Neuritic EAPs had mostly narrow triphasic

shapes, consisting of a positive, a pronounced negative peak and a second positive

peak. EAPs near somata had wide monophasic or biphasic shapes with a main

negative peak, and following optional positive peak. We show that about 86% of EAP

recordings consist of somatic spikes, while the remaining 14% represent neuritic spikes.

Furthermore, the adaptation of the waveform shape during bursts of these neuritic spikes

suggested that they originate from axons, rather than from dendrites. Our study improves

the understanding of HDMEA signals and can aid in the identification of the source of

EAPs.

Keywords: microelectrode array, extracellular action potential, low-density culture, CMOS, multielectrode array

INTRODUCTION

Action potentials (APs) are short, self-sustaining voltage transients observed in excitable
membranes of several cell types. In neurons, these so-called “spikes” have been observed in the
dendrite, the soma and in the axon. APs are generated at the axon initial segment (Kole et al., 2007;
Meeks and Mennerick, 2007; Shu et al., 2007) and transmitted through the axonal arbor to the
synapses.

APs can be non-invasively recorded by microelectrode arrays (MEAs). MEAs allow long-
term recording since there is no need to break the cell membrane, as in e.g., patch-clamp, and
are nowadays a common electrophysiological tool (Obien et al., 2015). After their introduction
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(Thomas et al., 1972; Gross et al., 1977; Pine, 1980), MEAs
were used for analyzing neural network maturation (Opitz
et al., 2002; Van Pelt et al., 2004; van Pelt et al., 2005),
oscillatory activity in normal and pathological states (Srinivas
et al., 2007), effects of electrical stimulation (le Feber et al.,
2010; Weihberger et al., 2013), pharmacology (Furukawa et al.,
2009), and investigating the role of specific neuronal subtypes
in rhythmic oscillations (Baltz et al., 2010), among others. The
availability of active, complementarymetal-oxide-semiconductor
(CMOS) based high-density MEAs (HDMEAs), with thousands
of electrodes, allows experimentalists to record at higher spatial
resolution and from multiple sites (Berdondini et al., 2009;
Maccione et al., 2009; Fiscella et al., 2012; Jäckel et al., 2012;
Bakkum et al., 2013; Stutzki et al., 2014).

The exact origin of the recorded extracellular action potentials
(EAPs), usually identified as threshold-crossing events, is still
incompletely understood (Nam and Wheeler, 2011). Therefore,
we attempted to find the sources of spontaneous spiking activity
in HDMEA recordings from low-density neuronal cultures.
We used HDMEAs having 11,011 electrodes, with an electrode
pitch of 17.8µm, on which we plated dissociated rat neurons.
In our low-density cultures, neuronal somata did not form a
confluent layer on top of the electrode array, which allowed
us to visually distinguish between somatic and distal neuritic
sources of spiking activity. We searched for the sources of
electrical activity by combining HDMEA recordings and post-
hoc immunofluorescence staining for β3-tubulin, which is
expressed in neuronal somata and neurites (axons and dendrites).
EAPs were often recorded near somata, but also from neurites
more than 100µm away from the nearest soma. It has been
shown by combination of patch clamp recordings from the
soma that extracellular electrodes within 100µm from the
neuronal soma can record the cell’s activity (Petersen et al., 2015).
From the combined HDMEA/immunofluorescence recordings,
we extracted two typical EAP shapes for somatic spikes and two
for distal neuritic spikes. These typical waveshapes were used
as templates for distinguishing between somatic and neuritic
activity. A template-matching algorithm indicated that 14% of
EAP recordings contain neuritic activity while the remaining 86%
represent somatic activity. Lastly, low spike amplitude adaptation
within burst events exhibited by neuritic EAPs suggests axonal,
rather than dendritic identity. Our results suggest that spike
shape can be used, at least partially, to distinguish between EAPs
originating from the soma (axon initial segment) and (distal)
axonal compartments.

MATERIALS AND METHODS

Animals
Timed pregnant Wistar rats were obtained from a commercial
vendor (Nihon SLC). Animals were anesthetized with Isofluorane
and sacrificed on the day of arrival to obtain embryos for primary
neuron cultures. All experimental procedures on animals were
carried out in accordance with the European Council Directive
of 22 September 2010 (2010/63/EU) and had been approved by
the local authorities (Animal Care andUse Committee of RIKEN;
QAH24-01).

Primary Neuron Culture
The culture protocol was adapted from Bakkum et al. (2013). The
embryos (embryonal day 16–18) were extracted and euthanized
by spinal cord bisection. Their brains were quickly removed
and placed in ice-cold dissection medium. Cortices from two to
three embryos were pooled for one plating. The cortices were
isolated and enzymatically dissociated in 0.25% trypsin with
ethylene-diamine-tetra-acetate (EDTA) for 20min in a warm
water bath (37◦C). Cortices were washed twice for 1min with
plating medium. The tissue was mechanically triturated with a
P1000 (Gilson) pipette. The cell solution was filtered through
a 40µm filter to remove aggregates and then centrifuged at
1,100 rpm for 6min. The supernatant was removed leaving 1–
2ml of the cell pellet solution. The cells were counted and
diluted to the appropriate density. 5,000 or 10,000 cells were
plated on the HDMEA in a 20µl drop centered on the electrode
area. Cultures were then placed in the preservation incubator.
After waiting 30min for the cells to attach, the HDMEA
chambers were slowly filled with 900µl of plating medium.
Three days later, the medium was changed for the first time by
completely replacing it with growth medium. Afterwards, 30%
of the growth medium was exchanged three times per week. The
HDMEA chamber was covered with a membrane permeable to
oxygen (O2) and carbon dioxide (CO2) but not to water vapor,
bacteria or fungi (Potter and DeMarse, 2001). Cultures were
kept in a humidified, preservation incubator set at 37◦C and
5% CO2.

Dissection medium was Hank’s balanced salt solution without
Ca2+ and Mg2+ (Gibco, NO.14175). Plating medium was
composed of Neurobasal (Gibco, NO. 21103) with 10% fetal
bovine serum (Gibco, NO. 10091), 2% B27 (Gibco, NO. 17504),
1:100 Glutamax (Gibco, NO. 35050), and 1:1,000 gentamicin
(Sigma-Aldrich, NO. G1397). Growth medium was Nerve
Culture Medium (Sumitomo, NO. MB-X9501).

High-Density Microelectrode Arrays
A CMOS-based HDMEA was used for recording (Frey et al.,
2010). The HDMEA has 11,011 electrodes arranged in a
hexagonal pattern, with a pitch of 17.8µm, yielding an electrode
density of 3,150/mm2. Biocompatibility was obtained by an
additional passivation of the CMOS device consisting of a stack
of SiO2 and Si3N4 layers, as described elsewhere (Frey et al.,
2010). The culture chamber was fabricated from Epoxy resin
(EPO-TEK 301-2) using a PDMS stamp to protect the culture
area (2.5 × 2.5mm2). Three days before plating, HDMEAs were
treated with oxygen plasma for 40 s at 20 W in order to render
the surface hydrophilic, but also sterilize the probes. Following
the plasma treatment, we took due care to keep the probes in a
clean environment. The impedance of the Pt electrodes was then
decreased by electrochemical deposition of Pt-black, immediately
after plasma treatment, as described elsewhere, with minor
modifications (Bakkum et al., 2013). The MEA surface was kept
hydrophilic by filling it with sterile distilled water. The day of the
culture plating, HDMEAs were sterilized by dipping the probes
into 70% ethanol for half an hour. Subsequently, the HDMEAs
were moved inside the clean bench, their wells were washed with
sterile distilled water and finally, the probes were allowed to dry.
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The wells were subsequently coated with poly-D-lysine (Sigma-
Aldrich, P7280, concentration of 50µg/ml in phosphate buffered
saline) for 1 h at room temperature, and washed four times with
sterile distilled water afterwards. Prior to plating the cells, the
electrode area was wetted with laminin (Sigma-Aldrich L2020,
final concentration 20µg/ml in phosphate buffered saline) for
20min in the preservation incubator.

HDMEA Recordings
A total of 10 cultures were used from four different platings. The
age of the cultures ranged from 14 days in-vitro (DIV) to 58
DIV. Previous studies have shown that both the activity of the
network (Chiappalone et al., 2006) and the shape of EAPs (Weir
et al., 2015) are stable after 14 DIV. Experiments were performed
at least one day after a medium exchange session. HDMEAs
were placed into a custom stage-top incubator with temperature,
humidity, and CO2 control (TOKAI HIT, INU-OTOR-RE). The
temperature was regulated to 36.6◦C.

After transferring the plated HDMEA devices from the
preservation incubator to the custom experimental incubator, the
cultures were allowed to rest for half an hour, after which the
recording was started. The HDMEA can simultaneously record
from 126 electrodes, which were arranged in block configurations
(e.g., 6 columns by 12 rows) and used sequentially to cover
the whole electrode area. Each configuration’s recording time
ranged from 1 to 3min using custom-made software in LabView
(National Instruments).

Immunostaining
After the recording session, the cultures were fixed for
immunostaining. Cultures were washed with ice-cold phosphate
buffered saline (PBS), fixed for 15min at room temperature,
followed by two PBS washes. The fixative was a freshly-
prepared solution of paraformaldehyde (Sigma-Aldrich), 4%
w/v in PBS. In one culture, 0.005% glutaraldehyde (WAKO
Chemicals) was added. The two fixative compositions gave equal
quality pictures. Immunostaining was performed as previously
described (Bakkum et al., 2013), with minor modifications.
Briefly, samples were permeabilized by incubation for 10min
with PBS containing 0.25% Triton-X (Sigma-Aldrich). After
three washes for 5min with PBS, samples were incubated with
blocking medium for 30min. Blocking medium consisted of 1%
bovine serum albumin (BSA, Sigma-Aldrich, A4161) in PBS with
0.1% Tween-20 (Sigma-Aldrich, P1379). Primary antibodies were
then added directly to the blocking solution, and the samples
were left overnight at 4◦C. The next day, the samples were washed
three times for 5min with PBS, and, thereafter, incubated for
1 h with secondary antibodies followed by three PBS washes
for 5min. Nuclear staining was obtained by incubation for
1min with DAPI (300 nM in PBS), followed by three PBS
washes. Samples were stored at 4◦C prior to imaging. Control
experiments showed that the morphology and location of soma
and neurites were not affected by immunostaining.

The primary antibody used was rabbit anti-β3-tubulin
(ab18207, abcam) at 1:1,000 dilution. The secondary antibody
was Alexa Fluor 555 goat anti-rabbit (A-21429, Life technologies)
at 1:200 dilution.

Fluorescence Microscopy and Image
Processing
Fluorescence microscopy was performed with an Olympus
BX61 epi-fluorescence microscope, equipped with a water-
immersion objective (LUMPlan FL N,40x/0.8 W). Metamorph
software was used for the acquisition and assembly of the
images. After calibration of the Metamorph-controlled stage,
successive patches were acquired and then stitched together to
produce one final image for each wavelength. Filters used were
RFP and infrared (IR). IR imaging allowed for visualization
of the electrode surface. The images obtained at different
wavelengths were aligned viaMetamorph orMatlab (Mathworks)
algorithms.

Further image processing was performed with Matlab and
FIJI (Schindelin et al., 2012; Schneider et al., 2012). To improve
the registration performance and identification of thin neurites,
we processed the acquired fluorescence images in the following
way. The gamma setting was modified to enhance weak intensity
signals. The image was then inverted, converted to 8-bit grayscale
and the levels were adjusted for the whole image. This procedure
increased the intensity of the weaker signals, allowing for clearer
visualization of the background electrodes and weakly stained
neurites. The resolution of the final image was 0.176µmper pixel.

The following procedure was developed to link the
coordinates of the electrodes to the coordinates of themicroscopy
images. To accomplish this, we first registered a high-resolution
image of the electrode array template to the IR image. For this
image registration, affine transformation was performed by
using the electrode edges at the corners of the array as control
points. The RFP image was then processed with the same
transformation. Before continuing with further data analysis
the electrode template image was overlaid to the transformed
microscopy image and observed at high magnification. We
looked for instances where the electrodes on the electrode
template image were misaligned to the actual electrodes of the
transformed microscopy images. We evaluated the registration
quality of all experiments/figures, and no such misalignment was
detected.

Generation of Activity Maps Indicating
Threshold-Crossing Events
Activity maps were generated the following way. After band-pass
filtering (500–3,000Hz) of the electrode signals, events with a
negative peak height larger than five times the standard deviation
of the background noise were identified. Detection thresholds of
five to seven times the noise levels are commonly used (Srinivas
et al., 2007; Stegenga et al., 2008; Baltz et al., 2010; Sun et al.,
2010). For these spiking events, the firing rate was calculated
for the whole recording interval (including burst and inter-burst
intervals) and for all electrodes. The resulting whole-array firing
rate map was color-coded as squares centered at the electrode
coordinates and overlaid on top of the immuno-fluorescence
image (Figure 1). Using this procedure, areas showing spiking
activity could be easily found. Further analysis was restricted to
recordings showing threshold-crossing events at a rate higher
than 0.2 Hz.
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FIGURE 1 | Generation of activity maps. The registered and processed immunostaining images were used to distinguish between somatic and neuritic sources of

activity. The firing rate of each electrode was calculated with a threshold detection algorithm. The firing rate of each electrode was plotted on top of the β3-tubulin

image, as color-coded squares on top of the recording electrodes. The inset shows the color code for the firing rate range, f, in Hz. Scale bars: 100µm.

Spike Sorting and Spike-Triggered
Averaged Footprints
Neuronal footprints, the spike-triggered averages on several
electrodes, were produced based on simultaneous recording
of up to 126 electrodes in a block configuration. Spike
sorting was performed with three neighboring electrodes to
minimize the occurrences of overlapping spike events. The three
electrodes were manually selected by taking in account the
activity map. Only one footprint was extracted for each block
configuration.

The signals of all three electrodes were passed to
UltraMegasort (UMS) (Hill et al., 2011). UMS is a freely
available Matlab toolbox, which was adapted as necessary for use
with HDMEA toolboxes and datasets.

UMS spike-detection was performed with a threshold-
crossing algorithm, as previously described. After a threshold
crossing, the algorithm was blind to other threshold crossings for
0.8 ms. The EAPs were then aligned, and 2.5 ms of recordings (50
samples per electrode at 20 kHz) of each waveform were stored.
Individual spikes were aligned with respect to the negative peak
of the largest spikes.

The first part of the spike sorting procedure was automatic and
consisted of the following steps, already implemented by UMS:
Principal component analysis (PCA) was performed, followed by
K-means clustering. The interface energy similarity metric was
used to identify clusters very close to each other (Fee et al., 1996).
If two clusters had high interface energy, they were clustered
together, and the interface energies were re-calculated until the
aggregation stop criterion was reached. The aggregation stop

criterion value was set to 0.001. Briefly, higher values of this
criterion allow for more aggregation.

The second part of the spike sorting procedure involved
the supervised evaluation of clustering. The PCA space and
refractory period violations (RPV) were taken in account,
so that well-isolated clusters with minimum RPV were
used.

The timing of the spike-sorted activity was then used to extract
signals from the neighboring electrodes of the current block
configuration. A spatial footprint was generated, depicting the
spike-triggered average (STA) signal for each electrode of the
configuration. For this and subsequent analysis the wideband
traces were used, after oversampling at 320 kHz (Blanche
and Swindale, 2006). On-chip band-pass filter settings were
approximately 25Hz–3.5 kHz.

Manual Classification of Footprints as
Somatic or Neuritic
For each footprint, the electrode recording spikes with the largest
negative peak was chosen as the representative electrode. The
assignment of somatic or neuritic origin to a footprint was based
on the distance of the representative electrode to the closest
soma. If the distance was less than 50µm, the footprint was of
somatic origin, and neuritic otherwise. The identification of near-
by somata was not restricted to the footprint’s spatial extent or by
the area of the block configuration. Instead, a region of 200 ×

200 µm2 around the representative electrode was extracted and
observed.
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Spike Shape Feature Analysis
We compared the characteristics of somatic and neuritic spike
shapes. Three spike shape features were used: the amplitude,
half-width and trough-peak width. The STA signals of the
representative electrode were used from each footprint. This
restriction was imposed to avoid any bias resulting from duplicate
data points. The amplitude of an STA was defined as the
amplitude of the main negative peak. The half-width was defined
as the duration of the STA main phase with values below 50% of
the negative peak. The trough-peak width was defined as the time
from the main negative peak to the first positive peak (Becchetti
et al., 2012; Robbins et al., 2013; Weir et al., 2015). Additionally,
the relative standard deviation (RSTD) was calculated as the
standard deviation of the normalized traces to the peak-to-peak
amplitude of the average trace (Jäckel et al., 2012).

Statistics Based on Template Matching
The template-matching approach represented an alternative
approach of analyzing our data. Such an approach reduced any
possible human bias on the classification of footprints as somatic
or neuritic.

The template matching approach was used with two datasets.
The first dataset consisted of the manually identified, sorted
somatic and neuritic representative STA from five cultures (see
Manual Classification of Footprints as Somatic or Neuritic). The
second dataset consisted of 10 cultures/recordings, where spike
sorting was not performed. All electrodes recording an average
spike having negative peak amplitude of at least 100 µV, with an
RSTD lower than 1, and more than 100 spikes were used. These
constraints were imposed to reject electrodes recording spikes
with low amplitudes, few spikes, or from multiple neurons.

The template matching was performed with a cross-
correlation based algorithm. The cross-correlation of the spikes
(from either dataset, STA or the peak-aligned mean spike
respectively) to pre-extracted templates was calculated. STAs and
templates were amplitude-normalized. Each spike was assigned
to the template type with which it had the highest cross-
correlation value.

Spike-Shape Adaptation Analysis
The continuous firing rate (cFR) was calculated for each spike
according to the following equation:

cFR (t) = d ∗ cFR (t − ∆t) +
(

1 − d
)

∗
1

∆t

where ∆t is the time between current and previous spike, and
d is the exponential decay term (d = e−∆t/τ ), with τ = 100ms
(Stratton et al., 2012). Typically, the cFR starts at a low value and
rises slowly during a burst. An exponential function was fitted to
the spike shape features versus the cFR by minimizing the sum of
squared residuals,

g (x) = yc ∗ ebx + y∞

This procedure resulted in a good fit for both somatic and
neuritic spikes. The adaptation rate was calculated as

AR =
y∞

y∞ + yc
− 1

and expressed in percent. The two-tailed Mann-Whitney test
was used to test for differences between somatic and neuritic
distributions. Reduction in spike amplitude was manifested as
negative AR, while a widening of the spike was manifested as
positive AR.

RESULTS

Spiking Activity from Neuronal Somata and
Neurites (Dendrites and Axons)
First, we tested the hypothesis that HDMEA electrodes can
record neuronal activity from both somatic and neuritic
compartments. Activity maps were generated, as described
in the methods section. We noticed spiking activity, defined
as threshold-crossing events, in the vicinity of and far
away from neuronal somata. This suggests that the HDMEA
electrodes can record EAPs originating both from somata and
neurites.

Figure 2A shows electrical activity near a neuronal soma
(white arrow). The variability in the firing rate of different
electrodes for a putatively single neuron is because the spike-
detection algorithm identified fewer spikes in electrodes further
away from the spike source. As spikes are identified from
threshold crossings, lower amplitudes result in lower overall spike
rates. On the other hand, Figure 2B illustrates spiking events in
an area with high neurite density. A soma can be seen in the
upper left side (white arrow). Although no somata can be seen
at the center of the area, most of the electrodes recorded spiking
activity. In this case, axonal or dendritic identity could not be
established due to the high neurite density. In another scenario,
shown in Figure 2C, we noticed what seemed to be activity from
a local, distal part of an axon (white arrow, axon traced with
magenta arrows).

We then analyzed each block configuration separately. We
performed spike sorting and extracted single-unit activity. The
footprint of each unit was obtained by averaging the wide-
band, oversampled traces of 40-80 electrodes in the selected
configuration. Figure 3A shows the somatic footprint from
Figure 2A, while Figure 3B shows the axonal footprint from
Figure 2C. For these examples, the negative peak of the somatic
signals reached up to 300µV, while that of the axonal signals
reached up to 100µV. Example STAs of three selected electrodes
are also shown (enlarged blue, red, magenta electrodes in the
β3-tubulin images).

We classified all footprints for which the representative
electrode is 50µm, or closer, to the nearest soma as having
a ‘somatic’ and all the others as ‘neuritic’ origin. This simple
procedure will likely misclassify footprints once in a while, e.g.,
if an axon runs below or nearby a soma, generating a detectable
axonal signal. However, as we show below, in the majority of
cases, this simple classification results in correct assignments. We
found a total of 26 somatic and 29 neuritic footprints in five
experiments from an equal number of cultures. At this stage,
we did not attempt to distinguish between axonal and dendritic
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FIGURE 2 | Identification of sources of spiking activity in HDMEA recordings. (A) An active neuron (white arrow) on top of the electrode array. (B) An area of

high neuritic density which showed spiking activity. A soma can be seen in the upper left corner (white arrow). (C) A larger field of view of the electrode array with a

low-density culture on top. Electric activity was recorded in areas distal to the neuronal somata. Activity from the distal part of a highlighted axon (small white arrow

shows the active segment, magenta arrows highlight the axon) can be distinguished. Signals of all electrodes of the array were recorded in sequential blocks and

passed through the spike-detection algorithm. Scale bars 50µm.
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FIGURE 3 | Examples of somatic and axonal footprints. Spike sorting and subsequent spike-triggered averaging resulted in a spatial footprint, depicting the

STAs over many neighboring electrodes in the same recording block. (A) Examination of the signals from the neuron shown in Figure 2A. Three electrodes were used

to perform spike sorting (white crosses, next to the red electrodes in the β3-tubulin image). The somatic footprint shows the STAs for the near-by electrodes, aligned

on the timing of the spike-sorted activity. A band-pass (100–5,000Hz) filtered signal from the enlarged blue electrode is shown on the right, where the negative peak

can reach up to 300µV. Three STA examples are also shown for the three enlarged (blue, red, magenta) electrodes in the β3-tubulin image. (B) Similar to (A), but for

the axonal footprint in Figure 2C. Scale bars 20µm for β3-tubulin staining, 2 ms/200 µV for the footprints, 0.5 ms/50 µV for the STA examples.

activity due to the high density of neurites commonly observed
in the immunostaining images.

Characterization of Somatic and Neuritic
Spike Shapes
We characterized the features of somatic and neuritic spikes.
From each footprint, the electrode recording the STA with the
highest negative peak amplitude was selected as representative.
23 out of the 29 representative neuritic electrodes were at least
100µm away from the nearest soma, while 6 were between 50
and 100µmaway from the nearest soma. This indicates that most
of our neuritic spikes originate from distant parts of axons or
dendrites. In addition, the results were not very sensitive to the
limit of 50µm, as the majority of neuritic spikes were at least
100µm away from the nearest soma.

The same procedure was repeated for somatic footprints. In
this case, the distance to a second soma was calculated. 15 out

of the 26 representative somatic electrodes were between 50 and
100µm away from a second neuronal soma, 6 were at least
100µm away, while 5 were between 15 and 50µm away.

The STAs from the representative electrodes were then used to
compare the somatic and neuritic spike shapes. The distributions
of the somatic and neuritic amplitude, half-width and trough
peak width were significantly different from each other (Mann-
Whitney test, p < 0.001 for all three cases). Figures 4A,B show
the distribution of the three features for each representative STA.
The median of the amplitude in all somatic STAs was -171.46 µV
whereas for the neuritic STAs it was -73 µV. The median of the
half-width of all somatic and neuritic STAs was 250 and 130µs
respectively. Themedian of the trough-peak-width of the somatic
and neuritic STAs was 900 and 420µs respectively. Somatic STA
amplitude, half-width, and trough-peak width distributions were
not completely separated from the neuritic ones, but instead had
overlapping values. Narrow somatic STAs and wide neuritic STAs
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FIGURE 4 | Comparison of somatic and neuritic spike shape features. Somata and neurites were identified by immunofluorescence. (A) Scatter histogram for

the amplitude and half-width for the representative somatic (n = 26) and neuritic (n = 29) STAs. On the side, kernel density plots are shown. (B) Similar to (A), but for

the amplitude and trough-peak width. (C) Scatter histogram for the RSTD values and amplitude. Somatic STAs have wide distribution, while the neuritic STAs

distribution is narrower. (D) Somatic and neuritic STAs were classified with a template-matching algorithm. Somatic and neuritic STAs are classified to different

template types. At the center of the figure, the four template types used for classification are plotted with different colors. Each color represents a different template

type, as in (D). Scale bars 0.5 ms.

were observed. Finally, the RSTD distribution of neuritic spikes
was in the range of 0–0.3, non-significantly different than somatic
spikes STAs (p= 0.0068, Figure 4C).

The typically observed somatic and neuritic STAs are shown
at the center of Figure 4. STA Types 1-2 were typical of somatic
spikes, while STA Types 3–4 were typical of neuritic spikes. Type
1 had a broad monophasic shape, Type 2 had a broad biphasic
shape with a positive peak after the main negative peak, Type
3 was triphasic with the larger positive peak before the main
negative peak. Finally, Type 4 had a narrow, symmetric triphasic
shape, and it is similar to the axonal spikes reported in-vivo by
Robbins et al. (2013).

The four described types were subsequently used as
templates to blindly characterize the nature of recorded spikes
in HDMEA recordings. We used a cross-correlation-based

template-matching algorithm. In a first evaluation, the algorithm
classified the 55 representative STAs and we compared the results
against our original characterization as somatic or neuritic. 24 out
of the 26 somatic STAs were classified as Type 1 or 2. 22 out of
the 29 neuritic STAs were classified as Type 3 or 4 (Figure 4D).
Thus, our manually identified somatic and neuritic STAs could
be grouped into distinct categories by the template-matching
algorithm.

In the next step, we quantified the extent to which HDMEAs
can record neuritic spikes. For this analysis, data from 10 cultures
were used. An unsupervised approach was followed, where spikes
from each electrode were identified based on threshold crossings,
peak-alignment and averaging. From the total 110,110 available
electrodes of all experiments, 5.9% (6,463 electrodes) passed our
constraints (see Statistics Based on TemplateMatching). For each
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experiment, the number of electrodes passing our constraints
ranged from 19 to 2,437 electrodes, although usual values were
in the range of 200–600 electrodes. We then performed template
matching of the 6,463 averaged spikes. Overall, somatic activity
(Types 1–2) accounted for 86%, while the rest was assigned
to neuritic (Types 3–4) activity (Figure 5A). However, the
percentages of somatic and neuritic activity in the 10 individual
experiments exhibited moderate variability (Figure 5B).

Given our failure to separate axonal from dendritic sources
with the immunostaining approach, we explored if the template
matching algorithm could be used to reveal differences between
the various types of templates. A possible method would be
to search for differences in spike adaptation properties. Spike
adaptation typically happens during bursts of spikes, where often
e.g., the first spike has largest amplitude and following spikes
exhibit smaller amplitudes. Previous research has shown that
axonal spikes show reduced AP-shape adaptation during high-
frequency firing (Meeks et al., 2005; Kole et al., 2007). On
the contrary, somatic and dendritic spikes exhibit significant
AP-shape adaptation (Golding and Spruston, 1998). Thus, we
hypothesized that spikes of different template types would exhibit
different degrees of spike-shape adaptation. We then re-analyzed
the spikes from the 6,463 electrodes used in the previous analysis.
For each electrode, we extracted the spike shape feature values of
the individual spikes and used the cFR to produce an adaptation
rate for each of the three features (see Spike-Shape Adaptation
Analysis). Subsequently, the adaptation rates of each feature
were grouped by template type (Figure 6). This analysis showed
that somatic EAPs (Types 1–2) exhibited larger adaptation than
neuritic EAPs (Types 3–4). In addition, spikes classified as Type
4, exhibited almost zero amount of adaptation supporting the
hypothesis that they originate from distal axonal sources.

DISCUSSION

Our experiments with β3-tubulin staining and
electrophysiological recordings revealed that the recorded
extracellular activity could be originating from both neurites and
somata. β3-tubulin stains both dendrites and axons, and a visual
distinction between dendritic and axonal sources of activity
could not be clearly performed due to the frequent occurrences
of neuritic aggregates. We did not use dual MAP2 and Tau
immunostaining because during our preliminary experiments
MAP2 immunostaining had a very weak signal. On the contrary,
β3-tubulin gave very good quality images. Besides the difficulties
with immunostaining, we did find differences between somatic
and neuritic spikes.

Our analysis shows that about 86% of the electrodes passing
our constraints record somatic spikes, while 14% record neuritic
spikes. When all available electrodes are taken in account, the
electrodes recording somatic spikes represent 5% of the electrode
population, while those recording neuritic spikes represent
0.8%. Generally, statistics of individual experiments exhibited
moderate variation, while in one experiment predominantly
neuritic spikes were recorded (see the Type 3 outlier in
Figure 5B). This situation can occur when no neurons exist

FIGURE 5 | Contribution of somatic and neuritic sources of activity in

HDMEA recordings. (A) A template-matching algorithm was used to classify

recorded spikes from ten cultures/experiments as somatic (black and red

templates, Types 1–2), or neuritic (Types 3–4). Data from all experiments were

pooled together (n = 110,110). About 5.9% of all electrodes passed our

constraints (6,463 electrodes). About 14% of the electrodes passing our

constraints recorded neuritic activity. Scale bars 0.5 ms. (B) Percentage of

electrodes recording different template types, per experiment (n = 10). For

each experiment, the percentage of electrodes recording each template type

was calculated. Percentage calculations were referenced to the number of

electrodes passing the constraints, as shown in (A). Results were grouped per

template type and plotted as boxplots. Whiskers extend until 1.5 times the

interquantile range. All other values are shown as outliers (+).

on the electrode array. This can occasionally happen because
neurons seemed to attach much better in the area surrounding
the electrode array, than the array itself.

Somatic spikes were typically wide, with a very small first
positive peak and more pronounced second positive peak. On
the other hand, neuritic spikes were narrow and had a prominent
first large-amplitude positive peak. We hypothesize that most of
the narrow neuritic spikes are of axonal origin. Indeed, whole-
cell recordings from the axon hillock and axonal blebs have
demonstrated a progressive decrease in AP half-width as the
distance from the axon hillock increases (Kole et al., 2007).
At approximately 10µm from the hillock, the AP becomes
narrower, reaching a half-width duration of 200µs after 100µm
(Kole et al., 2007). On the contrary, dendritic regenerative
potentials are of similar or longer duration than somatic spikes
(Stuart et al., 1997). Our hypothesis is further supported by the
reduced adaptation levels of neuritic spikes (Figure 6).

Our classification attempts indicate that neuritic and somatic
spikes can be broadly distinguished by template-matching,
albeit with some occasional misclassification (Figure 4D). The
performance of template-matching depends on the chosen
templates, the algorithm itself, and the spikes to be classified.
Besides this, the spike adaptation levels can also be used
as an indicator of the spike’s axonal origin, resulting in
improved classification. However, we cannot presently say that
these parameters are sufficient to reliably distinguish somatic,
dendritic, and axonal signals.

An interesting occasional observation is that of narrow
somatic spikes (Figure 4). These spikes, although classified as
somatic by our simple distance criterion, could be in reality
axonal spikes, generated by axons passing below or next to a
neuronal soma. The overlying silent soma increases the sealing
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FIGURE 6 | Adaptation of spike shape features (amplitude, half-width, and trough-peak width) for the different template types. Types 3–4, previously

associated with neuritic sources, exhibit less adaptation than Types 1–2. These results were based on signals from 6,463 electrodes, from ten different cultures. For

each electrode, two analysis steps were performed. Firstly, the average spike recorded by the electrode was assigned to one of the previously-defined template types

with a cross-correlation based approach (see Statistics Based on Template Matching). Secondly, the adaptation rate for each feature was calculated based on

individual spikes and the cFR (see Spike-Shape Adaptation Analysis). The resulting adaptation rates were pooled for all electrodes, then grouped by template type and

plotted as boxplots. Whiskers extend until 1.5 times the interquantile range. All other values are shown as outliers (+). Asterisks indicate statistical significance

(**p ≤ 0.01, ***p ≤ 0.001). AMP, amplitude; HW, half-width; TPW, trough-peak width.

resistance of the axonal segment, resulting in large amplitude
axonal spikes, that are visually misclassified as somatic. Likewise,
one possible scenario for the sporadic appearance of large-
amplitude, distal neuritic spikes in our recordings would be that
non-neuronal cells, possibly astrocytes, are on top of the active
neurites, resulting in a similar increase in the sealing resistance
(Matsumura et al., 2016).

Axonal or dendritic electrophysiology studies of dissociated
cultures on HDMEAs are likely dependent on the culture
conditions, such as e.g. cell density, glial growth and culture
age. The presence or absence of non-neuronal cells might affect
the neuritic spike amplitude recorded by HDMEA electrodes,
and in turn, the percentage of somatic/neuritic spikes recorded.
For example, use of cytosine arabinoside for killing proliferating
cells might also reduce the probability of observing distal axonal
spikes since there would be no non-neuronal cells to seal the
neurites. In that case, the majority of axonal spikes are expected
to be buried in noise. Recent work on detection and classification
with template-matching algorithms shows that detection of even
those low-amplitude spikes might be possible (Radivojevic et al.,
2014; Franke et al., 2015).

Our study extends previous experimental work on the
elucidation of the origin of extracellular action potentials.

Claverol-Tinture and Pine recorded extracellular spikes from
somata and neurites by approaching with an extracellular pipette
(10–20µm in diameter) from above the neurons (Claverol-
Tinture and Pine, 2002). Consequently, the presence of a glial
carpet above distal neurites prevented the routine recording from
sites more than 50µm away from the soma. On the other hand,
in our microscopy analysis, all of our neuritic spikes were at
least 50µm away from the nearest soma. This may explain the
difference in the reported neuritic spike half-width values, 500µs
compared to 130µs in our experiments.
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