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A system of more than one part can be deciphered by observing differences between
the parts. A simple way to do this is by recording something absolute displaying a
trait in one part and not in another: in other words, mutually exclusive computation.
Conditional directed expression in vivo offers processing in more than one part of the
system giving increased computation power for biological systems analysis. Here, I report
the consideration of these aspects in the development of an in vivo screening assay that
appears sufficient to identify components specific to a system.

Keywords: genetics, computation, mutual exclusivity, specificity, methods, systems analysis

INTRODUCTION
Problem solving using computation is not only limited to silicon
based systems. Drosophila genetics has been used for many years to
help solve which genes interact and the biological processes they
might be involved in (Martinez-Arias, 2008) and embodies the
concept of a Universal Turing machine (Turing, 1936) whereby the
computer can gain meaningful information from other machines.
While serial processing is valid (Amdahl, 1967), parallel process-
ing can offer increased computation power in terms of speed
to help solve more complex problems within a practical time
frame (Gustafson, 1988). The development of RNA interference
(RNAi; Fire et al., 1998) together with directed expression using
the Gal4/UAS system (Brand and Perrimon, 1993) has revolution-
ized the way we can examine putative gene loss of function in
both a spatial and temporal manner in vivo (Dietzl et al., 2007;
Perrimon et al., 2010). This reverse genetics approach offers easily
accessible, highly parallel processing on the level of the number
of genes that can be examined in a system and importantly on
the level of the number of parts of the system they can be studied
in. However, hitherto RNAi screening has been one dimensional:
what I mean by this is that RNAi’s have been processed in only
one part of the system lacking the power to determine inputs
that might function specifically from those that function generally.
This is an oversight leading to unnecessary downstream analysis
of candidate genes that function generally and therefore ineffi-
cient use of resources when components specific to a system are
sought.

A system of more than one part may exhibit general similarities
between its parts but these will also exhibit specific differences. It is
these differences when observed that allow us to gain meaningful
information to describe the system. A simple way to do this is by

observing something absolute displaying a trait in one part and not
in another: in other words, mutually exclusive. Paracrine signaling
systems such as Hedgehog (Hh) signaling provide a suitable model
with which to explore the concept of mutually exclusive compu-
tation as they can be considered as consisting of two parts when
they function in a paracrine manner: at the transcriptional level
one part expresses the receptor, in this case patched (ptc) while its
corresponding part expresses the ligand, in this case hh with their
pattern for the most part mutually exclusive (Figure 1).

Here, I demonstrate an application of mutually exclusive
computation in the design of an in vivo RNAi screening assay
examining the well characterized Hh signaling pathway as proof
of the concept of a computation tool using Drosophila paral-
lel processors to increase the power to identify candidate genes
that might exhibit specificity (Figure 2). In addition to this
methods efficiency its importance is emphasized by the need for
drugs that can act in a specific context (Criscitiello et al., 2012).
To highlight this with respect to Hh signaling and its involve-
ment in cancer: several antagonists for Smoothened (Smo), the
seven-pass trans-membrane positive transducer of the Hh sig-
nal, have been developed by drug companies. These have shown
some success, for example in treatment of Basal Cell Carci-
noma’s (Atwood et al., 2012). However, studies have revealed
drug-resistant tumor variants that bypass Smo inhibition and
in addition to the obvious concerns of targeting an important
signaling pathway that is likely to play as yet unidentified roles
in the adult, major issues include potential secondary develop-
mental toxicities in children (Raju and Pham, 2012). Thus, there
is a very clear need for tools that can identify context specific
components of biological mechanisms to serve as potential drug
targets.
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FIGURE 1 | Stage 16 Drosophila embryo’s showing an extensive and,

for the most part, a mutually exclusive pattern of ptc and hh

expression. (A) ptc-Gal4, UAS-GFP showing ptc directed expression of
GFP. (B) hh-lacZ Showing hh directed expression of LacZ (red). Note,

here we can also see the post-mitotic neuronal marker Elav (blue) and
the axon marker Neuroglian (green). (C) A region of a ptc-Gal4, UAS-GFP;
hh-lacZ embryo showing for the most part a mutually exclusive pattern of
ptc (green) and hh (red) expression.

FIGURE 2 | Schematic of a computation using more than one Drosophila

processors. The directed expression commands and RNAi input generate
the X or O output that is scored and recorded by asking IF F1 AND F2 = O put
a O, OR IF NOT put an X. The two outputs for the ptc and hh directed parts of

the computation generates a signature and might be O, O; X, X; X, O, or O, X
which can be searched to identify genes that might function specifically with
respect to the context in question. Please see main text for a detailed
description of this method andTable 1.

RESULTS AND DISCUSSION
EXAMINATION OF THE F1 GENERATION
The secreted signaling molecule Hh and its signal transduction
pathway is vital for multicellular organisms, playing multiple roles
during development and in the adult including the control of stem
cell fate (Ingham et al., 2011). Ptc is both a receptor for Hh and
a direct transcriptional target of Hh signaling and is expressed at
high levels in cells that receive the Hh signal (Chen and Struhl,
1996). Thus, we might expect ptc directed expression of RNAi
lines for genes known to be Hh signaling components expressed
in Hh signal receiving cells to have an effect, and for example

in the case of cubitus interruptus (ci) we see lethality in the F1
generation, i.e., they are non-viable (Table 1) and I can record
this F1 score using the symbol X. In turn, we might expect ptc
directed expression of RNAi lines for genes not expressed in Hh
signal receiving cells to not have an effect, and for example in
the case of hh we see no lethality in the F1 generation and I
can record its F1 score using the symbol O. These F1 scores can
also be recorded as X and O attributable to an absence or pres-
ence of adult progeny, respectively (Figure 2). This is significant
if we consider how a computer might record the F1 score. In
the case of ptc directed ptc RNAi, while we see lethality in the
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Table 1 | A record of the results for a computation using ptc and hh directed expression of RNAi for genes, including those known to function in

the Hh signaling pathway and its regulation.

Gene RNAi line Directed expression Signature

ptc hh

F1 F2 F1 F2

ptc (CG2411) 28795* Oa X O O X, O

Cos2 (CG1708) 108914# Xb – O O X, O

ci (CG2125) 105620# Xc – O O X, O

ci (CG2125) 51479# Xc – O O X, O

smo (CG11561) 9542# Xd – Xe – X, X

smo (CG11561) 27037* Xf – Xg – X, X

fu (CG6551) 27662# Oh O Oi Xi O, X

fu (CG6551) 31495* Oj O O O O, O

Su(fu) (CG6054) 28559* O O O O O, O

hh (CG4637) 1403# O O Xk – O, X

hh (CG4637) 43255# O O Xl – O, X

disp (CG2019) 0004# O O O O O, O

ttv (CG10117) 4871# Xm – Xn – X, X

CkIa (CG2028) 25786* Xo Xo Xp – X, X

sgg (CG2621) 31308* O O O O O, O

slmb (CG3412) 107825# Xq – Xr – X, X

roc1a (CG16982) 32399# Xs – Xt – X, X

lin19 (CG1877) 33406# Xu – Xv – X, X

CG31522 37329# Ow X O O X, O

CG31522 106652#/CyO, GFP Xx – O O X, O

CG31522 106652#/CyO; fu (CG6551) 27662#/TM6b Oy – – – –

CG31522 106652#/CyO; fu (CG6551) 31495*/TM6b Oz – – – –

N (CG3936) 27229# Xα – Xβ – X, X

Dl (CG3619) 37288# Xχ – X� – X, X

Crosses were carried out in triplicate on different days.The commands and input generating the X or O output can be described as follows: processor 1 – ptc-Gal4/ptc-
Gal4 x RNAi line > F1, X = no adult progeny or O = adult progeny. F1 > F2, X = no adult progeny or O = adult progeny. Processor 2 – hh-Gal4/TM3, Sb × RNAi
line > F1, X = no adult progeny (no non-Sb) or O = adult progeny (non-Sb). F1 (non-Sb) > F2, X = no adult progeny or O = adult progeny. If we consider each cross
or processor separately, the result for the output of each can be gained by asking: IF F1 AND F2 are O put an O, OR IF F1 OR F2 is X, put an X. This can be simplified
to IF F1 AND F2 = O, O, OR IF NOT, X. This output generates a signature and might be O, O; X, X; X, O; or O, X which can be searched to identify genes that might
function specifically with respect to the system in question. *TRiP line Bloomington identifier. #VDRC line identifier.
aEarly instar lethal. Only female progeny but non-viable; bLarval lethal; cPupal lethal. Some almost eclose; dPupal lethal; eNo non-Sb; fPupal lethal; gNo non-Sb; hFused
wing; iNon-sb but non-viable; jFused wing; kNo non-Sb; lNo non-Sb; mProgeny die soon after eclosion; nNo non-Sb; oPupal lethal. A few escapers but non-viable; pNo
non-Sb; qLarval and pupal lethal; rNo non-Sb; sLarval and pupal lethal; tNo non-Sb; uLarval lethal; vNo non-Sb; wAdult lethal. Dead in 3 days. No obvious morphological
defect; xNon-GFP non-CyO are first instar lethal. Do not move far. No obvious morphological defect; yMostly CyO progeny. A few were non-CyO non-TM6b; zMostly
CyO progeny. A few were non-CyO non-TM6b; αPupal lethal; βNo non-Sb; χPupal lethal; �No non-Sb

F1 we also see adult progeny. This might be explained by the
knockdown of ptc being compensated for, by the negative feed-
back when the pathway is activated increasing Ptc expression and
serving to limit the extent to which the signal might be received
by neighboring cells. This is interesting because depending on
how the computer perceives the F1 will determine how the score
is recorded. This question has implications if the assay is auto-
mated using a simple computer. Here, in the case of ptc RNAi
I record the F1 score as an O because of the presence of F1
adults, but I acknowledge a more complex computer can record
an X.

EXAMINATION OF THE F2 GENERATION
Hh signaling mediates homeostasis in several adult niches. In
the Drosophila gonads Hh signals directly to drive the prolifer-
ation of somatic stem cells in both the adult ovary (Forbes et al.,
1996; Zhang and Kalderon, 2000) and testis development (Michel
et al., 2012; Amoyel et al., 2013). The loss of Hh signaling here
can cause male sterility, i.e., no F2 generation (Christian Bokel,
personal communication). These somatic cells go on to ensheath
the germline cells and Hh signaling may play an indirect role in
their development. Recently, a study including the use of directed
RNAi shows an indirect role for Hh signaling to the supporting
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escort cells maintaining the normal pool of germline stem cells
(GSCs) in the adult ovarian niche (Rojas-Rios et al., 2012). While,
RNAi lines for all genes might not appear to be effective in the
female germline (Perrimon et al., 2010), an explanation for this
might include timing of RNAi expression and the extent of mater-
nal contribution for a corresponding mRNA. Still, this concern
over potency does not include the somatic cells. Thus, I decided
it to be appropriate to include in the assay an examination of the
F2 generation (Figure 2). Interestingly, for ptc directed ptc RNAi,
there were no F2 progeny and I record this F2 score as X (Table 1).
Thus, according to the assay I describe, in the case of ptc directed
ptc RNAi while the F1 score taken alone might be considered as
a false negative result, the F2 score produces an overall score of X
and like ptc directed ci RNAi can be considered as non-viable and
a positive result. Here, I am describing an assay capable of iden-
tifying Hh signaling components simply using directed RNAi in
vivo. I do this in a way that can be described as examining viability,
firstly by including an indirect examination of F1 lethality or if not
lethal by including a second indirect examination of the F1’s ability
to reproduce. For both counts this is done by examining whether
there is an absence or presence of adult progeny in the F1 and F2
respectively, and the corresponding result is recorded using the
two symbols X and O. It is beyond this studies scope to character-
ize the changes caused by the RNAi in detail. In several instances
using this assay where I have seen F1 adults but no F2 progeny
(unpublished observation), F2 lethality can be ruled out because
the F1 are heterozygous for both driver and RNAi. This means we
expect to see progeny including combinations lacking one or both
these elements and these can be considered essentially normal.
Non-viable F1 might result from an effect on the germline indi-
rectly through somatic cell regulation in the reproductive organs
but we should also consider that, Hh signaling functions again
and again throughout development and it is interesting that Ptc
appears to be expressed at high levels in the adult nervous systems
(Gazi et al., 2009). However, studies are scarce concerning a specific
role in later nervous system development through conditional loss
of function studies. Still, it is worth noting that later nervous
system defects, for example nerve synapse defects, whether at a
neuromuscular junction or a nerve to nerve synapse can cause
the neuromusculature or controlling nervous system to function
abnormally leading to defects including progressive loss of loco-
motion, causing indirect larval, pupal, or adult lethality (Chan
et al., 2003; Gazi et al., 2009) and behavioral defects, for example
courtship abnormalities (Finley et al., 1997). It has been known
for some time that in certain instances, for example loss of the
gene dissatisfaction (dsf), flies can be non-viable, i.e., the F1 are
unfit to reproduce, due to nervous system defects including Bou-
ton defects at specific nerve muscle synapses (Finley et al., 1997).
Therefore, it is reasonable to assume that this assay, in addition to
the possibility of identifying genes that might function later in the
development of the sex organs and homeostasis of the germline
in this context, might also offer the potential to identify genes
affecting the F1’s ability to reproduce indirectly through the con-
trol of other aspects of biology, and potential defects of this type
could still be broadly defined as a viability defect. Furthermore,
Hh signaling is known to function in additional later stem cell
niches, for example in the larval lymph gland maintaining the

blood cell precursors (Mandal et al., 2007; Mondal et al., 2011)
and in the adult hindgut regulating the differentiation of stem
cells (Takashima et al., 2008). Therefore, it will be interesting to
disrupt Hh signaling in these contexts and examine the output in
terms of viability and also longevity of these animals since a simple
adjustment to this type of assay, could examine the life span of the
F1 adults.

DIRECTED EXPRESSION USING TWO INSTRUCTIONS THAT SHARE A
MUTUALLY EXCLUSIVE RELATIONSHIP
The use of ptc directed expression alone for the assay lacks the
power to differentiate those components that appear to be spe-
cific to Hh signaling, i.e., normally appear to function only in
Hh signal receiving cells or cells with the potential to receive the
Hh signal, for example ptc, from those components we know
function in other systems, for example Casein kinase Ia (CkIa;
Price, 2006). In Drosophila, ptc and hh are expressed extensively,
and for the most part in a mutually exclusive pattern during
embryonic development (Figure 1). Hh signaling is known to
be used again and again throughout development and in the
adult of multicellular organisms (Ingham et al., 2011) generally
using paracrine and juxtacrine mechanisms. Thus, if we consider
all cells expressing ptc and all cells expressing hh together, we
can say they overlap with the expression patterns of components
of multiple biological systems throughout development and in
the adult. Therefore, to gain power and differentiate genes that
may or may not function specifically in paracrine Hh signaling, I
performed dual ptc and hh directed RNAi processing (Figure 2;
Table 1).

Dual processing each RNAi now gives four possible scenarios. I
reasoned that for those genes that might function specifically in Hh
signal receiving cells, parallel processing their RNAi using ptc and
hh directed expression might result in an X and an O score respec-
tively if a candidate genes function is mutually exclusive thus fitting
the paracrine model for Hh signaling: I term this an X, O signature.
The more general machinery known to function in multiple sys-
tems might result in an X and an X score respectively: I term this
an X, X signature. In addition, we might expect an X, X signature
for genes specific to other vital systems that function in contexts
other than Hh signaling. The machinery not vital might result in
an O and an O score respectively: I term this an O, O signature. In
turn, for genes that might function specifically in Hh sending cells
the result might be an O and an X score respectively: I term this an
O, X signature. While X, X and O, O signatures can be considered
as negative results, the X, O and the vice versa O, X signatures
can be considered interesting because they indicate specificity and
depending on the type of genes sought by the user both could
be regarded as positive results in this type of assay. However,
foremost, I designed this assay to search for genes that might func-
tion specifically in Hh signal receiving cells returning an X, O
signature.

I found for several genes that we might expect to fit the patterns
described above indeed it was the case. For ptc directed ptc, Costal2
(Cos2), and ci RNAi the result is non-viable while hh directed
expression is viable: an X, O signature (Table 1). For CKI, slmb,
and roc1a, genes known to function in other systems the result is
non-viable in both parts: an X, X signature. As we might expect
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for ptc and hh directed hh RNAi the result is viable and non-viable
respectively: an O, X signature. In addition to the importance of
this control giving validity to the assay, this result merits com-
ment as it indicates that this assay might also offer an opportunity
to search for genes that might function specifically in Hh signal
sending cells with respect to Hh signaling. Also, if we consider that
we do not know a single more precise Hh signaling context specific
gene to use to direct expression, i.e., one that might only be used in
a sub-set of contexts where Hh signaling might be used, the poten-
tial identification being part of the impetus behind this study: the
use of two genes to direct expression or instructions that share a
mutually exclusive relationship importantly appears to give us suf-
ficient power to identify those candidates that exhibit specificity.
However, I do accept that this assay as specifically described here
would be insufficient to determine potentially specific autocrine
functioning components of Hh signaling. Furthermore, while the
assay appears to provide the power to identify those genes that
are generally accepted to function specifically in Hh signaling, the
assay might identify other genes that exhibit a relationship with
Hh signaling: for example any targets of the pathway that might be
specific or candidates that while not a component of the pathway
might function specifically in the same cells as the system being
searched.

IDENTIFICATION OF CG31522
The proof of the concept I report here raises an interesting ques-
tion: can this type of assay show beyond a reasonable doubt that
components identified function specifically in a system described
by the instructions? With this in mind, I would like to report the
X, O output or signature generated for two RNAi lines (Table 1)
corresponding to CG31522 a putative Elongase of very long chain
fatty acids (ELOVL)1. This putative protein encoding gene first
came to my attention as it appeared to show reduced expression
in a global gene expression study of late stage smoD16 (van den
Heuvel and Ingham, 1996; Chen and Struhl, 1998) embryo’s at
the transcript level (unpublished observation). Interestingly, the
X, O signature is identical to those generated for ptc, Cos2, and ci
and therefore can be considered as genetic evidence that CG31522
might share a relationship with Hh signaling. In addition, both fu
RNAi lines used in this study appear to suppress the late embry-
onic lethality seen with the ptc directed CG31522 106652 RNAi
line generating adult progeny (Table 1). This important further
genetic evidence indicates that the known Hh signaling compo-
nent fu is epistatic to CG31522 and gives strong support to the
notion that CG31522 might be a novel Hh signaling pathway
component. Interestingly, recent studies recorded on FlyBase2

using coaffinity purification coupled to mass spectrometry pro-
vides evidence that the putative protein encoded by CG31522
interacts with its homolog, the protein encoded by the adjacent
gene CG31523 (Guruharsha et al., 2011). With respect to Hh sig-
naling: this data, together with previous data generated using
yeast-two-hybrid (Y2H) based technologies and searchable using
InterologFinder3 (Wiles et al., 2010), indicates that CG31522 or

1www.flybase.org/reports/FBgn0051522
2flybase.org
3http://interologfinder.org/simpleIfWS

possibly via CG31523 interacts indirectly with the Hh signaling
components Slmb and Ci (Giot et al., 2003; Formstecher et al.,
2005; Guruharsha et al., 2011). One of these proteins shown to
interact with CG31522 is Protein Phosphatase 2A (PP2A), a phos-
phatase shown to specifically dephosphorylate Smo restricting
signaling by high concentrations of Hh (Su et al., 2011). Inter-
estingly, another tandemly arranged duplicated gene (Quijano
et al., 2008) and putative ELOVL bond disrupts Drosophila sper-
matocyte division (Szafer-Glusman et al., 2008). However, it is
studies in vertebrates that provide the majority of information
concerning the role for this type of gene. Importantly, a study
identified a putative human ortholog ELOVL7, as overexpressed
and involved in prostate cancer growth and cell viability (Tamura
et al., 2009). What’s more, previously another putative ortholog
ELOVL4, known for its role in degenerative diseases of the mac-
ula tissue, a central part of the eye retina, is able to rescue the
neo-natal lethality seen in a mouse model of this type of dis-
ease (McMahon et al., 2011). Lastly, a report in mice is of note
because it describes another ortholog, ELOVL3 expressed in skin
cells with the implication that these cells might be stem cells (West-
erberg et al., 2004). Taken together, I believe this information
underlines that this type of gene should be prioritized for further
study concerning their function and potential involvement in Hh
signaling.

FURTHER CONSIDERATIONS USING THIS TYPE OF ASSAY
Using this assay, while for several Hh pathway components not
known to function in another system the results return a positive
X, O signature and thus fit our model, for some genes generally
accepted to be of this type, this is not the case, for example smo, and
fu and Suppressor of fused [Su(fu)] return results that appear to be
false negatives. In some instances, discrepancies of this type might
be explained due to off-target effects (OTEs; Mohr and Perrimon,
2012), however, it is unlikely to be a sufficient explanation in
all instances and the reader should be aware of other possible
explanations that serve to highlight the limitations using this assay
as presented here and what appears to be the high chance of false
negatives.

A negative X, X signature as in the case of smo might be
explained by an autocrine function but this is less likely with lit-
tle evidence for Hh signaling function in this manner in flies and
supported by those components resulting in positive X, O signa-
tures. Another possibility that could generate an apparent false
negative of the type X, X is if a components function is shared
with another system. This might be in a system whose expression
overlaps with Hh signaling or whose relationship is more closely
entwined, for example in an interacting pathway that shares some
cross-talk with Hh signaling (Takebe et al., 2011). However, there
is little evidence for Smo function in this manner in Drosophila
so while this apparent false negative result could be interesting it
requires further investigation to confirm whether this is the case
or not.

In the case of fu, the characteristic fusion of the third and
fourth wing veins (Preat, 1992) was evident – highlighting the
potential for identification if the assay is adjusted and the com-
puter records a different output – but depending on the RNAi
line examined, resulted in an O, X or O, O signature. The score
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of X in the case of hh directed expression, in addition to the
possibility of OTEs it is worth considering that fu is known to
function regulating the BMP receptor Thickveins (Tkv) in ovary
GSC derived cystoblasts (CB; Xia et al., 2010). Interestingly, Hh
appears to be expressed in the GSC producing primordial germ
cells (PGCs) during late larval development (Sato et al., 2010).
Perhaps fu RNAi might be present at sufficient levels to disrupt
CB differentiation and normal oogenesis. However, it is surprising
that the ptc directed fu RNAi result is viable considering its role
in somatic cell differentiation in egg chamber formation (Besse
et al., 2002). Thus while in the first instance perhaps a plausi-
ble explanation might be due to function in another system, a
possibility for the latter might be due to compensation by the
system: the RNAi knockdown might be insufficient and compen-
sated by a suppressor, in this example we have a candidate in
Su(fu).

The negative O, O signature type for Su(fu) might be expected
since Drosophila lacking Su(fu) are known to develop into viable
and fertile adults (Preat, 1992). Thus, while this apparent false
negative might be explicable it none the less highlights a further
limitation using this assay in that other suppressors will probably
be missed and if sought the user should consider an adjustment
of this assay perhaps similar to that used in the screen to identify
Su(fu). Essentially, Preat’s assay is designed to identify interact-
ing genes and can therefore be considered as a forerunner for
assays with the capability to search for multiple genes involved
in a function, perhaps functioning in a complex, in other words
what might be regarded as a functional set. This has some simi-
larity with the potential for the type of assay described here and
is worth some thought. Interestingly, an OTE might result in a
second target that by chance suppresses the intended target. While
on the one hand this appears to be a hindrance in our assay, at
least in the potential for the return of inaccurate results with-
out full awareness of OTEs that might occur, on the other hand
serves to highlight the potential for this type of assay to interro-
gate more than one component that will probably have important
applications. With the idea for multiple targets in mind, we can
see potential for this type of method perhaps not only confined
to reverse genetics but also with a forward genetics aspect if, in
addition to scope for the development of targeting combinations
of genes, we might also include randomness in the generation of
the sequences used.

I think it is true for most, if not all assays that we might expect a
number of false negatives but this is can be considered outweighed
by an assays ability to identify true positives. Still, to give further
support to the accuracy of this assay I processed RNAi lines cor-
responding to the genes Notch(N) and Delta (Dl), the receptor
and one of its ligands involved in another cell signaling mecha-
nism used again and again throughout development and in the
adult (Artavanis-Tsakonas et al., 1995), as we might expect both
returned the negative result of X, X (Figure 1). Furthermore, from
the examination of RNAi lines corresponding to around 100 genes,
the observation of an X, O signature was rare (data not shown)
indicating that false positives are likely not to be problematic using
this assay searching for the X, O output. However, I did see the O,
X signature several times indicating this assay as it stands might
not be well suited to the search for genes showing specific function

in Hh sending cells. Still, as mentioned above, foremost I designed
this assay to search for genes that might function specifically in
Hh signal receiving cells returning an X, O signature. Therefore,
this concern over an overly sensitive Processor 2 (Figure 2), i.e.,
a return of an X score for RNAi lines processed using this hh-
Gal4 line for hh directed expression, should be considered if genes
that might function specifically in the Hh signal sending cells are
sought. However, importantly this apparent sensitivity is likely to
be beneficial in the accuracy of the search for genes that return
an X, O result, increasing the proportion of true positives iden-
tified reducing the resources spent upon downstream analysis of
potential false positives.

Also, I think it is worth briefly mentioning here, numerous
instances of screening assays use lethality as an identifier, for
example Nusslien-Volhard and Weischaus in their landmark paper
(Nusslein-Volhard and Weischaus, 1980) first identify mutants in
this way but then look on a second level to identify those involved
in the early biological phenomenon of segmentation. The assay
I report here, for example in the case of ci, appears to have the
ability to show a genes involvement in a biological phenomenon,
in this case a specific function in the context of Hh signaling, from
examining lethality alone, or to be more exact from showing gene
knockdown in two related parts of a system to be non-viable and
viable, respectively.

CONCLUSION
In conclusion, using Boolean operators (Boole, 1848): i.e., using
AND, OR, and NOT to count unambiguous output of O or X,
from two related yet mutually exclusive instruction streams or
commands and inputs: i.e., examination of F1 and F2 genera-
tions from ptc and hh directed processing of putative RNAi lines
of genes, I demonstrate an in vivo assay with the ability to iden-
tify genes that appear to function specifically in Hh signaling.
This assay can be considered as novel because it is the first time
that I am aware of, that a screening assay has been demon-
strated to show a genes relationship with a specific biological
phenomenon from examining non-viability (including lethality)
and viability in respective parts of a system consisting of at least
two related yet mutually exclusive parts. Therefore, this work
demonstrates for the first time, the potential power of directed
expression using mutually exclusive processing (in this case of
putative RNAi lines of genes). Taken together, if we consider that
Drosophila are self-assembling and renewable so that a one-time
use from command and RNAi input to output is not limiting
and examination of viability can be easily automated using a sim-
ple computer, for example using motion sensors, then in effect I
am describing a prototype for a computer that utilizes Drosophila
processors to compute the relationship between systems and their
components that might play context specific functions vital for
life.

I think it is important to realize that while the assay I demon-
strate here may have its practical limitations, still the concept of
mutually exclusive computation in the study of biology and prob-
ably not only limited to this science, has important implications.
There will be potential for optimization using new technology as it
becomes available. A possibility would be to make use of the Gal4
repressor Gal80 (Ma and Ptashne, 1987; Lee and Luo, 1999): for
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FIGURE 3 | A schematic representing directed expression using multiple

drivers without and with the use of a repressor system. (A) In this simple
depiction of two paracrine signaling pathways within a whole system the
receptors R1 and R2, and their respective ligands L1 and L2 can be thought
of within a few cells in one space and time or the sum of multiple events.
(B) The possibility for shared expression brings us to the realization that using
all drivers R1, R2, L1, and L2 to direct expression of RNAi for a common

component even if specific to both pathway receiving cells, might return a
score of X in all instances. An X, X signature is likely if R1 plus R2 versus L1
plus L2 drivers are used in these two combinations. (C) However, this
limitation can be circumvented if we use a repressor system: for example, a
global driver such as tubulin-Gal4 together with R1-Gal80, R2-Gal80. If a
combination of R1-Gal4 and R2-Gal4 drivers is now used in parallel an X, O
signature is possible.

example, ptc-Gal4 and in parallel a global driver such as tubulin-
Gal4 plus ptc-Gal80 or instead the use of the ligand driver might be
preferable still. This should ensure mutually exclusive expression
that might be preferable commands to direct inputs for this type
of study because it could offer an opportunity to solve the current
limitation in the assays inability to identify specific autocrine com-
ponents. Interestingly, use of this repressor technology combining
multiple drivers might be a way to address questions concerning
potential function in interacting pathways as it appears possible
to generate mutually exclusive driver expression that might not be
possible using multiple individual Gal4 drivers if there is a chance
of expression overlap (Figure 3). Furthermore, it is interesting that
this type of assay has the potential to identify additional relation-
ships: for example, a Universal Turing machines (Turing, 1936)
next computation is a product of its last, therefore this computers
next command could be directed in this way: i.e., if a computation
has just identified a gene x with an X, O signature the next com-
mand might be x-Gal4 and in parallel tubulin-Gal4, x-Gal80 and
so on. It is clear, we are entering into very exciting times with in
vivo systems analysis.

To highlight the important implications of this type of assay
further: studying Hh signaling later in development has been dif-
ficult because its unconditional loss is early embryonic lethal. The
question of how Hh signaling might function in different contexts
to bring about different cell fates has only been touched upon
and still eludes us for the most part. Hh signaling is involved in
late aspects of development and disruption, at least in the case
of Hh signaling in the gonads can cause the F1 to be non-viable.
Thus, if we can accept that RNAi is potent in somatic cells then
an effect on late aspects of development including, but perhaps
not only limited to, later germline development, will be picked
up using this assay, then it allows us to make the conclusion that:
This assay might offer a simple and powerful way to examine
this question concerning finding genes involved in later Hh sig-
naling function. Answers to this question appear paramount in
the consideration for targeting Hh signaling in childhood can-
cers in an effort to bypass potential secondary developmental

toxicities (Raju and Pham, 2012). The assay could be used for
a genome-wide screen or as a secondary assay, for example to ana-
lyze the ever increasingly complex gene expression data (Carninci,
2010).

Also, here I provide the first compelling genetic evidence that
the putative protein encoding gene CG31522 shares a relation-
ship with Hh signaling. This observation is significant considering
the information provided from vertebrate studies concerning the
function of its putative orthologs including an involvement in
cancer cell growth. Together with the aforementioned protein
interaction studies, my conclusion is that these genes should be
given high priority for further study to examine their function
more closely and any relationships they might share with Hh
signaling and stem cell fate.

To end with: it’s worth considering how we define cell sig-
naling mechanisms, including Hh and how this is changing as our
understanding concerning their context specific function increases
(Robbins et al., 2012). To be Hh, or not to be Hh, that is the
question?

MATERIALS AND METHODS
FLIES AND CROSSES
All flies can be obtained from the Bloomington stock center or
VDRC. The cross scheme and its scoring method is as described
in Table 1: six virgin females of either ptc-Gal4/ptc-Gal4 or hh-
Gal4/TM3, Sb were crossed with three males of each RNAi line
used, and left for 5 days before removing them. Flies were raised
at 25◦C on standard media and crosses were left at 29◦C.

IMMUNOHISTOCHEMISTRY AND MICROSCOPY
Embryos were dechorionated in bleach, washed in PBS with
0.1% Triton X-100, and then fixed in 1:1 PBS, 4% paraformalde-
hyde:heptane for 20 min. After washing with heptane, embryo’s
were vortexed vigorously for 30 s in 1:1 heptane:methanol.
Devitellinized embryos were washed three times in methanol
and then probed using antibodies according to standard pro-
cedures before being examined using a Zeiss LSM510 Meta
Confocal microscope. Primary antibodies were obtained from
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the Developmental Studies Hybridoma Bank (DSHB) except for
Rabbit anti-LacZ (Stratech Scientific). Fluorescently labeled sec-
ondary antibodies raised in donkey were obtained from Jackson
Immunoresearch Laboratories. All antibodies were used at their
recommended concentrations.
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