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Abstract: Flaccidoxide-13-acetate, an active compound isolated from cultured-type soft coral
Sinularia gibberosa, has been shown to have inhibitory effects against invasion and cell migration
of RT4 and T24 human bladder cancer cells. In our study, we used an 3-(4,5-dimethyl-2-thiazolyl)
-2,5-diphenyl-2-H-tetrazolium bromide (MTT), colony formation assay, and flow cytometry to
determine the mechanisms of the anti-tumor effect of flaccidoxide-13-acetate. The MTT and colony
formation assays showed that the cytotoxic effect of flaccidoxide-13-acetate on T24 and RT4 cells
was dose-dependent, and the number of colonies formed in the culture was reduced with increasing
flaccidoxide-13-acetate concentration. Flow cytometry analysis revealed that flaccidoxide-13-acetate
induced late apoptotic events in both cell lines. Additionally, we found that flaccidoxide-13-acetate
treatment upregulated the expressions of cleaved caspase 3, cleaved caspase 9, Bax, and Bad,
and down-regulated the expressions of Bcl-2, p-Bad, Bcl-x1, and Mcl-1. The results indicated
that apoptotic events were mediated by mitochondrial dysfunction via the caspase-dependent
pathway. Flaccidoxide-13-acetate also provoked endoplasmic reticulum (ER) stress and led to
activation of the PERK-eIF2α-ATF6-CHOP pathway. Moreover, we examined the PI3K/AKT signal
pathway, and found that the expressions of phosphorylated PI3K (p-PI3K) and AKT (p-AKT) were
decreased with flaccidoxide-13-acetate concentrations. On the other hand, our results showed
that the phosphorylated JNK and p38 were obviously activated. The results support the idea that
flaccidoxide-13-acetate-induced apoptosis is mediated by mitochondrial dysfunction, ER stress,
and activation of both the p38 and JNK pathways, and also relies on inhibition of PI3K/AKT
signaling. These findings imply that flaccidoxide-13-acetate has potential in the development of
chemotherapeutic agents for human bladder cancer.
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1. Introduction

In the US, bladder cancer is the second most frequent genitourinary malignant tumor, and is a fatal
disease [1]. Most human bladder cancers belong to the category of transitional cell carcinoma, which can
be further divided into invasive and non-invasive bladder cancer. T2 and higher stages of muscle
invasive bladder cancer have a poor prognosis and a high risk of metastasis [2–4]. Non-muscle-invasive
bladder cancer is usually treated with transurethral resection of the bladder tumor, followed by close
monitoring or Bacillus Calmette–Guérin (BCG) instillation [5]. However, the recurrence rate in
patients with high-grade non-muscle-invasive bladder cancer after transurethral resection exceeds 75%,
with a low survival rate [6]. Since the recurrence rate of bladder cancer is still high, and many
medications currently used for bladder cancer have strong side effects [3], the development of new
drugs for bladder cancer treatment remains an important issue.

Marine soft corals are rich in biologically-active substances, and have been shown to exert
anti-inflammatory, anti-fungal, anti-viral, anti-cancer, and cytotoxic activities [7–10]. Cembrane -type
diterpene are common secondary metabolites of marine and terrestrial organisms, and cytotoxicity is
one of the major characteristics of compounds of this type [11–13]. Previous studies have shown that
compounds extracted from soft corals, such as diterpenes, diterpenoids, and prostanoids can induce
apoptosis in cancer cells, including colon cancer, oral squamous carcinoma, breast cancer, cervical cancer,
hepatocellular carcinoma, bladder cancer, and melanoma cells [14–20]. The apoptotic process includes
intrinsic and extrinsic pathways [21,22]. Studies have shown that many organelles in the cell may trigger
the intrinsic pathway to induce apoptosis when stress occurs. Mitochondria and the endoplasmic
reticulum (ER) are the two major organelles in which stress-induced apoptosis takes place [22–24].
Mitochondria provide the chemical energy required for cellular activities, and are the main components
in the cell in which oxidative phosphorylation and adenosine triphosphate (ATP) synthesis take
place [25].

Mitochondria are also involved in cell differentiation, cell signaling, and apoptosis, and have
the ability to regulate cell growth and control the cell cycle [26]. During apoptosis, Bax translocates
from the cytoplasm to the outer membrane of the mitochondria, and Bax and Bak oligomers form
pores in the outer membrane, triggering mitochondrial dysfunction [27–29].

The functions of the ER include regulation of protein synthesis, protein folding, post-translational
modification, and maintenance of intracellular calcium homeostasis [30]. When ER stress occurs,
in order to relieve the stress and promote survival, cells need to initiate specific signaling pathways to
limit protein synthesis, increase protein folding ability, and degrade misfolded proteins. The unfolded
protein response (UPR) is a series of processes by which the ER transmits the stress signal from its lumen
into the cytosol and nucleus. UPR-related genes are induced by UPR sensors, activating transcription
factor 6 (ATF6) and inositol requiring enzyme 1α (IRE1-α) in response to ER stress to promote
correct protein folding. Another UPR sensory protein, PKR-like ER-associated kinase (PERK),
detects an overload of biosynthetic protein folding in the ER, and initiates limitation of new protein
synthesis by phosphorylation of eukaryotic initiation factor 2α (eIF2α) [23,31]. Additionally, cells may
prevent excessive accumulation of misfolded proteins in the ER through ER-associated degradation
(ERAD). If the level of misfolded proteins does not reduce, cells will undergo apoptosis via pathways
involving IRE1-α, caspase-12, and PERK/CHOP [32]. Moreover, results by scholars have shown that
apoptosis in human bladder cancer cells is associated with endoplasmic reticulum stress [33–35].

Flacidoxide-13-acetate is a cembrane-type diterpene extracted from the cultured soft coral
Sinularia gibberosa. Our previous study revealed that flacidoxide-13-acetate reduces cancer cell migration
and invasion in T24 and RT4 human bladder cancer cell lines [36]. In this study, we investigated
the mechanisms of its apoptotic and antiproliferative activities in human bladder cancer, and aimed
to provide useful information to inform the development of flacidoxide-13-acetate as a new drug
for bladder cancer treatment.
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2. Results

2.1. Flaccidoxide-13-Acetate Inhibited Human Bladder Cancer Cell Proliferation

An 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and a colony
formation assay were used to study the cytotoxic effects of flaccidoxide-13-acetate on T24 and RT4
bladder cancer cell lines. The MTT assay showed that the survival rates of T24 and RT4 cells were
dose-dependently decreased. As shown in Figure 1A, flaccidoxide-13-acetate at a concentration
of 20 µM inhibited cell survival by 40%. The colony formation assay demonstrated that the numbers
of colonies also reduced with increasing flaccidoxide-13-acetate concentrations (5, 10, 15, and 20 µM)
in both RT4 and T24 cells (Figure 1B). The results indicate that flaccidoxide-13-acetate has the ability to
suppress cell proliferation in these two bladder cancer cell lines.
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Figure 1. (A) Cytotoxic effects of flaccidoxide-13-acetate (0, 5, 10, 15, 20, 25 µM) on T24 and RT4 cell lines.
T24 and RT4 cells were incubated with the indicated flaccidoxide-13-acetate concentrations for 24 h,
and the cell numbers were assessed using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT) assay. The results were obtained from three individual experiments. (B) Effects of
flaccidoxide-13-acetate on colony formation in RT4 and T24 cell lines. The cells were treated with various
(5, 10, 15, and 20 µM) concentrations of flaccidoxide-13-acetate and cultured for 10 days. The numbers
of colonies were counted and the results were normalized to a culture without flaccidoxide-13-acetate
treatment (100%). Data are presented as mean± S.D. of triple replicate experiments. (# p < 0.05; * p < 0.01,
compared with the control.)
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2.2. Flaccidoxide-13-Acetate Induced Apoptosis in RT4 and T24 Cells

The results presented in Figure 1 show that flaccidoxide-13-acetate had cytotoxic effects
and inhibited cell proliferation in RT4 and T24 cell lines. We next used fluorescein isothiocyanate
(FITC)-labeled annexin with propidium iodide (PI) to perform flow cytometry analysis to examine
the apoptotic events in flaccidoxide-13-acetate-treated RT4 and T24 cells. As shown in Figure 2,
compared with the control (3.4%), the percentages of late apoptotic cells in cell cultures treated with 5,
10, and 15 µM flaccidoxide-13-acetate were 11.0%, 11.9%, and 17.6% in T24 cells, and 17%, 20.2%,
and 29.1% in RT4 cells, respectively. The dose–response results demonstrate that flaccidoxide-13-acetate
induced late apoptotic events in both cell lines.
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cytometry analysis.

2.3. Flaccidoxide-13-Acetate Initiated Mitochondrial Dysfunction in T24 and RT4 Cells

Mitochondrial dysfunction is known to be associated with apoptosis [27–29].
As flaccidoxide-13-acetate was found to induce a late apoptotic response in RT4 and T24
cells (Figure 2), we next examined whether flaccidoxide-13-acetate-induced apoptosis is mediated by
mitochondrial dysfunction. Using Western blotting, the expressions of Bax and Bad in the cells were
analyzed, and the results showed that the expression levels of Bad and Bax increased with the increase
in concentrations of flaccidoxide-13-acetate, while the expression levels of p-Bad Bcl-x1, Bcl-2,
and Mcl-1 decreased (Figure 3). Mitochondria are membrane-bound organelles that play an essential
role in maintaining biological homeostasis, and their normal functions are controlled by Bcl-2
family proteins [37]. When cells are under stress or injured, the intracellular calcium homeostasis is
disturbed, resulting in the opening of mitochondrial permeability transition pores. This results in
the pro-apoptotic protein Bax being overexpressed and residing in the outer mitochondrial membrane,
further forming a heterodimer with Bcl-2. It also leads to changes in the mitochondrial transmembrane
potential and cytochrome C (Cyt C) release into the cytosol. Moreover, we also performed Western
blotting to examine the effect of flaccidoxide-13-acetate on the activation of caspase 9, caspase 3,
and PARP-1 cleavage. The results demonstrated that flaccidoxide-13-acetate treatment up-regulated
expression levels of cleavage-PARP-1, cleavage-caspase 3, and cleavage-caspase 9, and down-regulated
expression levels of pro-caspase 3 and pro-caspase 9. Our results showed that flaccidoxide-13-acetate
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induced mitochondrial dysfunction and the compounds increased active caspase level, leading to
apoptosis in T24 and RT4 cells.Mar. Drugs 2018, 16, x 5 of 14 
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Figure 3. Western blotting analysis of the expressions of Bcl-2 family proteins and cytochrome
C after flaccidoxide-13-acetate-treated in RT4 and T24 cells. With increased flaccidoxide-13-acetate
concentrations, the expressions of Bax, Bad, and Cyt C were increased, but Mcl-1, Bcl-xl, Bcl-2, and p-Bad
were decreased.

2.4. Flaccidoxide-13-Acetate Activated the p38 and JNK Pathways and Inhibited the PI3K/AKT Pathway

The mitogen-activated protein kinase (MAPK) signaling pathway plays important roles in
regulating several key cell functions, including gene expression, cell proliferation, and apoptosis [38].
We used Western blotting to analyze the changes in key proteins in the MAPK signaling
pathway. The results showed no significant changes in non-phosphorylated ERK, JNK, and p38,
while the levels of phosphorylated p38 (p-p38) and JNK (p-JNK) were increased with the increase in
flaccidoxide-13-acetate concentrations.

We next examined the PI3K/AKT signal pathway, and found that the expressions of phosphorylated
PI3K (p-PI3K) and AKT (p-AKT) were decreased with the increase in flaccidoxide-13-acetate
concentrations (Figure 4). We also used the p38 inhibitor (SB203580), JNK inhibitor (SP600125), and ERK
inhibitor (PD98059) to validate whether apoptosis induced by flaccidoxide-13-acetate is mediated
by activation of the MAPK pathway. The results demonstrated that cells pre-treated with SB203580
and SP600125, followed by incubation with flaccidoxide-13-acetate, exhibited an increase in the cell
survival rate from 60% to approximately 80%, while PD98059 did not improve cell survival (Figure 4B).
The abovementioned findings suggest that flaccidoxide-13-acetate-induced apoptosis in RT4 and T24
cells involves activation of the JNK and p38 pathways and inhibition of the PI3K/AKT pathway.
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kinase (MAPK) pathway-related proteins in RT4 and T24 cells after administration of flaccidoxide-13-acetate
treatment. (B) Flaccidoxide-13-acetate-induced apoptosis in T24 and RT4 cells is mediated by activation of
p38 and JNK pathway using ERK-, JNK-, and p38-specific inhibitors. (F-13-AC: flaccidoxide-13-acetate).
Data are presented as mean± S.D. of triple replicate experiments. (# p < 0.05; * p < 0.01, compared with
the control).

2.5. Endoplasmic Reticulum Stress is Involved in Flaccidoxide-13-Acetate-Induced Apoptosis

ER is sensitive to changes in internal and external factors, such as calcium ion concentration
change and protein misfolding caused by viral infection. ER stress affects the maintenance of normal
cellular functions and may even affect cell survival [39]. The ER stress response constitutes a cellular
process, and may lead to unfolded protein response (UPR), ER-associated degradation (ERAD),
and apoptosis [40,41]. The UPR is regulated by three ER sensors: inositol requiring enzyme 1-α
(IRE1-α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription
factor 6 (ATF6). When misfolded proteins accumulate in the ER, ER chaperones (such as GRP78) release
transmembrane sensor proteins PERK, IRE1-α, and ATF6, activating the UPR. In addition, PERK
may regulate the signaling pathway that causes autophagy to promote cell survival [42] or increases
ATF4/CHOP expression to induce apoptosis [43].

In this study, the changes in two ER transmembrane sensor proteins, PERK, ATF6, and other
relevant proteins were analyzed using Western blotting. The results showed that the expressions
of ATF6-f and GRP78 proteins increased in both cell lines treated with flaccidoxide-13-acetate;
in addition, the levels of p-eIF2α and p-PERK, as well as ATF4 and CHOP increased with the increase in
concentrations of flaccidoxide-13-acetate (Figure 5). To confirm that ER stress is involved in apoptosis,
we added salubrinal, an inhibitor of eIF2α phosphorylation, into the culture, and found that cells
treated with salubrinal exhibited a significantly increased survival rate (Figure 5B). The results further
support that ER stress is associated with flaccidoxide-13-acetate-induced apoptosis.
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3. Discussion

3.1. Flaccidoxide-13-Acetate Triggers Mitochondrial Dysfunction in T24 and RT4 Bladder Cancer Cells

The Bcl-2 family of proteins are regulators of apoptosis, and include distinct subfamilies:
(1) proapoptotic proteins with a multi-BH domain (such as Bax and Bak); (2) proapoptotic proteins
with a single BH3-only protein (such as Bad, Bim, and Bid), and (3) antiapoptotic members such as Bcl-2
and Bcl-xl with all four BH domains conserved (such as Bcl-2, Bcl-xl, and Mcl-1) [44]. Studies have shown
that intracellular stress may trigger the intrinsic apoptotic pathway in several organelles; mitochondria
and the ER are two of the major organelles involved [22–24]. In the presence of mitochondrial stress,
Bax translocate to the outer membrane of the mitochondria and increases the membrane permeability,
which causes alteration of the mitochondrial membrane potential, depolarization, and opening of
mitochondrial pores [28].

We used Western blotting to analyze the changes in mitochondria-associated apoptotic proteins
in flaccidoxide-13-acetate-treated T24 and RT4 cells, and found that Bax and Bad expressions were
increased with increasing flaccidoxide-13-acetate concentrations, while the expressions of p-Bad Bcl-x1,
Bcl-2, and Mcl-1 were decreased. An increased ratio of Bax/Bcl-2 provokes the release of cytochrome C
from the mitochondrial intermembrane/intercristae spaces to the cytosol, where cytochrome binds to
A-Raf-1, resulting in caspase 9 and downstream effector caspase-3 activation [45–48]. Activated caspase3
then cleaves PARP-1 to induce characteristic apoptosis changes, such as chromatin condensation
and DNA fragmentation [49]. Our results imply that flaccidoxide-13-acetate treatment caused
mitochondrial stress, which led to an increase in Bad expression and decreases in Bcl-2, Bcl-xl, Mcl-1,
and p-Bad expressions, causing mitochondrial dysfunction. Additionally, the increase in Bax expression
and the decrease in Bcl-2 expression resulted in an increased Bax/Bcl-2 ratio, which stimulated
the release of cytochrome C from the mitochondrial inner membrane into the cytosol. Our results
also show that flaccidoxide-13-acetate treatment up-regulated expression levels of cleavage-PARP-1,
cleavage-caspase 3, and cleavage-caspase 9, and down-regulated expression levels of pro-caspase 3
and pro-caspase 9. We hypothesize that the release of cytochrome C causes procaspase 9 to
self-hydrolyze into activated caspase 9, which in turn activates caspase 3 and cleaves PARP into its
cleaved form. The process subsequently triggered apoptotic events, such as DNA fragmentation
and chromosome condensation [49]. These results imply that flaccidoxide-13-acetate-induced apoptosis
in both T24 and RT4 human bladder cancer cells are related to the pathway associated with activated
mitochondrial apoptosis.
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3.2. Flaccidoxide-13-Acetate Induces Apoptosis through Activation of the p38 and JNK Signaling Pathways
and Inhibition of the PI3K/AKT Pathway

The MAPK pathway regulates many stress-induced physiological processes, including cell
differentiation, cell growth, and apoptosis [50,51]. Three well-characterized subfamilies of the MAPK
pathway are mediated by JNKs, p38 kinases, and ERKs, respectively. Among these MAPKs, activation of
JNKs and p38 kinases occurs in response to various intrinsic and extrinsic stimuli [51,52]. Study has
shown that intracellular stress may induce p38 pathway activation and promote apoptosis by activation
of p53 and inhibition of Bcl-2 expression [53]. ERK is important for cell proliferation and survival,
and can be activated by mitotic stimuli, such as growth factors and cytokines [54]. Phosphorylated ERK
has been shown to promote cell proliferation and inhibit pro-apoptotic signaling [55], and constitutive
activation and overexpression of ERK are often observed in many cancer cells [56]. In this study,
Western blotting showed that the total expressions of ERK, JNK, and AKT were found to be unchanged
in T24 and RT4 cells treated with various concentrations of flaccidoxide-13-acetate, while the expressions
of phosphorylated p38 and JNK increased significantly (Figure 4). When specific inhibitors of p38,
JNK, and ERK were used, the results demonstrated that both the p38 inhibitor (SB203580) and the JNK
inhibitor SP600125, but not the ERK inhibitor (PD98059), increased the cell viability, suggesting that
flaccidoxide-13-acetate-induced apoptosis in RT4 and T24 cells is at least partly mediated by the p38
and JNK pathways.

The PI3K/AKT signaling pathway has been found to be activated in several types of cancer, and is
known to regulate cell survival, proliferation, differentiation, and apoptosis [57]. Several downstream
targets of AKT, such as GSK-3b, Bad, and NF-κB, are known to directly or indirectly regulate apoptosis in
many cancers [58,59]. Phosphorylation of Bad alters its binding ability to Bcl-2 and Bcl-xl by increasing
its association with 14-3-3, resulting in loss of the ability of Bad to heterodimerize with survival
proteins Bcl-2 and Bcl-xl [60,61]. Therefore, downregulation of the PI3K/AKT signaling pathway
has been found to induce apoptosis in several studies [62,63]. We showed that RT4 and T24 cells
under flaccidoxide-13-acetate treatment exhibited decreases in the expressions of phosphorylated PI3K
and AKT expression, which indicates that flaccidoxide-13-acetate-induced apoptosis occurs through
inactivation of the PI3K/AKT signaling pathway.

3.3. Flaccidoxide-13-Acetate-Induced Apoptosis Occurs Partially via Initiation of ER Stress in T24
and RT4 Cells

When cells are under ER stress, GRP78, which is involved in protein folding, initiates the release
of transmembrane proteins PERK and IRE1-α, and activates transcription factor ATF6. PERK signaling
has been demonstrated to utilize autophagy as a survival strategy [42], or cause apoptosis through
upregulation of ATF4 and proapoptotic transcription factor CCAA/enhancer binding protein (C/EBP)
homologous protein (CHOP) [43]. Upon ER stress, transcription and protein synthesis are reduced
due to eIF2α being phosphorylated by p-PERK, and the ATF6 and IRE1-α signaling pathways
induce the expression of ER chaperones [64–66]. When ER stress is prolonged, PERK is activated
and phosphorylates eIF2α [67,68]; phosphorylated eIF2α subsequently activates ATF4, which targets
the expression of apoptotic effector, CHOP [69]. Apoptosis is related to the expression of CHOP;
expression of ATF4 is also positively correlated with CHOP. Thus, when ATF4 induces downstream
CHOP protein expression, the cells will progressively switch from autophagy to apoptosis [70].

Our results demonstrate that the expressions of GRP78 proteins and ATF6 increased in both
cell lines treated with flaccidoxide-13-acetate. In addition, the levels of p-PERK, p-eIF2α, and ATF4
as well as CHOP were increased with increase in concentration of flaccidoxide-13-acetate treatment
(Figure 5A). To confirm that ER stress is involved in apoptosis, we added salubrinal, an inhibitor
of eIF2α phosphorylation, into the culture, and found that cells treated with salubrinal exhibited
a significantly increased survival rate (Figure 5B).

These results imply that the apoptosis induced by flaccidoxide-13-acetate is partially mediated
by the PERK-eIF2α-ATF4-CHOP pathway. These results are similar to the outcomes of Toeh et al.’s
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study [71]. When the function of the endoplasmic reticulum is disturbed, it will lead to ER stress that
activates the expression of PERK and ATF6, then induces CHOP up-regulation of the PERK/ATF4/CHOP
pathway and causes cell apoptosis

4. Material and Methods

4.1. Reagents

Flaccidoxide-13-acetate was isolated from cultured-type soft coral Sinularia gibberosa by Dr. Jui-Hsin
Su. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and phosphate-buffered
saline (PBS), were purchased from Biowest (Nuaillé, France). Polyvinylidene difluoride (PVDF)
membranes were purchased from Millipore (Bellerica, MA, USA). Protease inhibitor cocktail,
dimethyl sulfoxide (DMSO), salubrinal, and goat anti-rabbit and horseradish peroxidase-conjugated
immunoglobulin (Ig) G were obtained from Sigma (St. Louis, MO, USA). Cell extraction buffer was
acquired from BioSource International (Camarillo, CA, USA). An annexin V-FITC/PI apoptosis detection
kit was purchased from Pharmingen (San Diego, CA, USA). The enhanced chemiluminescence (ECL)
Western blotting reagents were obtained from Pierce Biotechnology (Rockford, IL, USA). Cytochrome C
releasing apoptosis assay kit was purchased form Biovision (Milpitas, CA, USA).

4.2. Cell Culture and Drug Treatment

Human bladder cancer RT4 and T24 cell lines were obtained from the Taiwan Food Industry
Research and Development Institute (Hsinchu, Taiwan). The cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 µg/mL
streptomycin, and 100 units/mL penicillin in a humidified 5% CO2 incubator at 37 ◦C. Cells were
treated with various concentrations of flaccidoxide-13-acetate and harvested after 24 h of incubation.
DMSO was added to the control group, and cultured for 24 h for subsequent studies. All experiments
were performed three times to determine their reproducibility.

4.3. Cell Viability Assay

The effects of flaccidoxide-13-acetate on the T24 and RT4 cell lines were evaluated by MTT assay.
Cells (1× 105 cells/well) were seeded in 96 well plates. The cells were treated with various concentrations
of flaccidoxide-13-acetate (5, 10, 15, 20, and 25µM). After 24 h of incubation, MTT solution (0.5 mg/mL
in PBS) was added to each well. The plates were incubated for 4 h at 37 ◦C, after which the culture
medium was removed and the cells were dissolved in 200 µL DMSO. The absorbance was measured
at 595 nm using a microplate ELISA reader (Bio-Rad, Hercules, CA, USA) and DMSO was used
as the control. Samples were analyzed and all experiments were repeated three times.

4.4. Flow Cytometric Assay

T24 and RT4 cells were seeded onto 5 cm petri dishes, treated with different concentrations of
flaccidoxide-13-acetate for 24 h. The cells were then collected and fixed in 70% cold ethanol at 4 ◦C
overnight. The cells were subsequently stained with 10 µg/mL Annexin V–FITC and 5 µg/mL propidium
iodide (PI) for 30 minutes at 37 ◦C. Apoptosis processes induced by flaccidoxide-13-acetate were analyzed
using a FACScalibur flow cytometer and Cell-Quest software (Becton-Dickinson, Mansfield, MA, USA).

4.5. Colony For mation Assay

T24 and RT4 cells were seeded in 24 well plates (2000 cells/well) and incubated for 24 h. The cells
were treated with various concentrations (5, 10, 15, and 20 µM) of flaccidoxide-13-acetate in 2 mL of
serum complete media and incubated for 10 days. The colonies were then washed with PBS and fixed
with methanol for 15 min and stained with 0.15% crystal violet. The colonies were counted and scanned
using a high-resolution scanner Scan Maker 9800XL (MiCROTEK, Hsinchu, Taiwan).
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4.6. Antibody and Western Blot Assay

Rabbit anti-human ERK, p-ERK, JNK, p-JNK, GRP78, ATF4, and cleaved-ATF6 antibodies were
purchased from ProteinTech Group (Chicago, IL, USA). Rabbit anti-human antibodies against AKT,
p-AKT, PI3K, p-PI3K, Mcl-1, Bad, p-Bad, Bcl-xl, Bcl-2, Bax, p38, p-p38, PERK, p-PERK, elF2α, p-elF2α,
pro-caspase 3, cleaved caspase 3, pro-caspase 9, cleaved caspase 9, cytochrome C, and CHOP were
obtained from Cell Signaling Technology (Danvers, MA, USA). Rabbit anti-human β-actin antibodies
were obtained from Sigma (St Louis, MO, USA). Cytosolic cytochrome C were separated using
a cytochrome C releasing apoptosis assay kit (Biovision, Milpitas, CA, USA).

The flaccidoxide-13-acetate treated sample and DMSO treated control samples (total protein 25 µg)
were separated by 12.5% SDS-PAGE, and the proteins on the gel were transferred to a PVDF membrane.
The membrane containing transferred protein was blocked in PBS buffer and incubated with primary
antibody at 4 ◦C overnight, followed by secondary antibodies (goat anti-rabbit or goat anti-mouse
and horseradish peroxidase conjugate, 1:5000 dilution in 2% dehydrated skim milk) for 2 h at 4 ◦C.
The signals were detected with an enhanced chemiluminescence detection kit.

4.7. Inhibitor Assessment

In order to further determine the effects of p38, ERK, and JNK on flaccidoxide-13-acetate-induced
cell proliferation arrest, a total of 1 × 105 cells were seeded in a 24 well plate and pre-incubated
for 2 h with specific inhibitors for p38 (SB2203580), JNK (SP600125), and ERK (PD98059) prior to
flaccidoxide-13-acetate administration. Afterwards, the cell viability rate was determined by MTT assay.

4.8. Statistical Analysis

The results of the MTT assay and colony formation assay were subjected to Student’s test
(Sigma-Stat2.0, San Rafael, CA, USA). Results with p < 0.05 were considered statistically significant.

5. Conclusions

In this study, we demonstrated that flaccidoxide-13-acetate induces apoptosis in RT4 and T24
bladder cancer cells, and the process is mediated by induction of mitochondrial dysfunction
and activation of ER stress, which also involves initiation of the p38 and JNK pathways and inhibition
of the PI3K/AKT pathway (Figure 6). Our findings revealed that flaccidoxide-13-acetate-induced
apoptosis in bladder cancer cells occurs via multiple pathways. Further study of the underlying
mechanism is underway in our laboratory to identify specific targets of flaccidoxide-13-acetate in
bladder cancer cells.
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