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A single exposure to many viral and bacterial pathogens typically induces life-long

immunity, however, the development of the protective immunity to Plasmodium parasites

is strikingly less efficient and achieves only partial protection, with adults residing

in endemic areas often experiencing asymptomatic infections. Although naturally

acquired immunity to malaria requires both cell-mediated and humoral immune

responses, antibodies govern the control of malarial disease caused by the blood-stage

form of the parasites. A large body of epidemiological evidence described that

antibodies to Plasmodium antigens are inefficiently generated and rapidly lost without

continued parasite exposure, suggesting that malaria is accompanied by defects in the

development of immunological B cell memory. This topic has been of focus of recent

studies of malaria infection in humans and mice. This review examines the main findings

to date on the processes that modulate the acquisition of memory B cell responses to

malaria, and highlights the importance of closing outstanding gaps of knowledge in the

field for the rational design of next generation therapeutics against malaria.
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B CELL IMMUNOLOGICAL MEMORY

Immunological memory refers to the ability of the vertebrate immune system to remember
previously encountered antigens or pathogens and evoke an enhanced immune response to control
infection. The capacity of the host to generate T and B cell memory underlies the basis of protective
immunity induced by vaccination or after exposure to specific pathogens. The generation of T cell-
dependent humoral immune memory in secondary lymphoid organs (Figure 1) typically begins
following B cell engagement with its cognate antigen, which triggers their migration to the B cell
follicle border to receive T cell help (1). Activated B cells then differentiate along one of three
possible routes, leading to the rapid production of short-lived plasmablasts, generating germinal
center (GC)-independent memory B cells (MBCs), or formation of GCs in B cell follicles (2, 3).
GCs establish within a few days of initial antigen encounter and mature into two distinct micro-
anatomical compartments: the dark zone, where B cell clones undergo proliferative expansion
and somatic hypermutation of their immunoglobulin (Ig) genes, and the light zone, where B cells
expressing high-affinity antibodies are selected and undergo class switch recombination (4–6). The
GC reaction leads to the generation of affinity-matured MBCs and long-lived plasma cells that
contribute to host protection against re-infection. Plasma cells migrate to the bone marrow and
provide a continuous source of circulating high-affinity antibody (7), while MBCs recirculate in
the blood and secondary lymphoid tissue (8) to induce a rapid effector response upon antigen
re-encounter (9, 10).
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FIGURE 1 | Pathways leading to the development of B cell memory. Upon encounter with antigen, activated B cells in secondary lymphoid tissue receive helper

signals from cognate CD4+ T cells at the border of the B cell follicle and T cell zones. Some of the proliferating B cells differentiate into short-lived plasmablasts that

initiate an extrafollicular antibody response, some develop into early memory B cells independently of GC formation, while others aggregate into the follicle to establish

a GC. Within the GC, B cells undergo proliferation and somatic hypermutation in the dark zone, followed by affinity-based selection in the light zone with the help of T

follicular helper cells and follicular dendritic cells. Long-lived plasma cells and memory B cells emerge from the GC reaction. Upon antigen rechallenge, memory B cells

lacking expression of the surface molecules CD80 and PD-L2, mainly of the IgM isotype, can seed secondary GCs, whereas those expressing both molecules,

comprising of IgM and IgG isotypes, predominantly generate plasmablasts. GC, germinal center; DC, dendritic cell; SHM, somatic hypermutation.

Comprehensive studies of MBC biology have led to the
appreciation of substantial heterogeneity among the MBC
compartment, consisting of distinct subpopulations with
different effector capacity upon secondary challenge (11). In
humans, the expression of unique memory-specific surface
markers has been extensively used to identify and characterize
MBCs. Surface expression of CD27 defines a subset of antigen-
experienced MBCs in humans that are class-switched and
bear Ig variable region mutations (12, 13). However, CD27
expression does not universally define all MBCs, as subsequent
work identified an CD27− CD21− MBC population (14). These
cells, coined as atypical MBCs in malaria, express several Fc
receptor-like (FcRL) inhibitory receptors, including FcRL3
and 5 (15–17).

The development of novel labeling techniques to track
antigen-specific B cells in murine models has enabled the
functional characterization of MBCs expressing different
antibody isotypes. Whereas, IgG MBCs have been found to
preferentially differentiate into plasmablasts upon antigen
rechallenge, IgM MBCs appear to have the capacity to re-enter
secondary GC reactions but were not enhanced in plasmablast
generation (18, 19). Recent studies have uncovered additional
heterogeneity within the IgM and IgG MBC pools, proposing
that MBCs lacking the memory markers CD80 and PD-L2,

which primarily express IgM, are dedicated to reseeding GCs,
while those expressing both markers, comprising of IgM and
IgG isotypes, contribute mainly to immediate antibody-secreting
function (Figure 1) (20). Consistently, IgM-expressing MBCs
have recently been shown to exhibit considerable plasticity in
their differentiation capacity following rechallenge (21). This
division of labor in the MBC response has been proposed to
support a rapid and effective response upon antigen rechallenge
while concurrently permit the generation of new MBCs (11).
How these findings in murine models relate to human settings
is unclear, as there is still little information about the homology
between mouse and humans MBC subsets with regards to their
surface marker expression usage.

A ROLE FOR MEMORY B CELS IN
NATURALLY ACQUIRED IMMUNITY TO
MALARIA

The global burden of malaria has more than halved since the
turn of the century due to renewed eradication efforts, but
progress has recently stalled as current intervention strategies
are confronted with several major challenges, including the
emergence of anti-malarial drug and insecticide resistance
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(22). Of the six Plasmodium species known to infect humans,
P. falciparum continues to account for the majority of
deaths, whereas recurrent P. vivax episodes are a significant
source of morbidities. Disease syndromes of malaria range
from fever to more severe complications including acute
pulmonary oedema, jaundice, severe anemia, hypoglycaemia,
acidosis, and cerebral malaria (23). The pathogenesis of malarial
disease is thought to arise from the concerted effects of
host and parasite mechanisms, including the sequestration
of blood-stage parasites in microvasculature, and local and
systemic inflammation induced by the parasites and their toxic
products (24, 25).

Early epidemiological observations by Robert Koch in
malaria-endemic populations described that natural immunity
to malaria can be achieved, but requires years of repeated
exposure to Plasmodium parasites (26). Children living in high
transmission regions become immune to the most severe forms
of malaria after relatively few symptomatic infections (27–29),
but remain at risk of uncomplicated malaria. After years of
repeated infections with age, protection from successive malaria
episodes or “clinical immunity,” is acquired by the ability to
substantially reduce parasite burdens (30–35). This form of
protection is not paralleled by sterile immunity that prevents re-
infection (36), and adults continue to be experience low-density,
asymptomatic infections throughout life (37). Naturally acquired
clinical immunity to malaria targets blood-stage parasites and
requires antibodies, as demonstrated by studies in which the
transfer of purified IgG from malaria-immune adults to children
with symptomatic malaria rapidly reduced parasitemia and fever
(38). Together, these observations have led to the hypothesis
that the slow and imperfect acquisition of immunity to malaria
reflects in the development of MBCs, and this topic has
been the subject of several studies including mouse infection
models as well as human settings. Here we review our current
understanding on the salient features of the development of
humoral immunity to malaria infection, and highlight some of
the outstanding questions regarding the cellular mechanisms that
underlie the slow acquisition of clinical immunity.

ANTIBODY RESPONSES TO
BLOOD-STAGE MALARIA

The paramount importance of antibodies in controlling blood-
stage malaria infection was proven by seminal passive-transfer
experiments, in which IgG from P. falciparum clinically
immune adults protected non-immune children from high
parasitemia and clinical symptoms (38, 39). Numerous immuno-
epidemiological studies subsequently demonstrated that high
antibody levels against specific blood-stage parasite antigens
correlate with protection from disease (40–46). Antibodies may
control the development of clinical symptoms by targeting the
invasion and growth of the merozoite form of the blood-stage
parasite and redirect their clearance by phagocytic cells via Fc
and complement receptors (47). Additionally, antibodies directed
against parasite antigens expressed on infected erythrocytes
can promote opsonic phagocytosis, block microvasculature

adherence, disrupt rosette formation with uninfected cells, and
prevent erythrocyte rupture and parasite egress (47).

Antibodies may target a number of highly polymorphic
and functionally redundant antigens expressed by Plasmodium
parasites (48), which may represent a potential mechanism
by which the parasite effectively evades the human immune
system via antigenic variation (49). Asymptomatically-infected
individuals who fail to mount an antibody response against
P. falciparum has been shown to predict increased susceptibility
to clinical disease (50, 51). In parallel, individuals detected with
multi-clonal P. falciparum infections in the dry season have
been associated with subsequent protection from febrile malaria
(52), suggesting that the presence of persisting parasites enhance
antibody recognition and enable cross-reactive responses. This
supports the notion that clinical immunity may depend on
the cumulative acquisition of a repertoire of antibodies to a
diverse range of parasite antigens or development of cross-
species antibody responses (53–55). Indeed, the breadth of
parasite-specific antibody responses have been identified to
increase with age in endemic populations (56–58), and the
antibody repertoire diversifies rapidly during infancy but
plateaus in toddlers (59). Moreover, antibodies with broad
reactivity against P. falciparum that carry a gene insertion
derived from the collagen-binding protein LAIR1, have been
shown to undergo somatic hypermutation that increase binding
to infected erythrocytes (60). LAIR1 insertions have been
further revealed to represent a relatively common mechanism of
antibody diversification in African individuals, and that broadly-
neutralizing antibodies against Plasmodium arise from these low-
affinity precursors over time (61). While antigenic variation has
been proposed to explain the slow acquisition immunity to
malaria, there is also an increasing body of evidence suggesting
that antibody responses to malaria are poorly generated. In
malaria-endemic areas, substantial declines have been reported in
Plasmodium-specific antibody responses to low or undetectable
levels within months, and even weeks of a clinical episode after
reduced parasite exposure, despite an initial robust response
(56, 57, 62–69). Studies modeling the longevity of P. falciparum
merozoite-specific IgG antibodies have estimated average half-
lives of <10 days in children recovering from clinical malaria
(67). Similarly, short antibody half-lives ranging from only 2–7
weeks has been reported in asymptomatic children during the
dry season in The Gambia (68), which contrasts dramatically
with those of antibody responses to viral and bacterial antigens
such as vaccinia, measles and tetanus that reportedly persist for
decades following a single exposure (70–72). It is possible that
antibody responses measured following a clinical malaria episode
may reflect the output of short-lived antibody-secreting cells,
which typically produce an immediate but transient wave of
antibodies to control infection. In line with this idea, antibody-
secreting cells have been detected transiently in Ugandan
children immediately following acute malaria, and were found
to proportionally increase again upon a second clinical episode
(73). Modeling studies extended these observations, estimating
the longevity of both short- and long-lived antibody-secreting
cells in African children to range from 2–10 days, and 3–9 years,
respectively (74). Thus, together these findings suggest that a
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long-lived humoral response to malaria infection can potentially
be sustained after decay of transient antibody-secreting cells.
More detailed mechanistic investigations are much needed to
determine how parasite-specific antibody responses are sustained
over time and the factors that modulate the generation and
maintenance of antibody-secreting cells to infection.

THE ACQUISITION OF MEMORY B CELLS
TO NATURAL MALARIA INFECTION

Several studies have now shown the induction of Plasmodium-
specific MBCs in response to malaria infection; although
individuals exposed to high seasonal transmission have been
reported to induce only low frequencies of MBCs or to
lack detectable MBCs, even after exposure to parasitic loads
sufficient and capable of inducing antibody responses (57,
75, 76). Consistent with the slow acquisition of antibody
responses in endemic settings, the prevalence and breadth of
Plasmodium-specific MBCs appear to develop incrementally
with age and exposure (57, 59, 77). Longitudinal studies
of children and young adults in an area of high seasonal
transmission in Mali demonstrated a delayed, age-associated
development of MBCs specific for P. falciparum merozoite
antigens despite repeated infections annually (57). Moreover,
the prevalence of MBCs acquired by children following acute
malaria appeared to diminish substantially within the 6-month
dry season, contrasting with the stable frequency of MBCs to
tetanus toxoid vaccination in the same subjects (57). While
seasonal transmission prevented the longevity of these cells
to be determined beyond the dry season, this finding implies
an impaired maintenance or generation of MBCs in children
exposed to high transmission as they acquire clinical protection.

In contrast, individuals residing in areas of low transmission
or subjected to fewer clinical episodes have been shown to
generate stable Plasmodium-specific MBCs without frequent
boosting (77–85). The frequencies of P. falciparum-specific
MBCs detected in Thai adults that had experienced limited
episodes reportedly remained stable over time, with an estimated
half-life of approximately 7.5 years (81). Similarly, malaria-
specific MBCs have been described to be well-maintained in
individuals with a history of acute malaria but have since
lived in the absence of persistent infection (83, 84). In parallel,
low levels of exposure can effectively sustain parasite-specific
antibody responses (79, 82, 84, 86, 87), with antibody half-
lives estimated to be substantially longer than that of highly-
exposed individuals, ranging from months to years (32, 81,
88), suggesting sustained antibody production from long-lived
plasma cells. Collectively, these findings reveal that MBCs
can be generated and sustained following a limited number
of clinical episodes, while repeated infections in endemic
areas could have a detrimental effect on the generation of B
cell memory.

The characterization of malaria-specific MBCs to date has
relied predominantly on in vitro stimulation and differentiation
of circulating MBCs into antibody-secreting cells followed by
detection of antigen-specific clones by ELISPOT assays. This

approach precludes phenotypic analysis of the malaria-specific
MBC compartment. More detailed investigations are needed to
determine the ontogeny of detected MBCs and whether they
contribute to effective clinical immunity in malaria-exposed
individuals. Whereas, the induction of IgG-expressing MBCs
has been the primary focus over the past several years, a few
studies have identified IgMMBCs inmalaria-exposed individuals
and in malaria mouse infection models (59, 89, 90), with those
induced by murine malaria found to rapidly differentiate into
plasmablasts upon antigenic restimulation (89). Interestingly,
MBCs isolated from malaria-exposed individuals have been
described to have undergone Ig somatic hypermutations (76),
and accumulate further mutations upon acute malaria, with IgM
being the dominant isotype expressed prior to re-infection (59).

The use of murine infection models has also provided insight
into the development of B cell memory to malaria. Although
murine infection does not mirror all the features of human
malaria, there are genetic and phenotypic parallels between the
human parasite and rodent counterparts (91, 92). A few studies
have detected the development of IgG memory B cells following
non-lethal P. chabaudi infection (89, 90, 93, 94), associated
with efficient generation of secondary GCs and enhanced
control of re-infection (90, 95). In contrast, P. yoelii blood-
stage infection has been suggested to ablate vaccination-induced
MBCs (96), and further reduces the development of mature,
isotype-switchedMBCs against pre-erythrocytic parasite antigen,
which was associated with the induction of pro-inflammatory
cytokines and chemokines that may hinder effective T and B cell
interactions (97).

IMMUNOLOGICAL PROCESSES
MODULATING THE INDUCTION OF
MEMORY B CELLS IN MALARIA

T follicular helper (Tfh) cells are a crucial subset of CD4+ T
cells that orchestrate B cell memory development by providing
crucial survival and differentiation signals to B cells during the
GC response (98), and have been shown to be important for the
control of Plasmodium infection (99–105). The development of
Tfh cells has not been extensively investigated in human malaria
infection, however, a recent study identified the induction of
T helper 1 (Th1) cell-like CXCR3+PD-1+ Tfh cells in the
circulation of Malian children following acute P. falciparum
malaria (106). Circulating Tfh cells have been proposed to
be a surrogate measure of GC-derived Tfh cell responses to
human infection (107, 108) and thus constitutes a valuable proxy
to investigate Tfh cell biology in human settings. Circulating
Tfh cells in malaria-exposed children were shown to express
the Th1 lineage-defining transcription factor T-bet, and had
limited functional capacity to support MBC responses in vitro
(106). CXCR3+PD-1+ Tfh cells have also been identified in
Brazilian adults during acute P. vivaxmalaria (109). Interestingly,
their proportions positively correlated with repeated malaria
episodes (109), implying that circulating Tfh cells accumulate
with sustained parasite exposure. However, whether or not the
detected Tfh cells facilitate the induction of MBCs that confer
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protection to disease over time remains to be investigated in
larger cohorts and different transmission settings. In addition,
circulating follicular regulatory T (Tfr) cells have been postulated
to interfere with Tfh cell responses to infection (110). Tfr
cells expressing the inhibitory molecule CTLA-4, have been
detected at increased frequencies after acute malaria in Malian
children (110). Future studies will be important in determining
if the transition between susceptibility to clinical disease and
asymptomatic infection is associated with the development of
functional Tfh cell responses that support the induction of B cell
memory populations.

Similar to human malaria, CD4+ T cells induced by murine
infection have been described to express a dual Th1- and Tfh-
associated phenotype, including chemokine receptor CXCR5,
and cytokines IL-21 and IFN-γ (99, 111, 112). Precursor Tfh
cells induced in response to P. berghei severe malaria infection
also display a Th1 cell-like phenotype, characterized by the
upregulation the chemokine receptor CXCR3 and transcription
factor T-bet (113). Moreover, the expression of T-bet impaired
the differentiation of Tfh cell precursors into mature Tfh cells,
which significantly suppressed the development of GC B cells,
plasma cells and MBCs (113). Notably, genetic ablation of T-bet
or neutralization of the pro-inflammatory cytokines interferon
(IFN)-γ and tumor necrosis factor (TNF) promoted Tfh cell
differentiation, and restored previously impaired GC responses,
demonstrating that inflammatory responses associated with the
induction of symptomatic malaria reduce the magnitude of
MBC responses by modulating effective Tfh cell development
(114). In support of this concept, exogenous IFN-γ has been
shown to reduce Tfh and GC B cell responses to Plasmodium
yoelii (102), and the blockade of CXCR3-mediated signals was
found to enhance precursor Tfh cell accumulation in the spleen
of malaria-infected mice, thereby favoring parasitic clearance
(115). Other inflammatory pathways such as type I IFN signals
have also been recognized to indirectly limit Tfh and GC B
cell responses to infection (116, 117), although the precise
mechanisms by which this occurs is not yet clear. Recent
studies suggest that the damage-signal sensor P2X7 (118), IFN
regulatory factor 3 (119), and changes in metabolism and
proliferation, as well as altered gene expression of chemokine
receptors (120) influence the bifurcation of Tfh and Th1 cell
differentiation during murine infection. Whereas, inflammatory
responses to malaria appear to dampen the magnitude of the
MBC response to infection (114), effective control of blood-stage
malaria and its associated pro-inflammatory responses appears
to permits normal progression of Tfh cell development (113,
121), giving rise to T cell memory that responds to secondary
infection (112).

Whereas, it is reasonable to assume that the aforementioned
modulation of Tfh cell function by inflammatory pathways
elicited in response to infection is responsible for the reduced
B cell responses observed during acute infection, a direct effect
of IFN-γ-mediated signaling or intrinsic expression of T-bet in
B cells cannot be ruled out. P. yoelii infection has recently been
shown to induce a subset of B cells to express the transcription
factor T-bet, and deletion of B cell-specific IFN-γ receptor or T-
bet deletion elevated antibody responses to infection (122, 123).

Further work to establish if inflammation directly modulates the
differentiation and functional capacity of B cells is needed to
address this question.

ATYPICAL MEMORY B CELLS: FRIENDS
OR FOES?

There is evidence that Plasmodium parasites can directly
modulate B cell function. In vitro studies have shown that the
parasite can directly activate human naive B cells via a cysteine
rich inter-domain region of P. falciparum erythrocyte membrane
protein 1 (124, 125) and downstream toll-like receptor signaling
(126), which may lead to non-specific polyclonal activation
of B cell responses. CD27-expressing B cells were observed
to be the major responding population (124, 125), suggesting
a potential impact on the MBC compartment. In line with
this idea, acute P. falciparum infection has been reported to
modulate systemic mediators of B cell activation and survival
(127, 128), which has been associated with an early proliferation
ofMBC subsets, prior to the induction of GC responses following
experimental human infection (128), supporting a potential role
of bystander activation of non-specific MBC subsets that enables
parasite evasion.

Insight into the notion that B cell memory induction in
malaria may be dysregulated surfaced upon the characterization
of an expansion of MBCs exhibiting an atypical phenotype
following persistent malaria exposure (17, 84, 129, 130).
Originally described as an exhausted subset of MBCs implicated
in humoral deficiencies in HIV infection (131), a phenotypically
similar CD27−CD21− circulating MBC subset notable for
their expression of inhibitory receptors, was detected in
Plasmodium-infected individuals following acute malaria in
Brazil (109), Gabon (132), Ghana (85), Gambia (77), India
(133), Kenya (84, 130), Mali (15, 17, 129, 134, 135), Papua
New Guinea (136, 137), Thailand (78), and Uganda (16,
73, 138), and further exacerbated by HIV co-infection (139,
140). Studies to date corroborate that the accumulation of
this subset is influenced by the level of parasite exposure.
Higher frequencies of atypical MBCs were found in adults
compared to children with shorter exposure histories (17).
Similarly, Malian adults from high transmission settings were
found to have higher frequencies of these cells than Peruvian
individuals residing in a low transmission area (129). A decline
in the atypical MBC pool was observed during 12 months
without malaria transmission (84), further substantiating a
role of persistent parasite exposure in the maintenance of
this population.

Recent work has investigated the function of these atypical
MBCs and their relationship to classical MBCs. Evaluation of
the variable gene repertoires of atypical MBCs proposed that
they share a common developmental precursor to classical
MBCs (15, 132, 141), however, emerging work support that
atypical MBCs are phenotypically and functionally different to
classical MBCs. There is still conflicting evidence on the effector
capacity of atypical MBCs from malaria-infected individuals.
Whereas, some support the notion that atypical MBCs are
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capable of secreting neutralizing antibodies (132), subsequent
work contend their lack of active antibody secretion (15, 16).
Atypical MBCs have been reported to express lower levels of
surface IgG (136), possess reduced B cell receptor signaling,
as well as impaired interleukin (IL)-6, IL-8 and antibody
production in vitro (15, 16). Atypical MBC frequencies in
malaria-exposed individuals have been shown to be positively
correlated with pro-inflammatory cytokine levels such as IL-8
(136), and their expression of the inhibitory molecule FcRL5
has been proposed to be a marker of dysfunction associated
with increased malaria exposure (16). FcRL5-expressing atypical-
like MBCs in healthy individuals have been distinguished by
their higher expression of inhibitory receptors such as PD-1
and transcription factors Tbx21, Bcl-6, and Sox5 and blunted
proliferation capacity compared to FcRL5− B cells (142). In
line with these findings, recent studies revealed that atypical
MBCs in Malian children express Tbx21 (134), which encodes
the Th1 transcription factor T-bet (143). Emerging evidence
that T-bet becomes up-regulated in various disease contexts in
subsets of B cells that share many features in common with
atypical MBCs found in malaria-infected individuals. T-bet-
expressing B cells have been associated with both protective and
pathogenic roles depending on specific settings, which include
bacterial (21), parasitic (144–146) and viral infection (147–153),
cancer (154–156), autoimmune conditions (157–164), and aging
(165). In malaria, atypical MBCs expressing high levels of T-
bet have also been found to express decreased levels of the co-
stimulatory molecule CD40 and reduced phosphorylation of B
cell receptor signaling molecules (134), suggesting that T-bet
expression might reduce B cell effector function. In line with
this concept, the frequency of malaria episodes was found to
be associated with increased T-bethi MBC in a small group
of children (134). On the other hand, longitudinal cohort
studies have reported that low parasite density malaria is
associated with persistence (78) or accumulation of atypical
MBCs over time, which raises the possibility that atypical
MBCs contribute to developing immunity (73, 138), although
T-bet expression was not examined in these cells. Furthermore,
similar atypical MBCs that express FcRL5 have been recently
detected in P. chabaudi-infected mice (166, 167), but appear
to display normal features of proliferation and Ig expression,
representing a short-lived population of activated MBCs (167).
Collectively, a causal relationship between atypical MBCs and
immune protection or disease progression remains unclear,
and more studies are urgently needed to determine the
functional significance of atypical MBC expansion in the
acquisition of humoral immunity to malaria and the precise
contribution of the transcription factor T-bet in shaping atypical
MBC function.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Emerging evidence both in human field studies and murine
infection models are beginning to address how the induction
of humoral immune responses is compromised during acute
malaria, and the consequences of these processes for the
establishment of long-term immunological B cell memory. There
is now considerable evidence that exposure to Plasmodium
parasites is associated with altered proportions of circulating
memory B cells, including an expansion of atypical memory B
cells. Further studies to unravel the complexity of this diverse
memory B cell compartment, in terms of origin, function and
protective capacity of different subpopulations are urgently
needed. Information about the level of homology between
human and mouse memory B cell subsets is lacking, particularly
in relation to their surface marker expression patterns, which
makes it difficult to infer how findings in malaria infection
models translate into human settings. Gene expression analysis
studies, including how transcription factors and the cytokine
environment influence these processes might be required to
overcome these issues and establish functional correlations
between human studies and much needed mechanistic
work in mice.

Given the critical importance of antibodies and long-
lived humoral memory in immunity to malaria, an in-depth
understanding of the factors that delay their development
is undoubtedly required to inform the design of targeted
therapeutic strategies to enhance immune responses to the
parasite and protect against disease susceptibility. Detailed
characterization of the immune processes by which B cell
memory to malaria is generated and the specific effector
populations required to confer protection, will undoubtedly
benefit vaccine development and optimisation efforts, especially
in light of the modest efficacy levels achieved to date with current
vaccination regimes at a population level (168, 169).
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