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Abstract

Farmland management and irrigation scheduling are vital to a productive agricultural econ-

omy. A multistage stochastic programming model is proposed to maximize farmers’ annual

profit under uncertainty. The uncertainties considered include crop prices, irrigation water

availability, and precipitation. During the first stage, pre-season decisions including seed

type and plant density are made, while determinations of when to irrigate and how much

water to be used for each irrigation are made in the later stages. The presented case study,

based on a farm in Nebraska, U.S.A., showed that a 10% profit increase could be achieved

by taking the corn price and irrigation water availability uncertainties into consideration using

two-stage stochastic programming. An additional 13% profit increase could be achieved by

taking precipitation uncertainty into consideration using multistage stochastic programming.

The stochastic model outperforms the deterministic model, especially when there are limited

water supplies. These results indicate that multistage stochastic programming is a promis-

ing method for farm-scale irrigation management and can increase farm profitability.

Introduction

As the world population increases and the amount of arable land decreases, it becomes vital to

improve the productivity of available farmland. During recent decades, the advent of diesel

and electric motors has led to systems that can pump groundwater out of major aquifers and

help increase crop productivity. However, concerns have been raised regarding the permanent

loss of aquifer capacity, declining surface and groundwater supplies, and increased pumping

costs [1, 2]. Thus, irrigation management practices under limited water supplies are critical for

sustainable agriculture and food security.

Evapotranspiration (ET) is defined as the water removed from the soil by evaporation from

the soil surface and transpiration by plants. ET is driven by atmospheric conditions that exert

a drying force on soil or plant surfaces. Hence, the magnitude of daily ET will vary with atmo-

spheric conditions. High solar radiation and air temperatures, low humidity, and high wind

increase ET, while cloudy, cool and calm days reduce ET. ET is also affected by crop growth
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stage, length of growing season, soil fertility, water availability, and the interactions of these

factors [3]. When water supplies cannot fully match crop ET requirements, yields are reduced

compared to a fully irrigated crop. Under water-limited conditions, yields typically display a

positive correlation with the total seasonal ET. On the other hand, applying additional irriga-

tion beyond seasonal ET requirements can lead to leaching and/or water-logging.

Corn is the most widely adopted row crop in the U.S.A. and takes up to one-third of the

cropland nationwide. Eighty-seven percent of irrigated corn in the U.S.A. is grown in high or

extremely high water stress regions such as the Great Plains and the Central Valley in Califor-

nia. Corn occupies more irrigated acres in these areas than any other crops [4] and receives the

most irrigation water among all of the U.S.A. crops [5]. The growth process of corn can be

roughly divided into five stages: establishment, vegetative, flowering, grain filling, and ripen-

ing. It is worth noting that there is a formal growth stage standard that has several stages

divided into vegetative and reproductive stages. Corn is relatively insensitive to water deficits

during early vegetative growth and ripening periods because the water demand is relatively

low. However, corn is much more sensitive to water stress from flowering through grain-filling

stages [6]. Severe water deficits during these periods will cause reduced yield. On the other

hand, water-logging should also be avoided, particularly during the flowering and grain-filling

stages.

Key factors that affect the irrigation scheduling decisions include soil characteristics, plant

features, irrigation methods, and atmospheric factors. Soil characteristics, such as water hold-

ing capacity and infiltration capacity, can affect water movement. In addition, some root-

restricting layers, such as compaction layer, impermeable layer, or gravel layer, can also restrict

root development. Some plant features (phenotypes), such as rooting depth and crop seasonal

ET, will affect the drought tolerance (the crop yield response factor to water). For example,

rooting depth is related to the ability of extracting water from soil, and crop seasonal ET will

affect the water demand of a plant. Selecting an appropriate plant population is as important

as choosing a suitable seed type. The main trade-off for plant population is between the

increase of seed cost and increase of profit by higher yields. In addition, low plant population

is recommended at water-limited sites based on field studies. Irrigation methods determine

irrigation application efficiency. Center pivot sprinkler systems can achieve an efficiency of up

to 90 percent. However, conventional gated pipe irrigation systems have an application effi-

ciency of only 50 percent, meaning that only half of the water could be utilized by the plant.

The rest of the water is lost via drift and droplet evaporation (sprinkler irrigation), runoff, and

sometimes deep percolation (leaching). A portion of the lost water could go to aquifer

recharge, which is not preferable not only for economic considerations but also for environ-

mental considerations since the unutilized water will carry nitrogen to the aquifer [7].

As a multi-constraint problem, irrigation scheduling is highly affected by the uncertainty

from environment, market, and policy. For example, uncertainty in the timing and amount of

natural precipitation is the key issue for irrigation scheduling. Moreover, factors such as crop

prices and irrigation water availability are also stochastic in nature in semi-arid areas. Farming

activities are highly affected by these uncertainties. Thus, decision-making tools for farmland

management and irrigation scheduling are particularly necessary.

In summary, the effect of limited water on crop grain yield is significant, and appropriate

decisions are needed to optimize farmers’ profits, particularly under stochastic environments.

In this study, a multistage stochastic programming model is formulated to maximize annual

farm-level net profits by considering uncertainties such as crop prices, precipitation amount,

and irrigation water availability. The first stage makes the pre-season decisions, while the later

stages determine the irrigation schedule. The main objective of this study is to provide decision

support for choosing irrigation and agronomic practices based on the proposed model and to
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verify the benefit of handling irrigation management under uncertainty via multistage stochas-

tic programming and the significance of considering uncertainty.

State of the art

In this section, current irrigation practices used in semi-arid areas are introduced. The works

in the literature that focus on farmland irrigation management modeling based on mathemati-

cal programming are reviewed. The core techniques in stochastic programming, such as sce-

nario generation and measures of information, are also discussed.

Irrigation practices

Deficit irrigation should be considered in areas where precipitation is low and irrigation water

supply is restricted. Deficit irrigation refers to an irrigation strategy in which irrigation is

mainly applied during drought-sensitive growth stages of a crop [8]. The understanding of

crop yield response functions and the economic impact of reductions in harvest are essential

for the correct application of deficit irrigation [9]. Reasons for limited water supplies include

but are not limited to, restricted irrigation well capacity, restricted pumping allocations, and

limited surface water supplies. Supply, rather than the price of water, is the usual constraint in

making irrigation practice decisions [10]. For the majority of farmers, deficit irrigation is used

as a strategy to maximize the value of limited water input rather than maximizing the return to

land [11].

Classical crop yield response functions are employed to reflect the impacts of various deficit

levels on crop yield [12]:

Ya

Ym
¼
YJ

j¼1

½1 � kjð1 �
ETaj

ETcj
Þ� ð1Þ

where Ya is the actual crop yield, Ym is the maximum crop yield under full irrigation, kj is the

crop yield response factor to water that is a function of the crop type and the stage of growth, J
is the total number of crop growth stages, ETaj is the actual crop evapotranspiration at stage j,
and ETcj is the crop evapotranspiration without water stress at stage j. If a single or integrated

crop growth stage is considered, Eq (1) could be reduced to a version without multiplication

and index j.
Irrigation scheduling is of vital importance under conditions of marginal rainfall and lim-

ited irrigation water supplies. For deficit irrigation of corn, it is suggested that water could be

saved to the flowering and grain-filling stages, since corn is much more sensitive to water stress

from flowering through the grain-filling stage. However, irrigation schedules are sometimes

relatively simple and crude in practice, with the same amount of irrigation water applied at

equal time intervals. Precision management of irrigation frequency and quantity is needed,

especially in semi-arid areas.

Establishing advanced irrigation systems is an important approach for farmland water

management under deficit irrigation. Pressure systems and gravity systems are two main cate-

gories of irrigation systems that are based on energy and pressure requirements [13]. Pressur-

ized irrigation systems make up roughly 58-65% of irrigation systems used in the U.S.A. [14].

Pressurized irrigation systems include center pivot, linear move, hand move, solid set, drip

irrigation, and low-flow micro sprinklers. In the U.S.A., the 2014 Farm Bill distributed $1.2 bil-

lion in funding toward implementing irrigation systems between 2009 and 2014, and nearly

half of that amount went toward implementing sprinkler and micro-irrigation systems [14].

Advanced process control strategies, such as model-based control, are other useful tools for
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irrigation management [15]. Other technologies, such as satellite data, sensor networks, data

analytics, and unmanned aircraft systems, may also increase irrigation efficiency and increase

crop yield [16]. These technologies have become the basis for precision agriculture and farm-

land risk management.

Irrigation management models based on mathematical programming

Mathematical programming, and stochastic programming in particular, has been widely

applied to (large-scale) irrigation management [17]. Stochastic programming is a mathemati-

cal programming method where some of the parameters in the objective function and/or con-

straints are uncertain. Li et al. [18] developed an inexact two-stage stochastic programming

model for river basin water resources planning under uncertainty. Jin and Huang [19]

extended this work to a robust inexact fuzzy set linear programming model for irrigation

water systems. Li et al. [20] presented a fuzzy two-stage stochastic programming approach for

water allocation problems at the county level, considering economic benefits and policy penal-

ties. The model applied the concepts of interval-parameter and fuzzy programming techniques

when the parameter distribution was not known. Li et al [21] applied a hybrid methodology of

conditional value-at-risk measure, a general two-stage stochastic programming framework,

and interval-parameter programming to solve water resources allocation problems. Robert

et al. [22] used a stochastic dynamic programming model for regional-scale groundwater irri-

gation management considering farmers’ adaptation decisions. Yang et al. [23] applied inter-

val-parameter programming to model the irrigation water allocation problem on a regional

scale, and the priority order of crop selection was given. Artificial intelligence and meta-heu-

ristic methods are also useful for irrigation management. Zhang et al. [24] applied genetic algo-

rithms and non-linear optimization to corn irrigation considering stages of crop growth, the

grain market price, irrigation water price, minimum yield, and irrigation cost etc. Kontos and

Katsifarakis [25] employed genetic algorithms for irrigation and drinking water management

for coastal aquifer. Jimenez et al. [26] employed Long Short-Term Memory Neural Network

for precision irrigation considering different soil types. In summary, these studies highlighted

multiple constraints and uncertainty or risk analysis in irrigation management. These studies

focus on certain source of uncertainty from economic, resources, and policy aspects. However,

farmland irrigation scheduling under multiple uncertainties such as crop prices, precipitation

amount, and irrigation water availability have not been studied extensively. Furthermore,

most of these studies focused on irrigation water allocation problems on the regional scale

rather than the farm scale.

Farm scale land management and irrigation scheduling have been the subject of research

studies as well. Ganji et al. [27] proposed a constraint state formulation for a weekly deficit irri-

gation strategy under stochastic conditions. The model was based on the first and second

moment analysis of the stochastic soil moisture state variable and considered the crop water

demand uncertainty. Brown et al. [28] used simulated annealing for on-farm irrigation sched-

uling considering seasonal water limits. The model described general irrigation strategies for a

multicrop irrigation scheduling problem, and time-series simulation of climate stochastic

characteristics was employed to deal with uncertainty. They argued that a 10% profit increase

could be achieved if the primary constraint on water availability was the seasonal water limita-

tion rather than water price, which restricted the maximum number of irrigation events in a

season. Ridier et al. [29] applied a dynamic stochastic programming model for crop rotation at

the farm level, in which market risk was considered as an inter-year risk while production risk

was an intra-year risk. Li et al. [30] presented a farm-level precision land management frame-

work based on integer programming. They considered corn market prices and irrigation water
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prices by using sensitivity analysis. However, to the best of the authors’ knowledge, few appli-

cations of farm-scale irrigation management based on multistage stochastic programming

have been reported. Therefore, the objective of this study is to investigate the feasibility and

advantage of modeling farm-scale land management and irrigation scheduling via stochastic

programming. In addition, most studies have used two-stage stochastic programming frame-

works, and the advantage of using multistage stochastic programming should also be

discussed.

Motivating data

In many advanced agricultural applications, farm monitoring enables the use of real-time

observations in the decision-making process. However, many farms in semi-arid areas still use

average crop prices and the average ET amount to make pre-season decisions and irrigation

schedules all at once at the beginning of the year.

In this study, a multistage stochastic programming model is formulated considering uncer-

tainties such as crop prices, precipitation amount, and irrigation water availability. These

uncertainties are represented by scenario trees as realizations of probability distributions or

stochastic processes. The objective is to maximize a farmer’s annual net profit by finding the

optimal decisions for the pre-season decisions and irrigation schedules. In this study, there are

nine time periods (t = 0, 1, . . ., 8;) considered in the model. The time period 0 (t = 0) is at the

beginning of the year, and the time period 1 (t = 1) is at the beginning of the corn flowering

stage. The time period 1 to 8 (t = 1, 2, . . ., 8;) corresponds to the eight weeks for the flowering

and grain-filling stages of corn. The crop price and seasonal irrigation water availability infor-

mation are assumed to be released at the beginning of time period 1 (t = 1). Precipitation infor-

mation of these eight weeks is available at the end of each time period.

The decision maker makes a sequence of decisions at each time period in order to maximize

profit. In this problem, the decision maker makes the pre-season decisions including the corn

seed type selection and the plant population selection at the first stage (t = 0). At the beginning

of the second stage (t = 1), realizations of corn price and seasonal irrigation water availability

become available, and the second-stage decisions of how much irrigation water should be

applied in week one (t = 1) are made. At the beginning of the 2nd to the 8th time period, similar

irrigation scheduling decisions are made based on sequentially released information. The

detailed decision process and information release process are shown in Fig 1.

Since corn is more sensitive to water during the flowering and grain-filling stages, it is

assumed that irrigation will only take place in the flowering and grain-filling stages. An inte-

grated crop yield response factor for the flowering and grain-filling stages is used. The decision

maker can decide to apply less than the normal amount of water for each (weekly) irrigation

during the flowering and grain-filling stages to maximize the farmer’s annual net profit. How-

ever, it is worth noting that it would be important to irrigate in the early season when there is

less early-season precipitation [31].

Methods

Techniques for stochastic programming are first introduced, and then the multistage stochas-

tic programming model is presented to address decision making under uncertainty. The

model was formulated in The General Algebraic Modeling System (GAMS) 23.4.3 from

GAMS company and solved using CPLEX Optimizer 12.1.0 from IBM company. GAMS is a

modeling software that formulate optimization problems in a notation similar to their alge-

braic notation [32]. IBM CPLEX Optimizer is free for academia, it provides flexible, high-
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performance mathematical programming solvers for linear programming, mixed integer pro-

gramming. Interested party can obtain these tools via the links in the supporting materials.

Techniques for stochastic programming

In stochastic programming frameworks, the decision maker makes certain decisions at the

first stage. The outcomes of these decisions will be affected by random events, with the later

stage decisions made to adjust for these effects. In other words, stochastic programming pro-

vides first-stage decisions and a collection of subsequent (recourse) decisions based on each

random outcome. It reflects the dynamic system, especially for sequential decision-making

problems [33].

Computational methods for solving stochastic optimization problems require a discretiza-

tion (in the form of scenario trees) of the underlying probability distribution or process of the

uncertain parameters. The sample average approximation (SAA) method [34] based on proba-

bility distributions and the moment matching method [35] of historical data are often

employed for scenario generation.

Multistage stochastic programming is more flexible than two-stage stochastic program-

ming. Thus, measures of information are needed to discuss the value of stochastic program-

ming and information. In two-stage stochastic programming, standard approaches based on

different indicators have been detailed in textbooks and are widely found in the literature [36].

In the content of stochastic programming, a “decision” refers to a set of actions (e.g., irriga-

tion scheduling) and a “solution value” (or “solution” in short) refers to “the value of the objec-

tive function” (e.g., profit). The “expected value problem” (EV) is a deterministic model that

replaces all random variables by their expected values. Thus, “EV solution” refers to a number

while “EV decision” refers to a set of decisions that could also be applied in stochastic

Fig 1. The detailed decision process for multistage stochastic programming.

https://doi.org/10.1371/journal.pone.0233723.g001
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environments. When the EV decision is applied in different scenarios, it will return with a set

of solution values. The average of these solution values is referred as “the expectation of

expected value problem solution” (EEV). EEV measures the performance of deterministic deci-

sions in stochastic environments. Instead of using the same decision for all scenarios, it hypo-

thetically finds its own optimal decisions for each scenario and obtains its solution values. The

weighted average of these solution values is referred to as the wait-and-see (WS) solution

value. Correspondingly, the solution of the stochastic model, also known as the here-and-now

solution, denotes the optimal solution value for the recourse problem (RP). To avoid confu-

sion, unless otherwise stated, EV, EEV, WS, and RP all refer to the value of the objective func-

tion. For maximization problems, the following inequalities are satisfied:

EEV � RP �WS ð2Þ

There are mainly two indicators for measuring information in two-stage stochastic program-

ming, the expected value of perfect information (EVPI) and the value of the stochastic solution

(VSS). In this context, EVPI = WS − RP compares here-and-now and wait-and-see approaches;

a large EVPI means a large additional profit with sufficient information. VSS = RP − EEV com-

pares the here-and-now and expected values approaches. A large VSS means that the stochastic

programming approach is able to take advantage of taking uncertainty into account in decision

making.

The WS is still valid in multistage stochastic programming frameworks, in which the deci-

sion makers assume to know the realizations of all the random variables at the first stage. How-

ever, the EEV for multistage stochastic programming is sometimes misleading [37]. Thus, the

value of multistage stochastic programming (VMS), which is the difference between the opti-

mal objective values of the two-stage ðvTS
r Þ and multistage formulations ðvMS

f Þ, is adopted in

this study:

VMS ¼ vMS
f � vTS

r ð3Þ

To avoid confusion, let EEVTS be the expectation of the expected value problem solution in

two-stage stochastic programming. The relative values of two-stage stochastic programming

(RVSS) and multistage stochastic programming (RVMS) are defined as follows [38]:

RVSS ¼ ðvTS
f � EEVTSÞ=EEVTS ð4Þ

RVMS ¼ ðvMS
f � vTS

r Þ=v
TS
r ð5Þ

Deterministic model

A mixed integer linear programming model is first formulated, and all the system parameters

are assumed to be known with certainty in the deterministic model. The objective is to maxi-

mize a farmer’s annual net profit, which is defined as total revenue subtracted by total system

costs. The binary decision variable xi represents which pre-season management option i is

used, and xi = 1 means the option i is used. The positive decision variable yt represents the net

irrigation (i.e., the irrigation water that is used by the crop) during time period t. The binary

variable zt, which is dependent on yt, represents whether irrigation is performed during time

period t. The objective function is defined as follows:

max GA
XL

l¼1

Yc
l � ACwtð

XT

t¼1

yt=gþWpÞ � ACf
XT

t¼1

zt � A
XI

i¼1

xiðC
s
i þ Cm

i Þ � Co ð6Þ
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where G is the unit market corn price, A is the total area of the farmland, and Yc
l is the actual

yield under deficit level l. Thus, GA
PL

l¼1
Yc

l is the annual revenue. A variety of system costs

have been considered in the model including labor costs, irrigation costs, machinery costs,

seed costs, chemicals costs, cash overhead, and non-cash overhead. Irrigation costs consist

of two parts. The first part is the water purchasing costs, including the pre-season irrigation,

represented by ACwtð
PT

t¼1
yt=gþWpÞ, where Cwt is the unit cost for purchased water, γ is the

irrigation application efficiency, and Wp is the pre-irrigation water amount per acre. This part

of cost is changeable based on the irrigation amount. The second part, represented by

ACf
PT

t¼1
zt , is the fixed portion of irrigation costs per time. Cf is the unit fixed cost for irriga-

tion, which includes the costs of labor and equipment for each irrigation process. To have a

concise expression and focus on the impacts of irrigation management, several farm operating

costs, including labor costs (not including irrigation labor cost), machinery costs, and chemi-

cals costs, are lumped together and called “other farm operating costs”. The “other farm oper-

ating costs” and the seed costs together are represented by A
PI

i¼1
xiðCs

i þ Cm
i Þ, where Cs

i is the

unit cost for the purchase of seed under pre-season management option i, and Cm
i is the unit

“other farm operating costs” under pre-season management option i. Cash overhead consists

of various cash expenses that are assigned to the whole farm, such as insurance, office

expenses, machinery maintenance, property tax, and field supervisors’ salary. Non-cash over-

head includes capital recovery cost (annual depreciation and interest costs) for equipment and

other farm investments. Cash and non-cash overhead costs are represented by Co.

The following two constraints are the soil moisture continuity equations for the time peri-

ods:

Mt þ yt þ Rt � ETa
t � LW

t ¼ Mtþ1 for t ¼ 1; 2; � � � 7 ð7Þ

Mt þ yt þ Rt � ETa
t � LW

t � 0 for t ¼ 8 ð8Þ

where Mt represents the water available in the soil at the beginning of time period t, Rt repre-

sents the total precipitation during time period t, ETa
t represents the actual evapotranspiration

during time period t, and LW
t is the leaching water amount during time period t. The positive

decision variable yt represents the net irrigation during time period t. For each time period,

irrigation and precipitation will replenish soil moisture, while ET and leaching will consume

water. Irrigation and precipitation plus current soil moisture should be less than the soil water

holding capacity; otherwise, the extra water that will leach is wasted. This constraint is reflected

by the following:

Mt þ yt þ Rt � LW
t � H 8t ð9Þ

where H represents the soil water holding capacity.

The deficit level is defined as the ratio between actual evapotranspiration and the evapo-

transpiration without any water stress. The definition of deficit level is reflected by the follow-

ing:

XT

t¼1

ETa
t =ETm

t ¼
XL

l¼1

dlDl ð10Þ

where ETm
t is the crop stage evapotranspiration without any water stress during time period t,

and ETa
t is the actual crop stage evapotranspiration during time period t. dl, as binary variables,

represent whether deficit level l is applied, and Dl is the percentage of the maximum crop stage

evapotranspiration achieved in deficit level l. To have a smooth change among deficit levels,
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101 equidistant deficit levels from 0% to 100% are used. For example, if d100 equals 1, the

right-hand side of the constraint in Eq (10) will be equal to 0.99.

The crop yield response functions for water usage based on Eq (1) are reflected by the fol-

lowing two equations:

Yc
l �

XI

i¼1

xiY
m
i ð1 � Kið1 � DlÞÞ � ð1 � dlÞM

b 8l ð11Þ

Yc
l �

XI

i¼1

xiY
m
i ð1 � Kið1 � DlÞÞ � ðdl � 1ÞMb 8l ð12Þ

where Yc
l represents the actual crop yields under deficit level l, and Ym

i represents the maxi-

mum unit crop yield when management option i is used. Ki represents the crop yield response

factor to water during flowering and grain-filling stages under pre-season management option

i. Mb is a sufficiently large number used in the “big-M method” [39]. For computation consid-

erations, the Mb should be as small as possible, and it is set to be equal to maxYc
l . Only one def-

icit level should be selected, and this requirement is presented in the following constraint by

using binary variable dl:

XL

l¼1

dl ¼ 1 ð13Þ

Constraints in Eqs (11) to (13) together ensure “only one out of L constraints must hold”.

For example, when dl = 1, the right-hand side of the constraints in Eqs (11) and (12) will equal

zero, and these two constraints will yield Yc
l ¼

PI
i¼1

xiYm
i ð1 � Kið1 � DlÞÞ; when dl = 0, Eqs

(11) and (12) become relaxation constraints.

The following constraint ensures only the chosen deficit level will lead to reasonable (posi-

tive) actual crop yields:

dlMb � Yc
l 8l ð14Þ

As a vulnerable and valuable resource, the amount of irrigation water is often limited in key

growing stages. This irrigation water limitation is reflected in the following constraint:

A
XT

t¼1

yt=g �Wl ð15Þ

where Wl is the total irrigation water limitations during flowering and grain-filling stages.

For the consideration of food safety and market stability, the government will sometimes

encourage farmers to produce at least a certain amount of crops. A similar total yield con-

straint is needed when there is a commercial contract including a yield mandate. These situa-

tions are indicated in the following constraint:

A
XL

l¼1

Yc
l � Y ð16Þ

where Y is the minimum yield requirements for the farmland.

The total frequencies of irrigation are needed to calculate the cumulative fixed costs of

labor and equipment for irrigation. These costs occur only if the irrigation actually takes place
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(irrigation water amount is above zero), as reflected in the following constraint:

Mbzt � yt 8t ð17Þ

This is another application of the “big-M method”. Since Mb is sufficiently large, zt = 1 will

lead to no constraint for yt, and zt = 0 will lead to yt = 0.

As shown in the following constraint, only one seed type and plant population should be

selected:.

XI

i¼1

xi ¼ 1 ð18Þ

The following constraint makes a conservative assumption that there is no water in the soil

at the beginning of the first time period, though the soil is likely not quite that dry for most

years:

Mt ¼ 0 for t ¼ 1 ð19Þ

The domain of variables is controlled by the following constraint:

i; t; l 2 N; dl 2 f0; 1g; xi; yt;Yc
l ;Mt;ETa

t ; L
W
t � 0 8i; 8t; 8l ð20Þ

Multistage stochastic programming model

In this study, precipitation amount, irrigation water availability, and corn prices are selected as

the stochastic parameters to be investigated. Scenario trees are used as an approximation of

probability distributions or stochastic processes. Subscript w is used to represent the index of

the scenario with corresponding probability Pw, and this subscript is also incorporated into the

decision variables and parameters. The multistage stochastic programming model is formu-

lated as follows:

max � A
XI

i¼1

xiðC
s
i þ Cm

i Þ � Co þ
XW

w¼1

PwfGwA
XL

l¼1

Yc
lw � ACwtð

XT

t¼1

ytw=gþWpÞ � ACf
XT

t¼1

ztwg ð21Þ

s.t.

Mtw þ ytw þ Rtw � ETa
tw � LW

tw ¼ Mtþ1;w 8w; t 2 f1; 2; . . . 7g ð22Þ

Mtw þ ytw þ Rtw � ETa
tw � LW

tw � 0 8w; t ¼ 8 ð23Þ

Mtw þ ytw þ Rtw � LW
tw � H 8t; 8w ð24Þ

XT

t¼1

ETa
tw=ETm

t ¼
XL

l¼1

dlwDl 8w ð25Þ

Yc
lw �

XI

i¼1

xiY
m
i ð1 � Kið1 � DlÞÞ � ð1 � dlwÞM

b 8l; 8w ð26Þ

Yc
lw �

XI

i¼1

xiY
m
i ð1 � Kið1 � DlÞÞ � ðdlw � 1ÞMb 8l; 8w ð27Þ
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XL

l¼1

dlw ¼ 1 8w ð28Þ

dlwMb � Yc
lw 8l; 8w ð29Þ

A
XT

t¼1

ytw=g �Wl
w 8w ð30Þ

A
XL

l¼1

Yc
lw � Y 8w ð31Þ

Mbztw � ytw 8t; 8w ð32Þ

XI

i¼1

xi ¼ 1 ð33Þ

Mtw ¼ 0 for t ¼ 1 8w ð34Þ

i; t; l;w 2 N; dlw 2 f0; 1g; xi; ytw;Yc
lw;Mtw;ETa

tw; L
W
tw � 0 8i; 8t; 8l; 8w ð35Þ

ytw ¼ ytw0 8t; 8w;w0 for which x
w
½t� ¼ x

w0

½t� ð36Þ

The first-stage decisions are made before uncertainties are realized. After uncertainties are

progressively realized, the decisions of later stages are made. In this model, xi is the first-stage

decision variable, and ytw is the later-stage decision variable. The constraint in Eq (33) is the

first-stage constraint, which remains the same in all scenarios. The rest of the constraints

change based on stochastic scenarios. We use notation ξt(t 2 {1, . . ., T − 1}) to denote a ran-

dom vector and its particular realization at each time period. The decision at each period

(t 2 {1, . . ., T}) depends on the realizations of ξt up to time t. Generally, at stage t 2 {1, . . ., T},

scenarios that have the same history ξ[t] cannot be distinguished, so we need to enforce the

“nonanticipativity constraints” by adding Eq (36).

Fig 2 shows a decision tree example with 2 periods, 3 stages, and 4 scenarios. The arrow rep-

resents the period, the branch represents the scenario, and stages are labeled. The left part of

Fig 2 is a tree shape, while the right part is a fan shape. These two types of forms are equivalent.

The “nonanticipativity constraints” are represented by the dashed lines in Fig 2, which ensures

scenarios with the same history should have the same decisions at that stage. In this example,

all four scenarios have the same first-stage decisions, scenario one and scenario two have the

same second-stage decisions while scenario three and scenario four have the same second-

stage decisions.

Results and discussion

The authors apply the irrigation management frameworks for a case study on a farm in Cherry

County, Nebraska, U.S.A., to illustrate and validate the optimization model. Although the

High Plains Aquifer under Nebraska is well-managed, Nebraska is the fourth largest user of

groundwater in the nation, and its prominence in irrigation agriculture has expanded greatly

over the past two decades. Half of the harvested row crop production in Nebraska is irrigated
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(approximately 3.2 × 108 m2), where corn occupied approximately 70 percent of the irrigated

acreage in 2008 [40]. Cherry County is located at the north part of Nebraska, precipitation is

insufficient and deficit irrigation is commonly used in that area. In addition, risk analysis listed

Cherry County as one of the most vulnerable areas in Nebraska [41]. Consequently, improving

farmland management and irrigation scheduling has significant impacts on water resources

utilization and farm profitability, at least in semi-arid areas.

Data sources

Since all the data are collected from public sources and the farm supply no data to this study,

no permission are needed to conduct this case study. The methods of data collection are sum-

marized in this section and related data sets are provided in the supporting materials.

Conservative irrigation management typically assumes an effective root zone of 91 cm
(three feet) for field corn. Soil information collected by the Web of Soil Survey is used to define

integrated soil types (fine sand, loamy sand, sandy loam, fine sandy loam, loam, clay loam, and

clay) and their water holding capacities [42]. A farm of 6.0 × 105 m2 (150 acres) in Cherry

County, Nebraska, U.S.A, is selected (101˚ 120 W, 42˚ 530 N). Approximately 95% of the soil is

loamy sand and 5% of the soil is sandy loam, and both of them are coarse soil. The soil water

holding capacity is assumed to be 8 cm water per m soil (1.1 inch per foot) for the whole land

[42]. The irrigation water is supplied by center pivot sprinkler systems with a capacity of 0.05

m3/s (800 gallons per minute). The application efficiencies for center pivots outfitted with low

pressure drop nozzles are typically rated at 85% [43], meaning that 15% of the water is lost via

drift, droplet evaporation, runoff, and sometimes deep percolation (leaching).

The root zone should be wetted at sowing in order to obtain a good germination rate and

rapid root development. Thus, pre-irrigation in the spring is needed to refill the soil profile,

particularly when there is limited winter precipitation. Since corn does not consume much

water in the vegetative stage and does not need much irrigation, this study focuses on the irri-

gation for flowering and grain-filling stages (approximately eight weeks). The range of average

ET for these period is 5 − 8 mm per day [40].

The price of irrigation water is volatile and varies significantly by locations, water usages,

and water types (groundwater or surface water). In this study, it is assumed that farmers use

Fig 2. Decision tree example with two periods, three stages, and four scenarios.

https://doi.org/10.1371/journal.pone.0233723.g002
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groundwater at an average abstraction cost of 0.12 $/m3 (12 $/acre-inch). Other farm operating

costs and fixed irrigation costs are adopted from the Nebraska Water Optimizer Single-Field

Version (referred to as the NWO model) [44]. Nitrogen fertilizer and pesticide are set to their

practical level based on the NWO model for scenarios. Seed features such as drought tolerance

and target yields are based on commercialized crop hybrids. For the mix of seed information

with plant population, the maximum yield level considered in the model is approximately

1.08 − 1.42kg/m2 (160-210 bushels per acre).

The corn prices received by U.S.A. corn producers from 2000 to 2015 were collected based

on the National Agricultural Statistical Service of the U.S.A. Department of Agriculture [45].

The baseline for corn price in the deterministic case is set at 0.14 $/kg (3.6 dollars per bushel).

Historical precipitation information of Cherry County was obtained from the National Oce-

anic and Atmospheric Administration’s National Centers for Environmental Information

[46]. Detailed discussions on the distribution of corn price, precipitation amount, and total

water limits are given in the following scenario generation section. All cost data have been

adjusted for inflation to 2015 U.S.A. dollars.

Scenario generation

Finding the appropriate distribution is critical for scenario generation. Since a single year (the

year 2015) problem is considered in this case study, a meaningful corn price should be the

average price received by farmers after corn is harvested and ready to sell. The market year of

corn sales starts in September, and a six-month sales season is considered. In other words, the

distribution of the average corn price from September to the following February is needed.

This distribution is assumed to be conditional on the corn price before the sowing season,

which is April in Nebraska. The Shapiro-Wilk normality test [47] of the historical corn price

data yields a P-value of 0.84, meaning that it is reasonable to assume that these conditional

data follow a normal distribution. The maximum likelihood method [48] is used to obtain

parameter estimations. In summary, the average corn price follows a normal distribution, with

the mean equal to the corn price in April minus 0.15 dollars per bushel, and the standard devi-

ation is 0.34.

Precipitation is one of the most important weather variables. The method for precipitation

prediction is fairly well established, and reliable simulation techniques are available [49]. In

this study, a two-step process is adopted for precipitation generation: the daily precipitation

occurrence (i.e., wet or dry day) is modeled with a first-order two-state Markov chain. Once it

rains, the precipitation amount is assumed to follow gamma distributions [50, 51]. It is

assumed that daily precipitation for each week follows its unique gamma distribution, and the

simulation results are then integrated with the daily precipitation occurrence on a weekly

basis. Table 1 summarizes the parameter estimations of daily precipitation by week and the

average of the integrated weekly total precipitation.

Based on a center pivot sprinkler system, the theoretical upper bound for eight weeks of

total water availability is 2.4 × 105 m2 (2355 acre-inches in total or 15.7 inches per acre). How-

ever, high application rates of water to coarse textured soils can destroy surface soil structure

and increase runoff. Thus, the practical upper bound for total water available is set to be

2.3 × 105 m2 (2240 acre-inches in total or 14.9 inches per acre) [40]. Political reason such as

seasonal water allocation is one of the most important sources for water availability. In some

locations, the farmers have been given a limited amount of water that can be used over the sea-

son. For example, some districts in Nebraska have water allocations of 12 inches per year. On

the other hand, system down time due to maintenance, system failure, insufficient groundwa-

ter, and electrical load control should also be taken into consideration. For example, Nebraska
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Public Power Districts can be authorized to interrupt power for up to six 12-hour periods dur-

ing a week [42]. In this study, a relatively general lower bound is set to be 1.7 × 105 m2 (1649

acre-inches in total or 11.0 inches per acre), or 70% of the theoretical upper bound. Since there

is an insufficient amount of data to fit a distribution of total water limits, a uniform distribu-

tion with a range from 1.7 × 105 m2 to 2.3 × 105 m2 (approximately 11-15 inches per acre) is

used. However, it is worth noting that if more information is available for seasonal water limi-

tations, the distribution of this stochastic parameter should be revised.

Since the distributions of random variables are available, a common approach to generate

the scenario to a manageable size is the SAA method based on Monte Carlo simulation. It is

assumed that these three random variables are independent. Scenario tree construction and

reduction was based on the method by Heitsch [52], and the size of the scenario is set to be 200

given the computational capacity. The numerical results, interpretations, and stability test are

presented in the following results analysis sections.

Results based on analysis of the deterministic model

The deterministic model yields a total profit of $27,494, which will be used as the objective

value of the EV problem. Seed with the highest yield and the highest plant population is

selected by the model in the deterministic case. This is because under the average total water

limits and precipitation amount, suitable irrigation decisions will lead to a situation without

water stress. The NWO model under the same conditions shows a total profit of $27,137,

which is almost the same as the deterministic results. This result shows that the proposed

model is consistent with the NWO model in a deterministic environment. However, both the

deterministic model and the NWO model are oversimplified and incorrect by only using the

mean of random variables to make decisions. A natural concern arises: what will happen when

there is water shortage, and deficit irrigation is therefore needed? For each scenario, assuming

sufficient information is available before making decisions (which is a hypothetical setting

since we cannot know the weather, yield, and price at sowing season), the wait-and-see deci-

sions could be found. The basic statistics of objective values for these wait-and-see decisions

are summarized in Table 2. The average objective value of WS solutions is $16,790. These WS
decisions are not implementable; however, the WS solutions are the upper bound of profits

Table 1. Parameter estimations of daily precipitation and the integrated total precipitation by week (inch).

Week Mean Median Variance Integrated weekly rainfall average

1 0.44 0.33 0.15 0.73

2 0.46 0.34 0.19 0.69

3 0.47 0.35 0.17 0.65

4 0.4 0.28 0.16 0.52

5 0.46 0.34 0.18 0.70

6 0.44 0.34 0.15 0.65

7 0.41 0.30 0.15 0.56

8 0.34 0.26 0.08 0.38

https://doi.org/10.1371/journal.pone.0233723.t001

Table 2. Basic statistics for WS and EEVTS objective values (dollars).

Min. 1st Qu. Median Mean 3rd Qu. Max.

WS 0 7,220 18,350 16,790 26,980 38,440

EEVTS -20,120 1,570 14,940 12,127 22,200 33,850

https://doi.org/10.1371/journal.pone.0233723.t002
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under stochastic environments. On the other hand, the objective value of the EV problem is

based on the assumption of deterministic environments (which is also not realistic). The sig-

nificant profit drop from EV to WS indicates that the EV problem greatly underestimates the

effects of stochastic environments because in the EV problem, the first-stage decision is made

without considering uncertainty. If EV decisions are applied to the stochastic environment,

the objective value (profit) of EEVTS ends up being $12,127, and the performance is not satis-

factory, as shown in Table 2.

There is an information gap of $4,663 between the WS and the EEVTS solutions, or the WS
solution is 38.44% higher than the EEVTS solution. This gap indicates that applying stochastic

programming has potential for better decisions.

Results based on analysis of two-stage stochastic programming model

Before analyzing the multistage stochastic programming frameworks, the two-stage stochastic

programming is first investigated to calculate the RVSS and verify the benefits of stochastic

programming. Two-stage stochastic programming is a special case of stochastic programming,

which has a much shorter decision process. In the two-stage stochastic programming model,

the first stage (t = 0) still makes pre-season decisions including seed type selection and plant

population selection. At the beginning of the second stage (t = 1), realizations of corn price

and seasonal irrigation water limits become available. The second-stage decisions concern

how much irrigation water will be used for the next eight weeks. These second-stage decisions

are made all at once at the beginning of the second stage. Note that the precipitation amount

for the next eight weeks is not available when making these second-stage decisions, but this

precipitation information will be used later in the model to evaluate the objective values. The

decision process is summarized in Fig 3.

The constraint in Eq (36) should be changed to the following constraint to reflect the

change of decision process:

ytw ¼ ytw0 8t; 8w;w0 for which xw
½t¼2�
¼ x

w0

½t¼2�
ð37Þ

Note that two-stage stochastic programming is a special case of multistage stochastic pro-

gramming, in which the decision maker has to make irrigation decisions at an earlier time

period. For a maximization problem, the optimal solutions to a multistage problem will have a

profit no less than the optimal solution to a two-stage problem because the multistage formula-

tion’s solution can adapt to information as it comes in. In other words, additional stages allow

more recourse and will yield to better (at least no worse) decisions.

Fig 3. The detailed decision process for two-stage stochastic programming.

https://doi.org/10.1371/journal.pone.0233723.g003
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The objective value of two-stage stochastic programming ðvTS
f Þ is $13,367, which yields a

VSS of $1,239 and a RVSS of 10%. These results show that a 10% profit increase could be

achieved by taking corn price and total water limit uncertainties into consideration when mak-

ing pre-season decisions of seed type selection and plant population selection. Note that the

uncertainty of precipitation is ignored in the two-stage decision process. The EVPI is $3,423,

which also indicates that having additional information could potentially increase profits.

For two-stage stochastic programming, an in-sample stability test is used to test internal

consistency of the scenario generation process. The same procedures of scenario generation

and model solving are conducted ten times for the stability test. The objective values of the

two-stage RP and EEV are summarized in Fig 4. The vTS
f for each time ranges from $13,114 to

$13,933. These relatively small ranges indicate that the scenario generation process is in-sam-

ple stable.

Results based on analysis of multistage stochastic programming model

The objective value of the multistage stochastic programming model ðvMS
f Þ is $15,116, which

yields a VMS of $1,749 and a RVMS of 13%. These results could be interpreted as a 13% profit

increase will be achieved by taking precipitation uncertainty into consideration and using a

multistage decision process when making decisions.

The standard in-sample stability test and out-of-sample stability test are not suitable for

multiperiod trees, as nodes beyond the root do not coincide [53]. The weak out-of-sample sta-

bility test for multiperiod trees is used to evaluate the stability of the scenario generation

Fig 4. The objective values of two-stage RP and EEV for ten runs (dollars).

https://doi.org/10.1371/journal.pone.0233723.g004
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process. The procedure of the weak out-of-sample stability test is to build two scenario trees,

find the corresponding solutions, and then solve the optimization model on the first scenario

tree with the first-stage decisions from the second tree, and vice versa. The model should

obtain approximately the same optimal objective values if the method is out-of-sample stable.

The two objective values of the multistage stochastic programming model obtained by switch-

ing the optimal decision are $15,116 and $15,304, respectively. The result indicates the model

has out-of-sample stability.

Table 3 summarizes the profits, decisions, and costs for different models under stochastic

environments. Again, the profit for the deterministic model is the EEV, meaning that the

deterministic model decisions are applied in stochastic environments.

In the stochastic programming results, more conservative first-stage decisions are made

such as selecting the high drought-resistant seed. These decisions perform more robustly in

stochastic environments. However, all models prefer a high plant population, which indicates

that the benefit of increasing yields is more significant than the drawback of seed cost for high

plant population. However, a low plant population is still recommended by the seed company

at water-limited sites with no irrigation systems. It is worth noting that the changes in seed

population (for typical seeding rates) have limited impact on ET. Moreover, regardless of the

model assumptions of the water supply constraint and relatively low fixed costs of water

abstractions, regulation on water cost is not an effective way to influence farmers’ decisions

since water demand for irrigation under deficit irrigation becomes very inelastic. Farmers tend

to choose a high plant population and a high irrigation volume.

Although only the first-stage decisions are implementable and all the later-stage decisions

are scenario-based, it is still meaningful to compare the average irrigation amount decisions

for each model. Fig 5 summarizes the weekly average irrigation amount from each model. As

shown in Fig 5, the irrigation decisions in the deterministic model are very progressive since it

assumes the precipitation is deterministic and known. The irrigation decisions for two-stage

stochastic programming and multistage stochastic programming models share the same pat-

tern, but the irrigation decisions for the two-stage stochastic programming model are more

conservative. This is because little precipitation information is available for the two-stage sto-

chastic programming model when making decisions at the second stage. The multistage sto-

chastic programming model can make recourse irrigation decisions based on the precipitation

information.

Note that the information-releasing process is the same for deterministic model, two-stage

stochastic programming model, and multistage stochastic programming model. The main dif-

ference among these models is the decision-making process. The deterministic model makes

all decisions all at once, the two-stage stochastic programming model separates the decision-

Table 3. Comparison among different models (dollars).

Model Deterministic EEV Two-stage SP Multistage SP

Total profits 12,127 13,367 15,116

Sales of corn N/A 97,157 99,456

Production costs N/A 60,018 60,018

Irrigation costs N/A 23,797 24,278

Seed selection High yield High drought tolerance High drought tolerance

Plant population High High High

Time for irrigation decision During sowing Beginning of irrigation season Progressively during irrigation season

Uncertainties considered None Corn price and water availability Corn price, water availability, and precipitation

https://doi.org/10.1371/journal.pone.0233723.t003

PLOS ONE Multistage stochastic programming modeling for farmland irrigation management

PLOS ONE | https://doi.org/10.1371/journal.pone.0233723 June 2, 2020 17 / 21

https://doi.org/10.1371/journal.pone.0233723.t003
https://doi.org/10.1371/journal.pone.0233723


making process into two stages, and the multistage stochastic programming makes a sequence

of decisions according to the stages. The case study results show that by delaying the decision-

making process and considering more information (uncertainty), higher profits could be

achieved.

Conclusions

In this study, a multistage stochastic programming model for farmland irrigation management

under uncertainty is proposed. The first-stage decisions include pre-season decisions of seed

type selection and plant population selection, while the later stages determine irrigation sched-

uling during the corn flowering and grain-filling stages. The uncertainties under investigation

include the corn price, irrigation water limits, and precipitation amount. Their distributions

are carefully defined based on a detailed derivation process, and the sample average approxi-

mation method is used to generate scenarios.

The case study is based on a farm in Nebraska, U.S.A., which is used to illustrate and vali-

date the optimization model. The numerical results show that a 10% profit increase could be

achieved by taking the uncertainties of corn prices and total water limits into consideration,

and an additional 13% profit increase could be achieved by also taking precipitation informa-

tion into consideration. These results indicate that stochastic programming is a promising

framework for farm-scale irrigation management under uncertainty and can increase farm

profitability significantly.

Fig 5. Comparison of weekly irrigation amounts among different models (inches).

https://doi.org/10.1371/journal.pone.0233723.g005
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This study is subject to a number of limitations. First, the numerical results reported in the

case study are the best feasible solution in a reasonable computational time. More efficient

algorithms and heuristic solutions based on artificial intelligence and meta-heuristic methods

such as Genetic Algorithms and Artificial Neural Networks should be investigated. Second,

the case study only illustrates the model of a center pivot sprinkler system with almost homo-

geneous soil features. Other irrigation systems and land profiles could also be investigated.

Third, we consider three sources of independent uncertainties, and more dependent stochastic

factors can be considered in farm-level irrigation problems. Last but not least, this model

focuses on a single-year profit maximization problem. In addition, as suggested by the review-

ers, the evaluation of new irrigation system installations in a multi-year horizon considering

water allocation policy limitations is another interesting research topic. These topics shall be

reserved as future research directions.
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