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Abstract

Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a

variety of cells, including macrophages. For decades, NRs have been therapeutic targets

because their activity can be pharmacologically modulated by specific ligands and small

molecule inhibitors. NRs regulate a variety of processes, including those intersecting meta-

bolic and immune functions, and have been studied in regard to various autoimmune dis-

eases. However, the complex roles of NRs in host response to infection are only recently

being investigated. The NRs peroxisome proliferator-activated receptor γ (PPARγ) and liver

X receptors (LXRs) have been most studied in the context of infectious diseases; however,

recent work has also linked xenobiotic pregnane X receptors (PXRs), vitamin D receptor

(VDR), REV-ERBα, the nuclear receptor 4A (NR4A) family, farnesoid X receptors (FXRs),

and estrogen-related receptors (ERRs) to macrophage responses to pathogens. Pharmaco-

logical inhibition or antagonism of certain NRs can greatly influence overall disease out-

come, and NRs that are protective against some diseases can lead to susceptibility to

others. Targeting NRs as a novel host-directed treatment approach to infectious diseases

appears to be a viable option, considering that these transcription factors play a pivotal role

in macrophage lipid metabolism, cholesterol efflux, inflammatory responses, apoptosis, and

production of antimicrobial byproducts. In the current review, we discuss recent findings

concerning the role of NRs in infectious diseases with an emphasis on PPARγ and LXR, the

two most studied. We also highlight newer work on the activity of emerging NRs during

infection.

Introduction

Nuclear receptors (NRs) comprise a superfamily of intracellular transcription factors that are

key players in macrophage homeostasis, metabolism, and transcriptional regulation [1–5].

NRs are activated upon interaction with specific ligands, which are typically lipid-soluble and

membrane-permeable. Macrophages use NRs to sense their local environment, shaping their

immune response. There are 48 NRs in the human genome [6] and 49 in the rodent genome,

of which 28 are associated with macrophages [7] (see Table 1 for selected members). Members

of the NR superfamily have historically been categorized into three classes: conventional ste-

roid/thyroid hormone receptors (e.g., estrogen receptor, progesterone receptor), orphan
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receptors for which the ligand has either not been identified or that appear to function without

a ligand, and adopted orphan receptors for which a ligand has been discovered (e.g., liver X

receptors [LXRs], peroxisome proliferator-activated receptors [PPARs], and retinoid X recep-

tors [RXRs]) [8].

In the United States, approximately $70 billion was spent to treat infectious diseases in

2013, and the cost per case for treatment grew the fastest compared to other diseases between

2000 and 2013 [9]. With the dramatic increase in the prevalence of pathogens becoming resis-

tant to existing therapeutics that target the microorganism (antibiotics, antivirals, antiparasi-

tics, etc.), it is critical to consider novel host-directed therapeutics (HDTs) to assist in

combating infectious diseases. Approximately 13% of drugs approved for sale in the US target

NRs and represented $27.5 billion in sales revenue in 2009 [10]. Drugs targeting NRs are

Table 1. Select NR family members. List of some commonly studied NRs.

Classification Group Abbreviation NRNC symbol Gene Endogenous ligands

Steroid hormone receptors Thyroid hormone receptor THRα NR1A1 THRA Thyroid hormones

THRβ NR1A2 THRB
Retinoic acid receptor RARα NR1B1 RARA Retinoid acids

RARβ NR1B2 RARB
RARγ NR1B3 RARG

Glucocorticoid receptor GR or GCR NR3C1 NR3C1 Glucocorticoids

Vitamin D receptor VDR� NR1I1 VDR Vitamin D

Adopted orphan receptors Peroxisome proliferator-activated receptor PPARα� NR1C1 PPARA Fatty acids

PPAR β/δ� NR1C2 PPARD
PPARγ� NR1C3 PPARG

REV-ERB REV-ERBα� NR1D1 NR1D1 Heme

REV-ERBβ NR1D2 NR1D2
Liver X receptor LXRα� NR1H3 NR1H3 Oxysterols

LXRβ� NR1H2 NR1H2
Farnesoid X receptor FXR� NR1H4 NR1H4 Bile acids

Pregnane X receptor PXR� NR1I2 NR1I2 Xenobiotics

Retinoid X receptor RXRα NR2B1 RXRA 9-cis retinoic acid

RXRβ NR2B2 RXRB
RXRγ NR2B3 RXRG

Orphan receptors RAR-related orphan receptor RORα NR1F1 RORA —

RORβ NR1F2 RORB
RORγ NR1F3 RORC

Testicular receptor TR2 NR2C1 NR2C1
TR4 NR2C2 NR2C2

Estrogen-related receptor ERRα� NR3B1 ESRRA
ERRβ NR3B2 ESRRB
ERRγ� NR3B3 ESRRG

NR4A family Nur77� NR4A1 NR4A1
Nurr1� NR4A2 NR4A2
Nor1� NR4A3 NR4A3

Liver receptor homolog-1 LRH-1� NR5A2 NR5A2

�NRs recently shown to influence macrophage responses to pathogenic microbes that are discussed in this review. Some synthetic and/or endogenous ligands have been

suggested for certain orphan receptors, however they have not yet been confirmed.

Abbreviations: NR, nuclear receptor; NRNC, nuclear receptor nomenclature committee; NR4A, nuclear receptor 4A; RAR, retinoic acid receptor.

https://doi.org/10.1371/journal.ppat.1007585.t001
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typically used to treat diabetes, atherosclerosis, and autoimmune diseases. However, NRs are

becoming increasingly appreciated in the context of infections; therefore, targeting NRs may

provide a new, largely unexplored area for infectious disease treatment.

NRs: Structure and function

NRs have a common architecture, containing an N-terminal transactivation domain, a highly

conserved DNA-binding domain and a carboxy-terminal ligand-binding domain (reviewed in

[11], Fig 1). NRs are activated following binding to the receptor’s specific ligand. The NR then

undergoes a conformational change which can lead to recruitment of coactivators and/or core-

pressors [12]. NRs can exist as monomers, homodimers, or heterodimers (often with RXR)

and can positively regulate transcription by binding to specific response elements of their tar-

get genes. NRs can also regulate transcription by repression or trans-repression [3–5] and inhi-

bition of other transcription factors like nuclear factor kappa B (NF-kB) (reviewed in [8]). NR

activity and stability can be further regulated by post-translational modifications (i.e., phos-

phorylation, acetylation, sumoylation, and ubiquitination) [13].

NRs and macrophage inflammatory responses

Macrophages have numerous, diverse roles in the host and are typically regarded as capable of

activating to a pro-inflammatory, antimicrobial phenotype or an anti-inflammatory, wound-

healing phenotype that does not efficiently kill microbes [14–17]. However, macrophage acti-

vation is now viewed as a spectrum rather than two distinct polarization states (e.g., M1 or

M2), and many macrophages exhibit a mixed phenotype dependent on numerous factors in

the local tissue environment [14, 18–24].

NRs are intimately involved in macrophage development as well as in macrophage inflam-

matory response and host defense pathways. PPARγ repeatedly appears as a regulator of alveo-

lar macrophage (AM) development and polarization [25–28], and LXRα is required for

maturation of Kupffer cells (liver-resident macrophages) and differentiation of macrophages

in the marginal zone of the spleen [29, 30]. In AMs, PPARγ is constitutively expressed at high

levels, contrasting with its expression in blood and other tissue macrophages [28, 31, 32].

PPARγ expression in AMs is important for inhibiting Th1-type pro-inflammatory responses,

resolution of inflammation, and for maintaining homeostasis in murine lungs [28, 33]. PPARγ
is also important for expansion of hematopoietic stem cells from cord blood in humans but

not in mice [34]. The Th2-associated cytokine interleukin-4 (IL-4) augments PPARγ expres-

sion, induces the generation of PPARγ ligands, and contributes to the maturation of M2 mac-

rophages [35, 36]. Recent studies have identified protein arginine methyltransferase 1

(PRMT1) as a critical enzyme for PPARγ’s responsiveness to IL-4 due to the asymmetric

demethylation of histone H4 arginine 3 at the PPARγ promoter [37]. This study also revealed

PRMT1’s importance for the transition from monocyte to macrophage. A recent study showed

that PPARγ is recruited to the genome in a ligand-independent manner during polarization

with IL-4 in murine macrophages [38]. Upon repeated IL-4 exposure, ligand-insensitive

PPARγ established a permissive chromatin environment that conferred transcriptional mem-

ory preferential to the M2 polarization state and resistance to IFN-γ stimulation [38]. This

study revealed a PPARγ-mediated mechanism for memory-like responses in macrophages

independent of ligand binding.

Several other NRs play significant roles in macrophage inflammatory responses. For exam-

ple, many genes inhibited by LXR agonists are targets of NF-kB [39], indicating an inhibitory

effect of LXR on pro-inflammatory responses. REV-ERBα is expressed in primary human

macrophages and is induced by LXR [40]. REV-ERBα is a constitutive repressor that is more
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highly expressed in M1- compared to M2-activated human macrophages, repressing IL-10

production [41]. In murine macrophages, a REV-ERBα agonist suppressed transcription of

IL-6 and C-C motif chemokine ligand 2 (CCL-2), as well as the CCL-2 activated signals extra-

cellular signal-regulated kinase (ERK) and p38 [42, 43], indicating that this NR’s anti-inflam-

matory actions are conserved between species. Another family of NRs, the NR4A family, is

also expressed in several macrophage models, and family members are up-regulated in

response to inflammatory stimuli such as lipopolysaccharide (LPS) or tumor necrosis factor α

Fig 1. PPARγ structure and signaling in macrophages. NRs have a highly conserved structure with an N-terminal transactivation domain and a DNA-binding

domain and C-terminal ligand-binding domain that are connected by a hinge region. Upon activation, the NR PPARγ heterodimerizes with RXR, binds to PPREs, and

initiates transcription of target genes initiating various signaling pathways in macrophages. PPARγ signaling is induced in macrophages following infection with several

pathogens, including bacteria, parasites, and viruses. During infection, PPARγ signaling has been linked to increased wound-healing responses, M2 macrophages,

phagocytosis, and decreased inflammation. PPARγ has also been linked to decreased apoptosis and increased lipid uptake in macrophages. Conversely, PPARγ has been

linked to both reduced and increased ROS production, including increased mitochondrial ROS production in the absence of NADPH oxidase. Arg1, arginase 1; CD36,

cluster of differentiaion 36; MR, mannose receptor; NADPH, nicotinamide adenine dinucleotide phosphate; NF-κb, nuclear factor kappa B; NR, nuclear receptor;

PPARγ, peroxisome proliferator-activated receptor gamma; PPRE, PPAR response element; ROS, reactive oxygen species; RXR, retinoid X receptor; TNF-α, tumor

necrosis factor α.

https://doi.org/10.1371/journal.ppat.1007585.g001
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(TNF-α), promoting anti-inflammatory, M2-like macrophage responses [44–49]. NR regula-

tion of macrophage inflammatory responses are reviewed in more detail elsewhere [1, 4, 5, 7,

8, 50]. In this review, we discuss recent literature regarding NRs shown to influence macro-

phage responses in infectious diseases.

PPARs

PPAR activities in macrophages are important for the control of transport, synthesis, activa-

tion, and oxidation of fatty acids [2]. Mammals have three PPAR subtypes: PPARα, PPARγ,

and PPARβ/δ (also referred to as NR1C1, NR1C3, and NR1C2, respectively; Table 1). The sub-

types exhibit diverse expression patterns and functions. PPARα and PPARγ are expressed in

macrophages and are important players in macrophage inflammatory responses [36, 51, 52].

Earlier studies examining the complex relationship of PPARs and infectious diseases are

reviewed elsewhere [1, 53, 54]. Herein, we focus on the more recently elucidated roles of

PPARs in macrophage responses (Figs 1 and 2).

Bacteria

As discussed above, PPARγ signaling is important for the development of AMs in the lung as

well as promotion of anti-inflammatory macrophages and mitigation of inflammation-

induced host damage [25, 26, 28, 33]. In the case of Streptococcus pneumoniae infection,

PPARγ was critical for dampening the inflammatory response in murine lungs, demonstrating

its importance for maintaining lung function and the local lung macrophage population and

reducing host mortality [28]. PPARγ is also critical for clearance of methicillin resistant Staph-
ylococcus aureus (MRSA) in skin infections. MRSA was able to resist the inflammatory

response but succumbs to the resolving abscess microenvironment, which is replete with anti-

microbial peptides [55]. Myeloid cell PPARγ signaling was essential for maintaining the reso-

lution phase of MRSA skin infections in mice, and activation of PPARγ hastened the onset of

wound resolution [55]. Treatment with the PPARγ agonist pioglitazone in a mouse model of

chronic granulomatous disease (CGD; NADPH deficiency) with S. aureus infection restored

reactive oxygen species (ROS) production by mitochondria in blood monocytes and tissue

macrophages [56]. These results were replicated in monocytes from human CGD patients,

demonstrating that PPARγ activation appears to bypass the need for NADPH oxidase activa-

tion, partially restoring host defense against S. aureus in CGD [56]. Activation of PPARγ was

also conducive to macrophage killing of Pseudomonas aeruginosa, likely through degradation

of the bacterium quorum–sensing molecules, which are able to decrease PPARγ expression

[57].

In contrast to the activities described above, PPARγ is important for Mycobacterium tuber-
culosis replication [58–60]. Recent studies revealed that macrophages in the lungs of PPARγ
knock-out mice, but not peritoneal macrophages or bone marrow derived macrophages

(BMDMs), are more resistant to M. tuberculosis growth ex vivo [61]. PPARγ deficiency also

resulted in increased pro-inflammatory cytokine production in the lungs of M. tuberculosis-
infected mice, correlating with decreased bacterial burden [61]. Another recent study demon-

strated that vitamin B1 can inhibit PPARγ expression, promoting NF-kB signaling and result-

ing in macrophage control of M. tuberculosis [62]. Conversely, PPARα is reported to be

essential for antimycobacterial responses by activating autophagy, lipid catabolism, and fatty

acid oxidation [52]. Agonists of PPARα promoted autophagy, lysosomal biogenesis, phago-

some maturation, and defended against M. tuberculosis and Mycobacterium bovis bacillus

Calmette-Guerin (BCG) in BMDMs [52], demonstrating an important role for PPARα in host

defense against mycobacteria.
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Less virulent mycobacteria either do not elicit PPARγ expression or induce expression to a

lesser extent than virulent strains [58, 63, 64], suggesting that virulent M. tuberculosis has

evolved to select for induction of PPARγ-mediated pathways in order to alter the environment

and enhance its growth. Furthermore, M. tuberculosis and M. bovis BCG induction of PPARγ
signaling is linked to ligation of the pattern recognition receptors (PRRs) mannose receptor

(MR; CD206) and toll-like receptor 2 (TLR2), respectively [58, 63, 65]. PPARγ activity in mac-

rophages requires the enzymes cytosolic phospholipase A2 (cPLA2) and 15-lipoxygenase

(15-LOX), which are important for the production of inflammatory lipid-signaling molecules,

termed eicosanoids, that are linked to both M. tuberculosis resistance and susceptibility [58, 66,

67]. Recently, our laboratory has identified several genes regulated by PPARγ during M. tuber-
culosis infection of human macrophages, including cyclooxygenase-2 (COX-2), S100A8, and

CMKLR1, which are all linked to eicosanoid production [66]. We also demonstrate that

PPARγ induction of the antiapoptotic protein Mcl-1 during M. tuberculosis infection inhibits

Fig 2. PPARγ and LXR signaling in macrophages results in resistance or susceptibility to pathogens. Infection with different pathogens can result in

activation of PPARγ and LXR. Pathways regulated by these NRs and their impact on the host (mediating a resistant or susceptible phenotype) and pathogen

(altered growth specified by " or #) are indicated. Solid arrows indicate NR-mediated mechanisms between macrophage responses and effect on pathogen and/

or disease. The dashed arrow indicates correlative links between NR-mediated macrophage responses and disease. CGD, chronic granulomatous disease; GI,

gastrointestinal; LXR, liver X receptor; MRSA, methicillin-resistant Staphylococcus aureus; NAD, nicotinamide adenine dinucleotide; NO, nitric oxide; PPARγ,

peroxisome proliferator-activated receptor gamma; RSV, respiratory syncytial virus.

https://doi.org/10.1371/journal.ppat.1007585.g002
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macrophage apoptosis [66]. Inhibition of Mcl-1 as well as 15-LOX significantly reduced M.

tuberculosis growth. Altogether, these data indicate that PPARγ is involved in regulating path-

ways critical for M. tuberculosis survival, including apoptosis and the production of lipid medi-

ators. These findings support the idea that M. tuberculosis modifies macrophage signaling

processes to promote its own survival, which is particularly relevant in AMs.

Viruses

M2 macrophages are important for negating damaging inflammation. In a respiratory syncy-

tial virus (RSV) model, PPARγ induced M2 development, decreasing lung pathology [68].

Treatment with the PPARγ agonist rosiglitazone also aided in skewing the macrophages to an

M2 phenotype. Patients with human immunodeficiency virus (HIV) infection had decreased

PPARγ gene and protein expression in AMs, correlating with increased oxidative stress [69].

Ex vivo treatment with a PPARγ agonist increased PPARγ levels, improved the phagocytic

index of the AMs, and decreased oxidative stress [69], thus supporting the potential role of

PPARγ agonists for treatment. Monocytes from HIV patients showed reduced expression of

not just PPARγ but also PPARα, RXR, PXR, and FXR, which was not restored by highly active

antiretroviral therapy (HAART) [70]. Conversely, LXR expression was up-regulated in these

patients. This study revealed a correlation between HIV patients’ lipid and cholesterol abnor-

malities and decreased expression of PPARγ and the cell surface receptor CD36 [70]; the latter

aids in uptake of oxidized low-density lipoproteins by monocytes as well as the major surfac-

tant lipid dipalmitoyl phosphatidylcholine [71].

Sepsis

Sepsis models have revealed a critical role for PPARγ in controlling inflammation and improv-

ing the overall disease outcome. PPARγ gene expression was down-regulated in freshly iso-

lated peripheral blood mononuclear cells (PBMCs) from human sepsis patients [72] as well as

in the lungs in a murine sepsis model [73]. In mice, this down-regulation correlated with

increased plasma levels of TNF-α, IL-6, and IL-10. Contrary to expectations, peritoneal macro-

phages from PPARγ knock-out mice released less IL-1α and IL-1β as a result of increased IFN-

β in response to lipotoxic stimulation [74]. Treatment with PPARγ agonists improved sepsis

outcome, decreasing pro-inflammatory cytokines, increasing IL-10 levels, and improving

mouse survival [73, 75]. In a recent study, a PPARγ response element was identified in the

microRNA-124 (miR-124) promoter region, and expression of miR-124 was decreased in

human sepsis patients and was critical for preventing an exaggerated inflammatory response

in septic mice [72]. miR-124 expression was dependent on PPARγ signaling in both human

THP-1 macrophage-like cells and RAW264.7 cells [72]. The enzyme PRMT1 was also recently

shown to regulate PPARγ’s activity in macrophages in the cecal ligation and puncture sepsis

models. Myeloid specific PRMT1 knock-out mice have higher pro-inflammatory cytokine pro-

duction, defective PPARγ-dependent M2 macrophage activation, and lower survival rates [37].

Rosiglitazone treatment bypassed the IL-4/PRMT1 mechanism to restore PPARγ activity.

Other PPAR isoforms have also been linked to decreased severity of sepsis by down-regulat-

ing inflammation. In the cecal ligation and puncture rat sepsis model, treatment with a

PPARβ/δ agonist inhibited signal transducer and activator of transcription 3 (STAT3) activa-

tion in AMs, reduced the inflammatory response, and prolonged rat survival [76]. However,

bacterial counts in the lung were not lowered. Gene expression of the PPARα isoform was

down-regulated in whole blood of patients with septic shock [77]. In the mouse model,

PPARα signaling was key to amelioration of inflammatory cytokine production during sepsis.

Cell surface markers of activation on splenic macrophages were reduced in PPARα-deficient,
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septic animals correlating with increased bacterial burden in the lung and splenic tissues [77].

Collectively, these data indicate that PPAR signaling is important for anti-inflammatory mac-

rophage responses during sepsis and suggest that PPAR agonists could alleviate damaging

inflammation associated with sepsis, improving disease outcome.

Fungi and parasites

Fungi can also induce PPARγ expression and activity in macrophages. PPARγ ligands attenu-

ate Candida albicans colonization of the gastrointestinal (GI) tract in mice in a dectin-1 depen-

dent manner [78]. The antimicrobial peptide P17, isolated from ant venom, up-regulates

PPARγ expression and activity in human macrophages, leading to increased expression of dec-

tin-1 and MR and less severe C. albicans GI infection [79]. A subsequent study identified the

NR liver receptor homologue-1 (LRH-1) as important for IL-13-induced PPARγ ligands that

are critical for combating GI and systemic C. albicans infection [80]. Deficiency in LRH-1 in

mice is detrimental to IL-13-mediated M2 macrophage polarization, which is needed to pre-

vent host-damaging inflammation. This study identified a signaling pathway that uses at least

two NRs for optimal macrophage responses against C. albicans.
PPARγ expression is also regulated by parasite infections [81–84]. During infection with

Plasmodium berghei, malaria-susceptible mouse strains CBA and C57B6 had higher constitu-

tive PPARγ levels compared to malaria-resistant BALB/c mice; however, in the susceptible

mice, PPARγ did not translocate to the nucleus and the mice produced less plasmodicidal NO

and H2O2 [82].

Trypanosoma cruzi infection increased PPARγ expression in murine peritoneal macro-

phages [83, 84]; however, T. cruzi induced PPARα but not PPARγ expression in BMDMs and

RAW264.7 macrophages [85]. These data propose a site-specific role for PPAR signaling in

macrophages in response to T. cruzi infection, similar to that observed for M. tuberculosis [61].

Both PPARγ and PPARα agonists induced M2 macrophage activation in peritoneal macro-

phages infected with T. cruzi, increasing phagocytosis of the parasites; however, the anti-para-

sitic activity of the macrophages was unclear [84, 85]. A new synthetic PPARγ ligand, HP24,

decreased inducible nitric oxide synthase (iNOS) expression and stimulated pro-angiogenic

mediators in macrophages and in the heart of T. cruzi-infected mice, reducing TNF-α and IL-

6 release by macrophages [83]. Therefore, induction of PPARγ signaling appears to have a pro-

tective role during infection with T. cruzi. Administration of PPARγ agonists to T. cruzi
patients may be a feasible approach to treatment.

PPARγ is also implicated in macrophage responses to schistosomes. Stimulation of perito-

neal macrophages and BMDMs with schistosomal-derived lipids or purified lysophosphatidyl-

choline increased PPARγ expression and induced gene expression of the M2 macrophage

hallmarks Arg1, MR, FIZZ1, TGF-β, IL-10, and prostaglandin E2 (PGE2) [86]. During Schisto-
soma japonicum infection in mice, pioglitazone treatment prevented hepatic and splenic

pathologies, decreased Th1 T cells and increased regulatory T cells (Tregs) in the liver and

spleen [87]. Furthermore, pioglitazone treatment of macrophages promoted Tregs whereas

PPARγ inhibitor-treated macrophages reduced the proportion of these cells. The above studies

provide evidence that PPARγ signaling is important for antifungal and antiparasitic activity of

macrophages by regulating inflammation.

Overall, PPARγ down-regulates pro-inflammatory immune responses during infection,

which is vital during the resolution phase to prevent inflammation-induced host damage (Fig

2). Use of PPARγ agonists or antagonists to treat infectious diseases must take into account the

timing of administration and the pathogen and must balance pro- and anti-inflammatory
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mechanisms to enable an improved outcome. Targeting strategies for other PPARs await fur-

ther studies.

LXRs

LXRs regulate cholesterol homeostasis and transport and are regulated by oxysterols and inter-

mediate products of cholesterol biosynthetic pathways [88, 89]. LXRs have two isoforms,

LXRα (NR1H3) and LXRβ (NR1H2; Table 1), and form obligate heterodimers with RXR [90].

LXRs are also linked to M2 macrophages [91] and could be an attractive target for protection

against disease (Fig 2).

Bacteria

LXRs play a role in macrophage survival, preventing bacterial-induced apoptosis during infec-

tion with Listeria monocytogenes, Bacillus anthracis, Escherichia coli, and S. Typhimurium [92,

93] and contributing to bacterial clearance and resistance to L. monocytogenes infection. LXRs

have also been linked to macrophage phagocytic responses during S. Typhimurium infection.

LXR agonists reduced the intracellular levels of NAD in a CD38-dependent manner, counter-

acting S. Typhimurium-induced changes in macrophage morphology and distribution of F-

actin in the cytoskeleton [94]. In the mouse model, LXR agonist treatment ameliorated clinical

signs of Salmonella infection in a CD38-dependent manner [94].

LXRs are implicated in resistance to M. tuberculosis infection [64]. Macrophages infected

with M. tuberculosis up-regulate LXRα [95] and LXRα deficiency leads to reduced control of

intracellular bacterial growth [59, 96]. A build-up of lipid bodies in macrophages is associated

with nonprotective responses to M. tuberculosis. LXRα activation in THP-1 macrophages

increased the expression of the ATP-binding cassette transporters ABCA1 and ABCG1, which

are responsible for lipid efflux, resulting in decreased lipid body formation during infection

with attenuated M. tuberculosis strain H37Ra [95]. Administration of cholesterol-reducing stat-

ins has shown promise for tuberculosis (TB) treatment in animal models and clinical trials,

which is curiously suggested to occur by reducing LXR activity [97–99]. Further evaluation of

LXR activity concurrent with statin administration is required to discern how this intervention

affects TB treatment as well as treatment of other infectious diseases, such as S. aureus [100],

whose clearance can result from statin usage.

Viruses

Up-regulation of the LXR effector ABCA1 is linked to suppression of HIV in humanized mice

[101]. Pretreatment of human macrophages with LXR agonist TO901317 reduced the suscepti-

bility of the macrophages to HIV infection, correlating with reduced lipid rafts and up-regula-

tion of ABCA1 expression [102]. Prophylactic and therapeutic administration of the LXR

agonist in mice increased resistance to HIV infection and reduced lipidemia [102]. Recent

transcriptomic studies investigating susceptibility to dengue virus with a Cuban cohort of Afri-

can ancestry revealed increased gene expression of RXR in individuals that were more resistant

to infection and suggested a protective role for LXR/RXR against dengue virus [103].

LXR signaling was recently implicated in protection against gammaherpes virus MHV68,

in which the virus up-regulated LXRα expression in a type-1 interferon dependent manner,

which resulted in only moderate to no increase in gene expression for classic LXR target genes

ABCA1, FADS2, and SCD2 [104]. Gene expression for ABCA1, FADS2, and SCD2 in macro-

phages was significantly increased in LXR knock-out mice prior to and after infection with

MHV68 [104], leaving the authors to posit that LXR deficiency results in the modulation of

LXR corepressor activity, thus increasing transcription of LXR target genes. Macrophages
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from LXR deficient mice had increased fatty acid and cholesterol synthesis, two metabolic

pathways that support viral replication. Indeed, LXR deficient macrophages permitted

increased replication of MHV68. Taken together, these data indicate that LXRs are important

for antiviral activities, however the mechanisms of action appear to be distinct for each virus.

Fungi and parasites

LXRs are beneficial against bacterial and viral infections [92, 94, 96, 104]. However, mice lack-

ing LXR signaling are more resistant to infection with Leishmania chagasi and Leishmania
infantum [105]. BMDMs from LXRα knock-out mice stimulated with IFN-γ had increased

parasite killing ability compared to IFN-γ treated BMDMs from wild-type (WT) mice, produc-

ing more nitric oxide (NO) and IL-1β. In addition, LXR ligands abrogated NO production in

WT macrophages in response to infection. These data indicate that LXR modulation of host

antimicrobial responses is pathogen-specific. Further study is needed to unravel the complex

signaling pathways involved.

LXR regulation of macrophage inflammatory networks

Numerous mechanistic studies have been undertaken to understand the effects of macrophage

LXR activity on inflammatory responses to microbes and their byproducts. Pathogens can

interfere with cholesterol metabolism by inhibition of the LXR signaling pathway. For exam-

ple, microbial ligands initiated interferon regulatory factor 3 (IRF3)-induced TLR3/4, blocking

the induction of LXR target genes, including ABCA1, in cultured macrophages [106]. During

zymosan-induced acute inflammation, enhanced signaling by the receptor tyrosine kinase

Mer increased the activity of LXR, aiding in control of the inflammatory response in macro-

phages [107].

In multiple macrophage models, LXR activation resulted in down-regulation of LPS-

induced inflammatory responses. Both LXRα and LXRβ are expressed in Kupffer cells [108]

and required for Kupffer cell development [29]. However, LXRα/β knock-out mice have an

increased number of hepatic mononuclear cells with macrophage surface markers that dis-

played an enhanced inflammatory response to LPS [108]. Pretreatment of Kupffer cells with

an LXR agonist prior to LPS administration decreased the amount of pro-inflammatory cyto-

kines produced and increased IL-10 production [109]. This study also suggested that LXRα
competes with IRF3 for binding to glucocorticoid receptor-interacting protein 1 (GRIP1),

repressing the transcriptional activity of IRF3 and NF-kB, thus inhibiting the LPS-induced

inflammatory response. In murine BMDMs, LXRs down-regulate release of pro-inflammatory

IL-18 due to LXR’s negative regulation of caspase 1 expression and activation [110]. LXR

ligands also induced the expression of IL18BP, a potent IL-18 inhibitor, in an IRF8-dependent

manner [110], demonstrating multiple mechanisms at play to limit IL-18 by LXRs.

Taken together, LXR activity generally appears to be an effective method to curb inflamma-

tion and induce protective immune responses against infections. However, like other NRs,

LXR activity is not protective against all pathogen types. Additional work is needed to discern

LXR’s capacity as an HDT for infectious and inflammatory conditions.

Emerging NR-infectious disease interactions

NR4A family

The NR4A family of nuclear hormone receptors is comprised of three members: Nur77

(NR4A1), Nurr1 (NR4A2), and Nor1 (NR4A3; Table 1). No endogenous ligand for these

receptors has been identified, resigning the NR4A family to the orphan receptor category.
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However, interaction between Nur77’s ligand-binding domain and structurally diverse syn-

thetic molecules have been observed and synthetic ligands have been identified for Nurr1 and

Nor1 (reviewed in [111]). NR4As are involved in various cellular processes which are more

extensively reviewed elsewhere [111, 112].

All three members of the NR4A family are associated with anti-inflammatory responses

because over-expression of these NRs decreased the production of pro-inflammatory cytokines

and chemokines, whereas their knock-down resulted in increased cytokine/chemokine synthe-

sis [45]. Nor1, but not the other NR4A NRs, is implicated in the generation of M2 human mac-

rophages in response to IL-4 stimulation; however, gene expression for Nor1 was not

increased in IL-4 stimulated murine BMDMs [47]. In contrast, overexpression of Nurr1 in

murine BMDMs, but not Nor1 or Nurr77, was associated with M2 macrophage development

by directly binding to the Arg1 promotor, conferring protection in an LPS-induced sepsis

model [49]. LXR agonists induced Nor1 gene expression in murine Kupffer cells, which was

important for LXR-mediated dampening of LPS-induced TNF-α production [113]. In an E.

coli-induced peritoneal sepsis model, Nur77 did not play a role in host cytokine responses or

leukocyte trafficking but was responsible for maintaining vascular impermeability, preventing

distant organ damage [114] (Fig 3). Not much is known about NR4A family members for

other infectious diseases. However, a recent study showed that murine pulmonary CD11c+

cells up-regulate Nur77 and Nor1 following M. tuberculosis infection with Nor1 being present

in PBMCs from human TB patients [115].

Based on limited publications to date, it is apparent that gene expression and activity of

NR4A family members vary with species and inflammatory stimuli. However, this family

appears to be important for down-regulating inflammatory responses, which could be detri-

mental to fighting infectious diseases but may also be important for preventing host-damaging

inflammation. Further investigation into the NR4A family’s role in macrophage responses to

infection is necessary.

VDR

The VDR (NR1I1; Table 1) is constitutively expressed in macrophages and has long been studied

in conjunction with TB. Polymorphisms in the VDR gene have been associated with increased

susceptibility to TB, however inconsistent results have been shown by meta-analysis (reviewed in

[64]). Administration of vitamin D along with standard anti-TB drug regimens has improved

clinical outcomes in some studies [116]. Addition of vitamin D to THP-1 macrophages down-

regulated PPARγ and decreased the number of lipid droplets in M. tuberculosis-infected cells

[117], demonstrating a role for the VDR in lipid metabolism during M. tuberculosis infection.

VDR has also been implicated in macrophage responses to parasitic infections. In a Colum-

bian cohort, SNPs in the VDR gene may affect the immune response against T. cruzi [118]. In

a mouse model of malaria, infection with Plasmodium chaboudi up-regulated VDR gene

expression [119], suggesting that VDR may regulate malaria infection. VDR appears to be

nonprotective during Leishmania major infection in mice, with disparity between mouse

strains. VDR deficiency in the Th1-predisposed C57B6 mouse resulted in increased resistance

to L. major whereas VDR knock-out BALB/c mice, which are Th2-biased, did not reveal a

change in susceptibility (Fig 3) [120]. Further study is required to discern the role of VDR dur-

ing parasitic infections.

PXR

The human xenobiotic NR PXR (NR1I2; Table 1) is an adopted orphan NR that is predomi-

nantly expressed in the liver and intestines but is also expressed on monocytes and/or
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macrophages and lymphocytes [121]. PXRs inhibit both innate and adaptive immune

responses [122, 123] and are also important for lipid uptake [124]. PXR deficient mice are

highly susceptible to L. monocytogenes infection, in part due to excessive pro-inflammatory

cytokine and chemokine production that resulted in death of inflammatory monocytes [123].

During M. tuberculosis infection, PXRs promoted foamy macrophage formation and decreased

phagolysosomal fusion, inflammatory responses, and apoptosis in human macrophages,

enhancing bacterial survival [125].

Fig 3. Newly described NR activity linked to macrophage responses to infectious diseases. Links between certain NRs

and macrophage responses to infectious pathogens have recently emerged and are highlighted here. Overall, the NRs

described here appear to aid in control of inflammatory responses of macrophages, leading to resistance against many

diseases. The xenobiotic receptor PXR also induces efflux of antimicrobial drugs from macrophages, leading to dangerous

side effects and susceptibility to Mycobacterium tuberculosis and HIV. Although no clear mechanistic links between these

NRs and infection have been described, future study into these and other NRs may reveal novel targets for host-directed

therapeutic development against infectious diseases. ERR, estrogen related receptor; FXR, farnesoid X receptor; IFN-γ,

Interferon-γ; IL-10, interleukin 10; mROS, mitochondrial reactive oxygen species; NLRP3, NLR Family Pyrin Domain

Containing 3; NR, nuclear receptor; NR4A, nuclear receptor 4A; PPARγ, peroxisome proliferator-activated receptor

gamma; PXR, pregnane X receptor; VDR, vitamin D receptor.

https://doi.org/10.1371/journal.ppat.1007585.g003

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007585 March 21, 2019 12 / 23

https://doi.org/10.1371/journal.ppat.1007585.g003
https://doi.org/10.1371/journal.ppat.1007585


PXRs regulate various drug metabolizing enzymes and drug transporters that are vital for

metabolism, detoxification, and elimination of xenobiotics [126]. Rifampicin, a first line anti-

TB drug, is a potent activator of PXRs, which in turn compromises the effect of rifampicin in

M. tuberculosis-infected human macrophages [127]. Protease inhibitors (PIs) used to treat

HIV are associated with dyslipidemia and increased cardiovascular risk and several PIs activate

PXRs. Amprenavir, a widely used PI in defense against HIV, is a potent PXR-selective agonist,

inducing PXR-targeted CD36 gene expression in mice, resulting in dyslipidemia [128]. Addi-

tional studies are warranted to investigate the utility of PXR activity blockade in order to

increase drug effectiveness while limiting side effects during treatment of infectious diseases.

REV-ERBα
REV-ERBα (NR1D1; Table 1) is a unique NR with an atypical ligand-binding domain that

lacks the carboxy-terminal activation function region responsible for transcriptional activation

[129]. REV-ERBα is a constitutive transcriptional repressor and competes with other NRs (i.e.,

PPARγ and LXRs) for response elements, thus altering transcriptional activity [40, 130, 131].

Porphyrin heme was identified as the ligand for REV-ERBα in 2007 [132], changing its catego-

rization to adopted orphan receptor.

The activities of REV-ERBα during infectious disease are mostly unknown, however recent

studies with M. tuberculosis and LPS challenge have indicated a role for this NR during infec-

tion (Fig 3). In human macrophages, REV-ERBα knock-down led to decreased phagolysoso-

mal maturation whereas treatment of THP-1 macrophages with a REV-ERBα agonist

increased the number of autophagosomes and lysosomes, correlating with enhanced M. tuber-
culosis clearance [133]. Overexpression of REV-ERBα in human macrophages led to repres-

sion of IL-10 and increased phagolysosomal fusion and anti-M. tuberculosis activity [41]. This

study revealed that a REV-ERBα binding site resides in the promoter region of IL-10 in both

humans and nonhuman primates, but not in mice, demonstrating a species disparity [41].

REV-ERBα negatively regulated monocyte chemoattractant protein-1 (MCP-1) and TNF-α
secretion in human macrophages stimulated with LPS [40]. REV-ERBα antagonism also sup-

pressed IL-6 and CCL2 gene expression in mice during LPS endotoxin challenge [42, 43],

revealing that this NR has both pro- and anti-inflammatory activities. Further investigation

into REV-ERBα’s influence on macrophage responses to infection is required.

Estrogen-related receptors

ERRs have three isoforms—ERRα (NR3B1), ERRβ (NR2B2), and ERRγ (NR3B3; Table 1)—all

of which aid in regulating bioenergetic pathways (reviewed in [134]). ERRα’s up-regulation of

mitochondrial ROS contributed to IFN-γ-induced antimicrobial responses to Listeria [135].

ERRα has been linked to the activation of autophagy and phagosomal maturation to aid in

macrophage defense against M. tuberculosis [136]. On the other hand, ERRα acted as a nega-

tive regulator of TLR-induced inflammatory responses by inducing Tnfaip3 transcription

[137]. ERRα also negatively regulated macrophage inflammatory responses to endotoxin-

induced septic shock through inhibition of NF-kB signaling [137]. Another isoform, ERRγ,

may be important for S. Typhimurium growth through regulation of hepcidin and host iron

homeostasis, because an ERRγ inverse agonist (a molecule that binds to the receptor resulting

in activity converse to that of an agonist) reduced intramacrophage proliferation of S. Typhi-
murium [138]. Taken together, these data indicate that ERRs have both protective and nonpro-

tective host properties for pathogens and more study is needed to discern if targeting ERRs

would be an effective approach to antimicrobial and/or anti-inflammatory therapy.
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FXR

FXR (NR1H4; Table 1) is a metabolic NR that regulates bile acid, lipid, and glucose metabo-

lism (reviewed in [139]) and has recently been linked to sepsis. FXR negatively regulates the

NLRP3 inflammasome by physically interacting with NLRP3 and caspase 1, and FXR expres-

sion in mice is inversely related to endotoxic shock sensitivity [140]. However, agonism of

FXR with GW4064 did not inhibit shock in mice. In another study, this same FXR agonist

inhibited NLRP3 inflammasome activation in an FXR-independent manner [141]. These stud-

ies highlight that conclusions must be drawn cautiously when interpreting data using only ago-

nists or antagonists, or knock-down or knock-out approaches.

Perspectives and future directions

Considering the pivotal role that NRs play in macrophage responses, in particular their ability

to control inflammatory and metabolic pathways, targeting these receptors in macrophages is

a promising new HDT approach for infectious diseases. The NRs PPARγ and LXR have been

most studied in regard to bacterial, viral, fungal, and parasitic infections; however, the impor-

tance of other NRs, including the NR4A family, PXR, and REV-ERBα is beginning to emerge

(Fig 3). Given that 48 NRs have been identified to date in humans [6], it is likely that additional

NRs will be identified to regulate macrophage responses to infection.

There are existing pharmacological interventions that target NRs, supporting their feasibil-

ity for use in combatting infectious diseases. However, it is clear that NRs modulate metabo-

lism and inflammation in a tissue-, gene- and signal-specific manner. Furthermore, as

highlighted in this review, certain NRs mediate either resistance or susceptibility to infection,

depending on the microbe in question. Therefore, care must be taken when targeting specific

NRs as a treatment for infectious diseases.

The next steps in the NR field require both a basic science and translational approach. It is

critical that we identify the steps that occur upstream of NR activation. Cross-talk between

NRs as well as between NRs and the signaling pathways of PRRs including TLRs, nucleotide

oligomerization domain (NOD)-like receptors (NLRs), and C-type lectin receptors (CLRs)

must be defined to discern the mechanisms behind NR activation. Further understanding

regarding ligands (endogenous and synthetic) for NRs and NR effectors is also required. In

addition, it is imperative to consider the translatability between in vitro and in vivo systems as

well as potential species disparities. Further research into these topics will be key for identifica-

tion of NRs that can be used to treat infectious diseases in humans.

Some NR agonists and antagonists lack specificity for their intended target, resulting in off-

target effects that can have undesirable or unacceptable side effects [142–144]. Therefore,

future NR-targeted interventions will need to be more specific and studied carefully in differ-

ent infectious disease models. For example, many NRs are involved in the inflammatory

response during infection, making NRs attractive targets to limit tissue-damaging inflamma-

tion. However, the timing of administration will need to be investigated further so as to not

hinder the natural host antimicrobial response. Furthermore, the broad and diverse roles of

NRs including regulation of basic processes like circadian rhythm and cholesterol transport or

their roles in other diseases such as autoimmunity, obesity, and atherosclerosis must be taken

into account when using NR modulators to treat infections.

We must also be cautious when drawing conclusions based on agonist–antagonist data.

Both agonists and antagonists should be used and knock-down and/or knock-out models,

when available, should also be used to confirm that the effects observed with agonists–antago-

nists are specific and not due to off-target effects. Similarly, concentration and timing of
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agonist–antagonist administration should be carefully planned to reduce likelihood of unde-

tected off-target effects.

In conclusion, there is a need to continue to study NR mechanisms of action in well-defined

model systems in order to develop new chemical classes of ligands and inhibitors with the abil-

ity to selectively modulate NR function. This selectivity of novel HDTs must be achieved if this

line of treatment is to be feasible. In this era of increasing antimicrobial resistance, future

study identifying and characterizing NRs during infections is not only warranted but compul-

sory if we are to consider new HDT approaches that augment antimicrobials in combating

these deadly diseases.
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