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ABSTRACT

The study evaluated the effects of nutritional strategies on broilers challenged with Eimeria from d 14 to
26. A total of 840 Cobb male broilers were fed five diets in a 2 x 5 factorial arrangement: 1) nutrient
adequate diet (PC; 0.84% calcium [Ca], 0.42% available phosphorus [avP]); 2) Ca-P deficient diet (NC;
0.64% Ca, 0.22% avP); 3) NC + 1500 FTU/kg phytase of diet (NC + PHY); 4) NC + 5000 IU/kg 25-
Hydroxycholecalciferol of diet (NC + 250HD); and 5) NC with both supplements (NC + PHY + 250HD),
with and without Eimeria challenge. All treatments had six replicate cages with 14 birds per cage. At 5
days post inoculation (DPI), the challenged birds exhibited higher serum fluorescein isothiocyanate-
d (FITC-d) levels than the unchallenged birds (P < 0.001). The NC + PHY and NC + PHY + 250HD
groups exhibited lower FITC-d levels compared to the NC + 250HD group (P = 0.012). Significant
interaction effects between Eimeria challenge and dietary treatments were observed on various pa-
rameters. During 0 to 6 and O to 12 DPI, Eimeria challenge resulted in decreased the body weight gain
(BWG) (P < 0.05) but had a negative effect on the feed conversion ratio (FCR) in birds compared to the
unchallenged group (P < 0.05). Reducing Ca and avP levels in the diet (NC) did not adversely affect BWG,
but negatively impacted FCR, bone ash weight, ash concentration, and femur bone microstructure pa-
rameters (P < 0.05). On 12 DPI, Eimeria challenge led to decreased tibia bone weight, bone volume, fat-
free bone weight (FFBW), and ash weight of birds (P < 0.05). Supplementation with phytase alone or in
combination with 250HD improved growth performance, gut permeability, bone ash and bone micro-
structure parameters in birds (P < 0.05). However, the group fed 250HD alone showed enhancements on
growth performance, mineral apposition rate (MAR), bone ash concentration and ash percentage of the
birds (P < 0.05). In conclusion, lowering Ca and avP levels in the diet negatively affected FCR and bone
development but did not affect intestinal integrity in broilers. Dietary supplementation of phytase,
250HD, or phytase in combination of 250HD could enhance the growth performance and bone quality of
broilers infected with Eimeria. Notably, the benefits of phytase supplementation were generally more
pronounced than those associated with 250HD supplementation; however, the combination of phytase
and 250HD could induce optimum effects.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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1. Introduction

Numerous strategies and additives are utilized to optimize
performance, sustain animal health and welfare, all while man-

aging costs effectively. However, the poultry industry has under-
gone significant changes, especially in response to the prohibition
of antibiotic use (Powers and Angel, 2008). Coccidiosis stands out as
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global economic loss of up to $14 billion (Blake et al., 2020). The
disease is caused by protozoan parasites of the genus Eimeria
(Fatoba and Adeleke, 2018). By targeting the intestinal tract of
broiler chickens, Eimeria causes gastrointestinal damage, which can
profoundly compromise gut integrity, impact nutrition digestion
and absorption, and enhance inflammation, immune response, and
oxidative stress, leading to inhibited growth performance and
decreased overall flock health (Choi and Kim, 2022; Lopes et al.,
2023; Sharma et al., 2024). Although the poultry industry has
attained success in controlling coccidiosis by good management,
anticoccidials and vaccination, emerging concerns revolve around
the potential development of resistance among Eimeria species to
anticoccidials as well as identified gaps in vaccination protocols,
coupled with constraints on antibiotic use (Chapman and Jeffers,
2014; Chapman, 2018). These concerns are driving continued
research endeavors and the adoption of alternative strategies to
improve coccidiosis control in the poultry industry.

The predominant form of phosphorus (P) in a typical corn-
soybean meal diet is phytate (Bedford, 2000). However, phytate P
is largely indigestible to poultry due to limited phytase activity in
the chicken gastrointestinal tract (Humer et al., 2015). This in-
efficiency in hydrolyzing dietary phytate P into inorganic phos-
phate results in substantial P excretion in manure, contributing to P
wastage and environmental pollution (Humer et al, 2015).
Furthermore, as a polyanionic molecule, phytate can chelate posi-
tively charged cations, with a particular affinity for calcium (Ca),
iron, and zinc. Numerous studies have highlighted the potential
benefits of incorporating exogenous phytase into poultry diets. By
adding phytase, inorganic phosphate can be released from phytate,
enhancing P availability, and subsequently reducing P excretion
(Woyengo and Nyachoti, 2013; Wang et al,, 2021). Beyond its
impact on P utilization, phytase also plays a vital role in releasing
other nutrients bound by phytic P. This includes improvements in
the digestibility and retention of protein (Cowieson et al., 2006),
amino acids (Cowieson et al., 2017), and Ca (Bedford and Rousseau,
2017). Furthermore, phytase has been shown to markedly enhance
the availability of various trace minerals such as zinc, iron, mag-
nesium, and copper (Lonnerdal, 2002; Rimbach et al., 2008; Moss
et al., 2018). The utilization of phytase in poultry nutrition not
only addresses P management but also contributes to overall
nutrient efficiency and environmental sustainability. Currently, it is
reported that about 90% of poultry and about 70% of pig diets
include exogenous phytase (MarketsandMarkets, 2019).

Vitamin D, a fat-soluble nutrient, has long been recognized for
its crucial role in preventing or treating rickets (Dittmer and
Thompson, 2011). In both birds and mammals, vitamin D3 (chole-
calciferol) is the exclusive form of vitamin D synthesized through
the conversion of 7-Dehydrocholesterol (provitamin D) in the skin
exposed to ultraviolet irradiation (Fraser, 1980). Alternatively, it can
be obtained through dietary sources and absorbed in the intestine
(Swiatkiewicz et al, 2017). In its initial form, cholecalciferol is
biologically inactive in animal organisms. To become active, it un-
dergoes a sequential process of hydroxylation, first transforming
into 25-Hydroxycholecalciferol (250HD) in the liver and then
further converting to 1,25-Dihydroxcholecalciferol [1,25(0OH);Ds] in
the kidney (DeLuca, 2004). Vitamin D3 is essential for promoting Ca
absorption in the intestine and maintaining proper serum Ca and P
levels, which are crucial for normal bone function. Additionally, it
plays a key role in bone growth and remodeling (Ross et al., 2013).
Supplementation of vitamin D3 and its metabolites in broiler diets
has been shown to enhance growth performance (Han et al., 2017),
increase maximum bone breaking strength and bone mineral
content (Kim et al., 2011; Kheiri and Landy, 2019; Leyva-Jimenez
et al., 2019b), and lower occurrence of bone pathologies, such as
tibial dyschondroplasia (Khan et al., 2010), especially when Ca and
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P levels in diet are unbalanced (Zhang et al., 2020). Traditionally,
the poultry industry has relied on vitamin D3 as a primary source of
vitamin D. However, since 2006, 250HD has been approved and
extensively utilized as an alternative vitamin D source in poultry
farming (Adhikari et al., 2020). Dietary 250HD has demonstrated
greater effectiveness than vitamin D3 in enhancing the overall
performance of broilers (Yarger et al.,, 1995). Its use as a replace-
ment or supplement to vitamin D3 proves effective in promoting
performance, improving bone mineralization (Leyva-Jimenez et al.,
2019a), and modifying avian immunity (Chou et al., 2009).

While previous studies have examined the effects of phytase
and 250HD separately, their combined impact on broilers fed a diet
low in Ca and P while challenged with coccidiosis remains unex-
plored. Therefore, this study aimed to evaluate the effects of phy-
tase and 250HD supplementation in broilers fed a Ca and P
deficient diet under Eimeria challenge. The hypothesis of this
research was that the dietary inclusion of phytase in combination of
250HD could mitigate the adverse effects of coccidiosis, leading to
positive interactions in terms of performance and overall health of
broilers.

2. Materials and methods
2.1. Animal ethics statement

The study received approval from the Institutional Animal Care
and Use Committee at the University of Georgia (A2021 12—012),
and was conducted at the Poultry Research Center of the University
of Georgia.

2.2. Animals, housing, experimental design, and diet

A total of 840 male Cobb 500 broilers at 14 days of age were
assigned to 10 treatments using a completely randomized design.
These treatments were arranged in a 2 x 5 factorial design, with six
replicated pens per treatment and 14 birds per pen. The main
factors were Eimeria challenge and dietary treatments. The study
lasted for 26 days, during which the chickens were housed in
battery cages with free access to feed and water. The environmental
conditions, including temperature and lighting, were managed
according to the Cobb Broiler Management Guide (Cobb, 2021).

All birds received the same starter diet from d 0 to 13. From d 14
onwards, the birds were fed one of five experimental grower diets:
1) a positive control with a standard diet (PC; 0.84% Ca and 0.42%
available phosphorus [avP]); 2) a negative control with a low Ca and
P diet (NC; 0.64% Ca and 0.22% avP); 3) NC + 1500 FTU/kg of phytase
(NC + PHY; Quantum Blue, AB Vista, Marlborough, UK); 4)
NC + 5000 IU/kg of 250HD (NC + 250HD; BioD, Huvepharma,
Sofia, Bulgaria); and 5) NC + 1500 FTU/kg of phytase + 5000 IU/kg
of 250HD (NC + PHY + 250HD). The diets, which were primarily
based on corn and soybean meal, were formulated to meet, or
exceed the nutritional requirements of broilers for all nutrients,
except for Ca and avP, as detailed in Table 1. Feed samples were sent
to the Feed and Environmental Water Laboratory (Athens, GA, USA)
to measure total Ca, total P (ICP-OES method, method 968.08;
AOAC, 1996), crude fiber (Ankom 200, method 962.09; AOAC,
2005), and total N (Combustion technique, method 993.13; AOAC,
1996). The crude protein was calculated by total N x 6.25. The
250HD concentrations were measured via LC-MS/MS method
(Certificate Number 3969.01; ISO/IEC 17025:2017; Heartland As-
says, Ames, LA, USA). On d 14, birds in the challenged groups were
orally inoculated with a solution containing distilled water and
12,500 sporulated Eimeria maxima, 12,500 sporulated Eimeria ten-
ella, and 62,500 sporulated Eimeria acervulina oocysts suspended in
1 mL amount. The challenge dose was established based on a prior
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Table 1
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The ingredient (as-fed basis, %), calculated and analyzed compositions of starter and grower diets (dry matter basis, %).

Item Starter (d 0 to13) Grower (d 14 to 26 [0 to 12 DPI])’

PC NC NC + PHY NC+250HD NC + PHY+250HD
Ingredients
Corn 58.57 61.17 61.17 61.17 61.17 61.17
Soybean meal 36.06 31.49 3149 31.49 31.49 31.49
Soybean oil 1.58 2.74 2.74 2.74 2.74 2.74
Dicalcium phosphate 157 1.45 0.38 0.38 0.38 0.38
Limestone 1.18 1.12 1.20 1.20 1.20 1.20
Sand 1.00 2.00 2.00 2.00 2.00
Common salt 0.34 0.35 0.34 0.34 0.34 0.34
DL-Methionine 0.29 0.28 0.28 0.28 0.28 0.28
Vitamin premix’ 0.10 0.10 0.10 0.10 0.10 0.10
Mineral premix® 0.08 0.08 0.08 0.08 0.08 0.08
L-Lysine HCI 0.15 0.18 0.18 0.18 0.18 0.18
Threonine 0.08 0.04 0.04 0.04 0.04 0.04
Total 100.00 100.00 100.00 100.00 100.00 100.00
Calculated nutrient levels*
ME, kcal/kg 3008 3086 3086 3086 3086 3086
Crude protein 22.00 20.00 20.00 20.00 20.00 20.00
Crude fiber 2.19 2.11 2.11 2.11 2.11 2.11
Total calcium 0.90 0.84 0.64 0.64 0.64 0.64
Total phosphorus 0.72 0.67 0.47 0.47 0.47 0.47
avP 0.45 0.42 0.22 0.22 0.22 0.22
250HD, 1U/kg 5000 5000
Analyzed nutrient levels
Crude protein 19.38 19.88 20.38 20.00 19.00
Crude fiber 2.43 2.56 2.21 2.55 2.38
Total calcium 0.82 0.66 0.86 0.84 0.70
Total phosphorus 0.57 0.38 0.44 0.41 0.37
250HD, 1U/kg 220 220 124 3980 3459

DPI = days post inoculation; ME = metabolizable energy; avP = available phosphorus; 250HD = 25-Hydroxycholecalciferol.
T PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC + PHY = NC + 1500 FTU/kg of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC +

PHY+250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

2 Vitamin premix supplemented as per kilogram of diets: thiamin mononitrate 2.4 mg; nicotinic acid 44 mg; riboflavin 4.4 mg; D-Ca pantothenate 12 mg; vitamin B
(cobalamin) 12.0 mg; pyridoxine HCl, 4.7 mg; D-Biotin 0.11 mg; folic acid 5.5 mg; menadione sodium bisulfite complex 3.34 mg; choline chloride 220 mg; cholecalciferol 27.5
mg; transretinyl acetate 1.892 mg; o tocopheryl acetate 11 mg; ethoxyquin 125 mg.

3 Mineral premix supplemented as per kilogram of diets: manganese (MnSO4-H,0) 60 mg; iron (FeSO,-7H,0) 30 mg; zinc (Zn0O) 50 mg; copper (CuSO4-5H,0) 5 mg; iodine

(ethylene diaminedihydroiodide) 0.15 mg; selenium (NaSeOs3) 0.3 mg.

4 Nutrient levels were calculated using analyzed values from the latest batches of key ingredients and reference values from Feedstuffs (2019). The feed formulation was
completed using WUFFDA, a Microsoft Excel workbook designed for least-cost feed formulation based on the latest Feedstuffs table.

study conducted in our lab, aiming to induce a mild coccidiosis
infection (Teng et al., 2020). Birds in the unchallenged and Eimeria-
challenged groups were housed in separate batteries within the
same environmentally controlled room to prevent cross-
contamination.

2.3. Growth performance and sample collection

Body weight gain (BWG), feed intake (FI), and feed conversion
ratio (FCR) were measured on d 14, 20, and 26 by weighing the
birds and feed in each pen. Daily FI from d 14 to 26 (0 to 12 DPI) was
also measured. Daily mortality was recorded and used for the
calculation of corrected FCR. On 6 DPI (d 20), six birds from each
pen were humanely euthanized through cervical dislocation for
sample collection. Additionally, on 12 DPI (d 26), another four birds
per pen were euthanized to collect further samples.

2.4. Gut permeability and lesion score assays

On 5 DPI (d 19), one bird per cage (six birds/treatment) was
inoculated with 1 mL of a fluorescein isothiocyanate—dextran
(FITC-d; Sigma—Aldrich Co., St. Louis, MO, USA) solution (2.2 mg/
mL) to assess gut permeability, as described by Castro et al. (2020).
Blood was collected and centrifuged to extract serum 2 h-post oral
gavage. The serum concentration of FITC-d was measured using a
microplate reader (Spectramax M5, Molecular Devices, San Jose,
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CA, USA), following the method outlined by Teng et al. (2020). On 6
DPI (d 20), intestinal lesion scores for E. maxima, E. tenella, and
E. acervulina was conducted at the duodenum, jejunum, and ceca,
which was according to Johnson and Reid (1970) and Choi et al.
(2023).

2.5. Analysis of mineral apposition rate (MAR)

The calcein injection method was used to measure MAR for
bone formation. Calcein, a fluorescent dye, binds to newly miner-
alized bone and serves as a marker for mineral apposition, indi-
cating the rate of bone formation between two calcein injection
gaps (Chen et al., 2020; Sharma et al., 2023). One bird from each
pen was injected with 20 mg/kg of calcein solution intraperitone-
ally (Sigma Aldrich, St. Louis, MO, USA) based on body weight on 4
DPI (d 18). On 8 DPI (d 22), the same birds received a second in-
jection following the earlier protocol, and on 12 DPI (d 26), the right
tibias of the injected birds were collected, cleared of all attached
tissues, and preserved in 70% ethanol. For analysis, a 0.5 mm bone
section was cut from the mid-diaphysis using a circular saw (Ryobi,
Anderson, SC, USA). These sections were then observed under a
compound microscope (BZ-X810, Keyence Corp., Itasca, IL, USA),
and images were captured using a BZ-X810 All-in-one Fluorescence
Microscope (Keyence Inc., Itasca, IL, USA). The MAR was determined
by measuring the distance between two calcein labels using the BZ-
X800 Analyzer (Keyence Corp., Itasca, IL, USA).
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2.6. Tibial bone ash analysis

Bone ash was described by the methodologies by Zhang and
Coon (1997) and Kim et al. (2004). Right tibias were collected
from 2 birds per pen on both 6 DPI (d 20) and 12 DPI (d 26). The
initial weight of tibia bones was measured after removing adhering
muscles. The bone volume was measured by immersing the bones
in water and weighing them, assuming a water specific gravity of
1 g/cm? at room temperature. The bones were then dried for 24 h
and subjected to a Soxhlet apparatus using hexane (Fisher Scientific
International Inc., Waltham, MA, USA) to extract fat for 48 h. After
fat removal, the bones were re-dried for another 24 h and re-
weighed to obtain the fat-free bone weight (FFBW). The ash
weight was determined by incinerating the fat-free bones in a
furnace (600 °C) overnight. The ash concentration and ash per-
centage were then calculated using the following formulas:

Ash concentration (g/cm?) = ash weight (g)/bone volume (cm?);

Ash percentage (%) = 100 x ash weight (g)/FFBW (g).

2.7. Microstructure analysis of femur bones

At 6 DPI(d 20) and 12 DPI (d 26), the right femurs were collected
from one bird per pen and scaned using the Skyscan 1275 X-ray
Microtomograph (micro-CT; Bruker MicroCT, Billerica, MA, USA).
The scanning protocol was based on the methodology described by
Chen and Kim (2020), with the X-ray source at 70 kV, 142 LA for 6
DPI (d 20) and 80 kV, 125 pA for 12 DPI (d 26), using a 0.5-mm
aluminum filter to reduce beam-hardening effects. The pixel size
remained constant at 25 pm. Scanning was conducted over a 180°
rotation with a rotation angle of 0.4°, and four images were
captured per rotation. Images were reconstructed into 3D using N-
Recon (Bruker MicroCT, Billerica, MA, USA), aligned to a vertical
position using Data Viewer (Bruker MicroCT, Billerica, MA, USA),
and transferred to CTAn program (Bruker MicroCT, Billerica, MA,
USA) to select volume of interest (VOI). Bone mineral density (BMD)
calibration was performed using two phantoms made from calcium
hydroxyapatite with the densities of 0.25 and 0.75 g/cm®.

Morphometric analysis was focused on the metaphyseal region
of bones, covering a total of 200 slides (5 mm). Subsequently, the
3D model underwent customized processing to separate the
trabecular bone from the cortical bone, following the methodology
of Chen and Kim (2020). Various parameters were analyzed and
outlined in Table 2, adhering to the definitions provided by White
et al. (2023) and Sharma et al. (2023). The bone mineral content
(BMC; mg) was calculated by BMD (g/cm?) times tissue volume
(TV; mm?>).

2.8. Body composition analysis

Bird body composition was measured using dual energy X-ray
absorptiometry (DEXA). On 6 DPI (d 20) and 12 DPI (d 26), two
randomly chosen birds from each pen were euthanized and scan-
ned by a DEXA scanner (GE Healthcare, Chicago, IL, USA) with a
small animal module by encore software (Lunar Prodigy from GE,
version 12.20.023). BMD, BMC, total body fat, and muscle of the
birds were calculated according to Castrol et al. (2019). Two birds
were selected from each pen and considered as an experimental
unit.
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2.9. Gene expression analysis

After collecting the junctions between jejunum and ileum, they
were cleansed of digesta with 1x phosphate-buffered saline solu-
tion, then snap-frozen in liquid nitrogen and stored at —80 °C for
subsequent analysis. Homogenization of the samples was per-
formed using QiAzol lysis reagent (Qiagen Inc., Valencia, CA, USA)
and a bead beater (Biospec Products, Bartlesville, OK, USA), fol-
lowed by total RNA extraction as per the manufacturer's in-
structions. The purity and concentration of RNA were determined
using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA). RNA concentrations were normalized,
and cDNA synthesis was conducted using a high-capacity cDNA
synthesis kit (Applied Biosystems, Foster City, CA, USA).

Quantitative real-time PCR was carried out on a Step One ther-
mocycler (Applied Biosystems, Foster City, CA, USA) using SYBR
Green on Master mix (Bio-Rad Laboratories, Hercules, CA, USA) to
quantify mRNA expression. The PCR conditions were set as follows:
95 °C for 10 min, followed by 95 °C for 15 s, annealing temperature
for 20 s, and 72 °C for 15 s for 40 cycles, as established in our
previous study (Tompkins et al., 2023a). Duplicate samples were
processed and target gene expression was measured using the 2~
AACt method, in accordance with the guidelines provided by Livak
and Schmittgen (2001). The mean ACt of each marker gene from
the control group was used to calculate the AACt value. The
expression levels in the treatment groups were expressed as fold
changes. Primer sequences for both housekeeping and target genes
are listed in Table 3.

2.10. Statistical analysis

The experimental data are presented as the mean and standard
error of the mean (SEM) and were analyzed using a two-way
ANOVA with a general linear model (GLM) in SAS Studio (SAS
Institute Inc., Cary, NC, USA). The data were subjected to two-way
ANOVA to obtain results for each factor (dietary treatments and
Eimeria challenge) as well as their interactions. In the case of sig-
nificant differences, the treatments were compared using Tukey's
test. The level of significance was set at P < 0.05. The mathematical
model is listed below:

Yij = i+ ai + B + (af)yj + €ijk

where p is the grand mean, ¢ is the effect of Eimeria challenge, (; is
the dietary treatment, («@); is the effect due to any interaction
between the Eimeria challenge and the dietary treatment, and gjj is
the random error.

3. Results
3.1. Growth performance and daily feed intake

The results of growth performance are presented in Table 4. The
BWG showed a decrease in Eimeria-challenged groups compared to
unchallenged groups (P < 0.001). In addition, an interaction effect
of Eimeria challenge and diets was observed on BWG (P = 0.027)
during 0 to 6 DPI (d 14 to 20). In unchallenged groups, the NC and
NC + PHY+250HD groups exhibited significantly lower BWG
compared to the PC group (P = 0.027). However, in Eimeria-chal-
lenged groups, no significant difference was found on BWG be-
tween the NC and PC birds (P > 0.05), whereas the
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Table 2
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Definition and description of microstructure properties of tibia bones from micro-computed tomography.

Abbreviations Variables

Description of variables

Standard unit

vV Tissue volume Volume of the entire region of interest mm?
BV Bone volume Volume of the bone segment mm?
BV/TV Bone volume/tissue volume ratio Bone volume as a fraction of tissue volume from the region of interest %

TS Tissue surface Surface of the entire region of interest mm?
BS Bone surface Surface of the bone segment mm?
BS/BV Bone surface/bone volume ratio Ratio of bone surface/bone volume mm-~!
BS/TV Bone surface/tissue volume ratio Ratio of bone surface/tissue volume mm~!
BMD Bone mineral density Measure the bone mineral content per unit of volume g/em?®
BMC! Bone mineral content Measure the bone mineral content of the tissue mg
Tb.Th Trabecular thickness Mean thickness of trabeculae measured using 3D methods mm
Tb.Sp Trabecular separation Mean distance between trabeculae measured using 3D methods mm
Tb.N Trabecular number Average number of trabeculae per unit of length mm~!
Tb.Pf Trabecular pattern factor Indicate the degree of trabecular branching mm~!
SMI Structure model index An indicator of the structure of trabeculae

Po.N (cl) Number of closed pores Number of closed pores

Po.V (cl) Volume of closed pores Volume of closed pores mm?
Po.S (cl) Surface of closed pores Surface of closed pores mm?
Po (cl) Closed porosity percentage Volume of closed pores (Po.V[cl], mm?)/total volume of bone (BV, mm?) %

1 BMC (mg) = BMD (g/cm?) x TV(mm?).

Table 3
List of primers for quantitative real-time PCR.

Gene symbol Accession number Forward primer (5’ to 3’) Reverse primer (5’ to 3’)
Housekeeping gene

GAPDH NM_204305.1 CCTCTCTGGCAAAGTCCAAG GGTCACGCTCCTGGAAGATA
B-Actin NM_205518.2 CAACACAGTGCTGTCTGGTGGTA ATCGTACTCCTGCTTGCTGATCC
Tight junction proteins

CLDN1 NM_001013611.2 TGGAGGATGACCAGGTGAAGA CGAGCCACTCTGTTGCCATA
JAM2 XM_025149444.1 AGCCTCAAATGGGATTGGATT CATCAACTTGCATTCGCTTCA
OCLN XM_025144248.1 ACGGCAGCACCTACCTCAA GGCGAAGAAGCAGATGAG

Z01 XM_015278981.2 CAACTGGTGTGGGTTTCTGAA TCACTACCAGGAGCTGAGAGGTAA
Mucin

mucz JX_284122.1 ATGCGATGTTAACACAGGACTC GTGGAGCACAGCAGACTTTG

GAPDH = glyceraldehyde-3-phosphate dehydrogenase; CLDN1 = claudin 1; JAM2 = junctional adhesion molecule 2; OCLN = occludin; ZO1 = zonula occludens 1;

MUC2 = mucin 2.

NC + PHY+250HD group had higher BWG than the PC group
(P =0.027).

Eimeria challenge significantly suppressed FI, BWG and FCR of
chickens (P < 0.05). During O to 6 DPI (d 14 to 20), Eimeria-chal-
lenged birds experienced decreased FI (P < 0.001) and increased
FCR (P = 0.001) compared to non-challenged birds. In the 7 to 12
DPI (d 21 to 26) period, Eimeria-challenged birds had a higher FCR
(P=0.037). Over the entire period (Oto 12 DPI; d 14 to 26), Eimeria-
challenged birds exhibited lower BWG and FI, as well as higher FCR
(P < 0.05).

Furthermore, dietary treatments significantly influenced the
growth performance of chickens. During 0 to 6 DPI (d 14 to 20), no
significant difference was observed between the NC and PC groups
on FCR (P > 0.05). However, the birds in the NC + 250HD group
displayed an elevated FCR compared to the NC + PHY group (1.48
vs. 1.40; P = 0.034). During 7 to 12 DPI (d 21 to 26), no significant
difference on BWG was found between the NC and PC groups
(P > 0.05), whereas the NC + PHY + 250HD group had increased
BWG (P = 0.009) compared to the NC group. For FCR, the birds in
the NC group showed an increased FCR compared to the PC group
(P < 0.001). During the entire period (0 to 12 DPI; d 14 to 26), no
significant difference was observed between the NC and PC groups
on BWG (P > 0.05), but the birds in the NC + PHY + 250HD group
showed higher BWG than the NC group (957 vs. 893 g; P = 0.007).
For FCR, the birds in the NC group displayed an increased FCR
compared to the PC group (P < 0.001).

Daily FI results are presented in Table 5. An interaction effect of
Eimeria challenge and diets was observed only on 2 DPI (d 16;
P =0.005). Eimeria challenge significantly decreased the FI of the PC
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birds (78.17 vs. 81.37 g) but significantly increased the FI of
NC + PHY + 250HD birds (82.92 vs. 77.92 g; P = 0.005). For the
main effect, Eimeria challenge significantly decreased (P < 0.05) the
daily FI of birds on 4, 5, 6 and 7 DPI (d 18, 19, 20 and 21), while it
significantly increased (P < 0.05) the daily FI of birds on 9 and 12
DPI (d 23 and 26). Additionally, dietary treatments significantly
influenced the daily FI of chickens. On 1 DPI (d 15), the birds in the
NC and NC + PHY + 250HD groups showed significantly increased
FI compared to birds in the PC group (P = 0.035). On 5 DPI (d 19), no
significant difference between the NC and PC groups on FI was
observed (P > 0.05), but the NC + 250HD birds had higher FI than
the NC and NC + PHY birds (P = 0.012). Moreover, on 10 DPI (d 24),
the birds in the NC group exhibited decreased FI compared to the PC
group (P = 0.013). The overall mortality in the current study was
0.36 %, with no difference among different treatments (P > 0.05).

3.2. Gut permeability and intestinal lesion scores

The gut permeability results revealed that Eimeria challenge
significantly increased (P < 0.001) the serum FITC-d level of birds
on 5 DPI (d 19; Table 6). No significant difference was observed
between the NC and PC groups (P > 0.05). However, the NC +
250HD group exhibited a higher FITC-d level than the NC + PHY
and NC + PHY + 250HD groups (P = 0.012).

No significant interaction between Eimeria challenge and diets
was observed on lesion scores of the duodenum, jejunum, or ceca of
broilers on 6 DPI (d 20; P > 0.05). However, Eimeria-challenged
birds had significantly higher duodenal, jejunal and cecal lesion
scores compared to the unchallenged birds (P < 0.05), as shown in
Table 6.
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Table 4
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Effects of phytase and 25-Hydroxycholecalciferol and their combination on growth performance of broilers infected with mixed Eimeria spp. during O to 12 days post

inoculation (DPI) (d 14 to 26)".

Item?® 0 to 6 DPI (d 14 to 20) 7 to 12 DPI (d 21 to 26) 0 to 12 DPI (d 14 to 26)
BWG, g FI,g FCR, g/g BWG, g FLL g FCR, g/g BWG, g FI, g FCR, g/g
Interaction
UNCHA PC 406% 561 1.38 566 777 1.38 973 1338 1.38
NC 3825¢ 550 1.44 547 770 141 930 1320 1.42
NC + PHY 3982 546 1.38 567 789 1.39 965 1334 1.38
NC + 250HD 386%°¢ 560 1.45 543 770 1.42 930 1330 1.43
NC + PHY + 250HD 3g1bcd 553 1.46 592 765 1.30 973 1318 1.36
CHA PC 344f 517 1.51 560 764 1.37 904 1282 1.42
NC 357¢f 526 1.48 499 759 1.52 855 1284 1.50
NC + PHY 359def 511 1.43 549 760 1.39 908 1271 1.40
NC + 250HD 356°f 537 1.51 539 781 1.46 919 1318 145
NC + PHY + 250HD 369°de 535 1.45 572 772 1.35 941 1307 1.39
SEM 34 3.2 0.009 5.6 4.1 0.011 6.7 5.8 0.007
P-value 0.027 0.513 0.136 0.666 0.587 0.195 0.323 0.445 0.441
Challenge effect
UNCHA 3912 5542 1.42° 563 774 1.38° 9542 1328? 1.39°
CHA 357° 525 1472 544 767 1.422 905 1292° 1.432
P-value <0.001 <0.001 0.001 0.061 0.422 0.037 <0.001 0.002 0.002
Diet effect
PC 375 539 1.44% 5632 771 1.37% 938> 1310 1.40°¢
NC 370 538 1.46%° 523P 764 1472 893P 1302 1.46%
NC + PHY 379 529 1.40° 5580 774 1.39%¢ 937% 1303 1.39%¢
NC + 250HD 371 549 1.48% 5413 775 1.44%° 925 1324 1.44%°
NC + PHY + 250HD 375 544 1.45% 5822 768 1.33¢ 9572 1313 1.37¢
P-value 0.769 0.124 0.034 0.009 0.926 <0.001 0.007 0.721 <0.001

BWG = body weight gain; FI = feed intake; FCR = feed conversion ratio.
af Means within a column with different letter superscripts are significantly different (P < 0.05).
! n (d 14) = 6 replicate cages x 14 birds/cage = 84; n (d 20) = 6 replicate cages x 13 birds/cage = 78; n (d 26) = 6 replicate cages x 5 birds/cage = 30.
2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC+250HD = NC + 5000 IU/kg of 250HD; NC + PHY+250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

Table 5

Effects of phytase and 25-Hydroxycholecalciferol and their combination on daily feed intake of broilers infected with mixed Eimeria spp. from 1 to 12 days post inoculation

(DPI) (d 15 to 26)".

Item? 1 DPI 2 DPI 3DPI  4DPI 5 DPI 6 DPI 7 DPI 8 DPI 9 DPI 10 DPI 11DPI 12 DPI
Interaction
UNCHA  PC 76.11 81.37%> 8834  99.52 104.63 110.62 133.10 11050 12723 134.13 13743 134.80
NC 78.54 79.98%¢ 8732 9495  99.72 109.08 134.33 107.77  129.40 130.30 137.57 13083
NC + PHY 77.10 78.094 89.19 9590  99.90 109.49 135.62 11005 131.33 134.58 13882  138.11
NC + 250HD 77.56 81.17% 8972 9732 10419 11024 13230  109.74  127.61 131.50 13649  132.00
NC + PHY + 250HD  78.51 77.92¢ 90.70 96.63  98.95 110.77 131.46 10697 131.65 130.59 13645  127.77
CHA PC 77.12 78179 8798 9673  88.50 90.69 94.42 11083 13448 143.12 139.89  146.12
NC 79.50 79.24>¢ 8800 9560  87.04 96.21 108.53 109.00  134.27 125.17 13560 14597
NC + PHY 76.96 77.93¢ 86.07 9248 8564 92.21 98.87 10733 131.80 138.04 13633  143.93
NC + 250HD 78.23 81.77%" 8822 9504  92.16 101.54 110.57 11213 139.50 132.10 14090 14583
NC + PHY + 250HD  78.67 82.92° 90.11 9477  91.03 97.81 11420 11197 134.64 137.92 13747 13717
SEM 0.280 0.376 0.452  0.492 1.012 1.343 2319 0.637 0.938 1.123 1.021 1.328
P-value 0.951 0.005 0742 0705  0.159 0.415 0.064 0.442 0.316 0.194 0.832 0.696
Challenge effect
UNCHA 77.56 79.70 89.05 96.86% 101.53* 110.04® 13336 109.01 129.44° 13222 13735  132.70°
CHA 78.10 80.07 88.07 9492° 88.87° 95.69° 105.32° 11025 13495 135.08 137.91  143.80°
P-value 0.330 0.642 0286  0.045 <0.001 <0.001 <0.001  0.341 0.003 0.139 0.756 <0.001
Diet effect
PC 76.61¢ 7991 8816 9813 9656  100.65 113.76 11066  130.85 138.63? 13842 14046
NC 79.022 7961 8766 9527  93.38° 102.64 121.43 108.38  131.83 127.73° 13658  138.40
NC + PHY 77.03>*  78.01° 87.63 9419  92.12° 100.85 117.24 10869  131.57 136.15°> 13758  141.02
NC + 250HD 77.89%¢  81.47° 8897 9618  98.17% 105.89 121.43 11094 13355 131.80°®> 13870  138.92
NC + PHY + 250HD 7859  80.42% 90.41 9570  94.99°® 10429 122.83 10947  133.01 133.92% 13696 13247
P-value 0.035 0.023 0280 0129  0.012 0.380 0.206 0.647 0.862 0.013 0.960 0.126

af Means within a column with different letter superscripts are significantly different (P < 0.05).

1

n (1-5 DPI) = 6 replicate cages x 14 birds/cage = 84; n (6 DPI) = 6 replicate cages x 13 birds/cage = 78; n (7-12 DPI) = 6 replicate cages x 5 birds/cage = 30.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC+250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

3.3. Mineral apposition rate

The results of MAR are presented in Table 6. An interaction effect
between Eimeria challenge and diets was observed (P = 0.019).

Eimeria challenge significantly decreased the MAR of the PC and NC
+ 250HD birds (P = 0.019). In both unchallenged and Eimeria-
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challenged groups, reducing the levels of Ca and avP in the diet (NC
groups) significantly decreased the MAR compared to the PC



H. Shi, V.S.R. Choppa, D. Paneru et al.

Table 6
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Effects of phytase and 25-Hydroxycholecalciferol and their combination on fluorescein isothiocyanate-dextran level on 5 days post inoculation (DPI) (d 19), lesion scores on 6
DPI (d 20), and mineral apposition rate during 4 to 8 DPI (d 18 to 22) of broilers infected with mixed Eimeria spp.

Item? FITC-d level, ng/mL Lesion scores MAR, um
Duodenum Jejunum Ceca
Interaction
UNCHA PC 33 0.00 0.17 0.08 438.63%
NC 26 0.00 0.33 0.17 267.77°f
NC + PHY 12 0.00 0.33 0.08 406.16"
NC + 250HD 39 0.00 0.50 0.00 527.20%
NC + PHY + 250HD 8 0.00 0.17 0.00 376.35P
CHA PC 101 1.75 1.17 0.95 297.68°4¢
NC 86 1.50 1.11 0.50 174.74F
NC + PHY 84 1.33 1.28 0.53 360.230cde
NC + 250HD 135 1.97 1.61 0.58 284.03%
NC + PHY + 250HD 67 1.47 0.86 0.67 395.33%¢
SEM 7.0 0.119 0.088 0.057 16.614
P-value 0.685 0.443 0.856 0.358 0.019
Challenge effect
UNCHA 23b 0.00° 0.30° 0.07° 398.69%
CHA 972 1.61° 1.212 0.64% 302.40°
P-value <0.001 <0.001 <0.001 <0.001 <0.001
Diet effect
PC 60" 0.88 0.67 0.51 368.16%
NC 592 0.75 0.72 033 221.25°
NC + PHY 45P 0.67 0.81 0.31 381.10°
NC + 250HD 87? 0.99 1.06 0.29 394.56%
NC + PHY + 250HD 31P 0.74 0.51 0.33 385.847
P-value 0.012 0.443 0.133 0.481 <0.001

FITC-d = fluorescein isothiocyanate-d; MAR = mineral apposition rate.

af Means within a column with different letter superscripts are significantly different (P < 0.05).

! n (FITC-d) = 6 replicate cages x 1 bird/cage = 6; n (Lesion scores) = 6 replicate cages x 3 birds/cage = 18; n (MAR) = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

(unchallenged: 267.77 vs. 438.63 um; Eimeria challenge: 174.74 vs.
297.68 um; P < 0.001). However, the supplementation of phytase,
250HD, or both, increased the MAR of birds to the same levels as
the PC groups had (P < 0.001).

3.4. Bone ash

The results of bone ash parameters are detailed in Tables 7 and 8.
On 6 DPI (d 20), no interaction effect between Eimeria challenge
and diets was observed regarding bone ash parameters (P > 0.05;
Table 7). For FFBW, no significant difference was found between the
NC and PC groups (P > 0.05), whereas the NC + 250HD group
exhibited a lower FFBW compared to the NC + PHY group
(P = 0.004). Additionally, birds in the NC group had significantly
reduced ash weight and ash concentration compared to the PC
birds; however, supplementing with phytase, or a combination of
phytase and 250HD to the NC diet improved ash weight and ash
concentration to the levels equivalent to the PC group had
(P < 0.05). For ash percentage, the birds in the NC group displayed
significantly lower ash percentage compared to the birds in the PC
group (43.67% vs. 48.10%; P < 0.001). Nonetheless, supplementing
with phytase or 250HD was effective in improving the ash per-
centage of birds. Moreover, when supplementing phytase and
250HD together, the ash percentage of birds was elevated to the
same level as PC birds (P < 0.001). Notably, Eimeria challenge did
not show any impact on bone ash parameters on 6 DPI (d 20;
P > 0.05).

On 12 DPI (d 26), an interaction effect between Eimeria chal-
lenge and diets was observed on ash percentage (Table 8;
P = 0.024). Eimeria challenge significantly compromised the ash
percentage of the PC and NC + 250HD birds (P = 0.024). In both
unchallenged and Eimeria-challenged groups, reducing the levels of
Ca and avP in the diet (NC groups) significantly decreased the ash
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percentage of birds compared to the PC (unchallenged: 45.72% vs.
52.10%; Eimeria challenge: 46.66% vs. 50.88%; P < 0.001); however,
supplementing with phytase, 250HD, or both was able to improve
the ash percentage of birds (P < 0.001). Importantly, phytase or a
combination of phytase and 250HD showed better improvement
than 250HD alone, achieving the same ash percentage (NC + PHY
group) as the PC group had or higher levels (NC + PHY + 250HD
group) than the PC group (P < 0.001).

Eimeria challenge significantly suppressed bone ash parameters
in chickens on 12 DPI (d 26; Table 8; P < 0.05). Eimeria-challenged
birds experienced significantly decreased initial bone weight (13.91
vs.14.95 g; P < 0.001), bone volume (11.69 vs. 12.53 cm?; P < 0.001),
FFBW (4.96 vs. 5.37 g; P < 0.001), ash weight (2.47 vs. 2.70 g;
P < 0.001), and ash percentage (49.59% vs. 50.20%; P = 0.013). In
addition, dietary treatments significantly influenced the FFBW, ash
weight, and ash concentration of chickens on 12 DPI (d 26; P < 0.05;
Table 8). Reducing Ca and avP in the diet (NC group) significantly
decreased the FFBW, ash weight, ash percentage, and ash concen-
tration of birds compared to the PC (P < 0.05); however, supple-
menting with phytase or a combination of phytase and 250HD was
able to improve the FFBW, ash weight, ash percentage, and ash
concentration to the same level as the PC group had (P < 0.05). In
addition, 250HD alone significantly increased ash concentration
compared to the NC group (P < 0.001).

3.5. Micro-CT

3.5.1. Total volume of interest

The impact of Eimeria challenge and dietary factors on micro-
structure changes within the total VOI of the femur on 6 DPI (d 20)
and 12 DPI ( d 26) is shown in Tables 9 and 10. On 6 DPI (d 20),
interaction effects between Eimeria challenge and diets were
observed for bone surface/bone volume (BS/BV; P = 0.023) and
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Table 7
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Effects of phytase and 25-Hydroxycholecalciferol and their combination on tibia bone ash parameters of broilers infected with mixed Eimeria spp. on 6 days post inoculation

(DPI) (d 20)".

Item? Initial bone weight, g Bone volume, cm? FFBW, g Ash weight, g Ash percentage, % Ash concentration, g/cm?
Interaction
UNCHA PC 8.86 7.31 3.59 1.73 48.17 0.24
NC 8.68 7.14 3.23 1.40 43.38 0.20
NC + PHY 9.27 7.69 3.67 1.73 47.25 0.23
NC + 250HD 8.53 7.31 3.20 1.42 44.40 0.19
NC + PHY + 250HD 8.57 7.07 3.51 1.69 48.15 0.24
CHA PC 8.97 742 3.58 1.72 48.03 0.23
NC 8.77 7.37 3.28 1.44 43.95 0.20
NC + PHY 8.94 7.37 3.53 1.65 46.76 0.22
NC + 250HD 8.73 7.37 3.25 1.38 45.14 0.20
NC + PHY + 250HD 9.12 7.49 3.66 1.75 47.73 0.23
SEM 0.094 0.082 0.044 0.028 0.256 0.003
P-value 0.712 0.738 0.854 0.861 0.243 0.921
Challenge effect
UNCHA 8.78 7.30 3.44 1.60 46.27 0.22
CHA 8.91 7.41 3.46 1.59 46.36 0.22
P-value 0.521 0.550 0.814 0.863 0.800 0.493
Diet effect
PC 8.91 7.37 3.58%P 1.722 48.107 0.23*
NC 8.73 7.26 3.26% 1.42° 43,674 0.20°
NC + PHY 9.10 7.53 3.60° 1.69? 47.00° 0.22%
NC + 250HD 8.63 7.34 3.22° 1.40° 44.74¢ 0.20°
NC + PHY + 250HD 8.84 7.28 3.59% 1.72° 47.94% 0.24°
P-value 0.591 0.866 0.004 <0.001 <0.001 <0.001

FFBW = fat free bone weight.

&b Means within a column with different letter superscripts are significantly different (P < 0.05).

1

n = 6 replicate cages x 2 birds/cage = 12.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg

of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

Table 8

Effects of phytase and 25-Hydroxycholecalciferol and their combination on tibia bone ash parameters of broilers infected with mixed Eimeria spp. on 12 days post inoculation

(DPI) (d 26)".

Item? Initial bone weight, g Bone volume, cm? FFBW, g Ash weight, g Ash percentage, % Ash concentration, g/cm?
Interaction
UNCHA PC 14.66 12.27 5.40 2.81 52.10%° 0.23
NC 15.28 13.09 5.05 231 45.72f 0.18
NC + PHY 15.42 12.81 5.67 291 51.29%¢ 0.23
NC + 250HD 14.48 12.19 5.13 2.54 49.414 0.21
NC + PHY + 250HD 14.94 12.31 5.60 294 52.512 0.24
CHA PC 13.82 11.46 5.12 2.61 50.88°¢ 0.23
NC 13.47 11.62 4.50 2.10 46.66° 0.18
NC + PHY 14.17 11.87 5.13 2.59 50.41%4 0.22
NC + 250HD 13.52 11.57 4.65 2.23 48.00¢ 0.19
NC + PHY + 250HD 14.58 11.92 541 2.81 52.00% 0.24
SEM 0.143 0.116 0.066 0.045 0314 0.003
P-value 0.455 0.557 0.728 0.804 0.024 0.205
Challenge effect
UNCHA 14.95% 12.532 5.37¢ 2.70° 50.20% 0.22
CHA 13.91° 11.69° 4.96° 2.47° 49.59° 0.21
P-value <0.001 <0.001 <0.001 <0.001 0.013 0.102
Diet effect
PC 14.24 11.87 5.26% 2.71° 51.49°° 0.23%
NC 1437 12.36 4.77¢ 2.20° 46.194 0.18¢
NC + PHY 14.79 12.34 5.40° 2.75° 50.85" 0.22°
NC + 250HD 14.00 11.88 489 238" 48.70¢ 0.20¢
NC + PHY + 250HD 14.76 12.12 5.50% 2.88% 52.26° 0.24*
P-value 0.217 0.397 <0.001 <0.001 <0.001 <0.001

FFBW = fat free bone weight.

af Means within a column with different letter superscripts are significantly different (P < 0.05).

1

n = 6 replicate cages x 2 birds/cage = 12.

2 UNCHA, unchallenged group; CHA, Eimeria challenged group; PC, positive control; NC, negative control (reduced 0.20 % Ca and avP); NC + PHY = NC + 1500 FTU/kg of

phytase; NC+250HD = NC + 5000 IU/kg of 250HD; NC + PHY+250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

BMD (P = 0.038; Table 9). In terms of BS/BV, Eimeria challenge led to
a significant decrease in BS/BV for birds in the NC and NC + PHY +
250HD groups, whereas it increased BS/BV for birds in the
NC + PHY group (P = 0.023). Among the unchallenged groups, both
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NC and NC + 250HD groups exhibited significantly higher BS/BV
ratios compared to PC birds (P = 0.023). However, in Eimeria-
challenged groups, no significant difference in BS/BV between the
NC and PC groups was observed (P > 0.05). Interestingly,
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supplementing phytase to the NC diet in Eimeria-challenged birds
resulted in a higher BS/BV ratio compared to the PC group (14.54 vs.
11.97 mm~; P = 0.023). Regarding BMD, Eimeria challenge led to a
significant decrease in BMD for birds in the PC and NC + 250HD
groups (P = 0.038). In unchallenged groups, the NC group showed a
significantly lower BMD compared to PC birds (0.191 vs. 0.263 g/
cm?; P = 0.038). However, supplementation with phytase
(NC + PHY), 250HD (NC + 250HD), or both (NC + PHY + 250HD)
improved the BMD of birds in unchallenged groups (P = 0.038).
Notably, the NC 4+ 250HD and NC + PHY + 250HD groups achieved
BMD levels similar to the PC group (P = 0.038). In Eimeria-chal-
lenged groups, no significant difference in BMD between the NC
and PC groups was observed (P > 0.05). Nevertheless, supple-
menting with a combination of phytase and 250HD to the NC diet
(NC + PHY + 250HD) in Eimeria-challenged groups resulted in
higher BMD compared to the PC group (0.259 vs. 0.227 g/cm?;
P =0.038).

Additionally, Eimeria challenge exhibited a significant reduction
only in bone volume as a fraction of tissue volume (BV/TV; 32.06%
vs. 34.67%; P = 0.037) on 6 DPI (d 20). The dietary treatments had
significant influence on bone volume (BV), BV/TV, BMD, and BMC in
the microstructure of femurs on 6 DPI (d 20; Table 9; P < 0.05).
Among the dietary groups, the NC birds displayed significantly
lower BV, BV/TV, BMD, and BMC compared to PC birds (P < 0.05).
However, supplementation with phytase alone (NC + PHY) or a
combination of phytase and 250HD (NC + PHY + 250HD) resulted
in increased levels of BV, BV/TV, BMD, and BMC, aligning closely
with the values observed in the PC group (P < 0.05).

On 12 DPI (d 26), no significant interaction was noted between
Eimeria challenge and diets concerning femoral microstructural
architecture, as indicated in Table 10. The Eimeria challenge, how-
ever, had a significant suppressive effect on tissue volume (TV;
P = 0.008) and tissue surface (TS) in birds (P = 0.012). Additionally,
the dietary treatments exerted an influence on the microstructural

Table 9
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architecture parameters of femur bones. Among the dietary groups,
the NC birds exhibited significantly lower BV, BV/TV, BMD, and BMC
compared to PC birds (P < 0.05). Nevertheless, supplementation
with phytase alone (NC + PHY) or a combination of phytase and
250HD (NC + PHY + 250HD) led to increased levels of BV, BV/TV,
BMD, and BMC, to similar levels of the values observed in the PC
group (P < 0.05).

3.5.2. Trabecular bone

The effects of Eimeria challenge and diets on femoral micro-
structural architectural changes of the trabecular bone are shown
in Tables 11 and 12. On 6 DPI (d 20), significant interaction effects
between Eimeria challenge and diets were observed on BMD
(P = 0.028) and trabecular separation (Tb.Sp; P = 0.027; Table 11).
Regarding BMD, the Eimeria-challenged PC and Eimeria-challenged
NC groups exhibited lower BMD compared to the unchallenged NC
+ 250HD and Eimeria-challenged NC + PHY + 250HD groups
(P =0.028). In terms of Tb.Sp, Eimeria challenge increased Tb.Sp in
the NC and NC + 250HD groups (P = 0.027). No significant differ-
ence was found among unchallenged groups (P > 0.05). However,
in Eimeria-challenged groups, the NC + PHY and NC + PHY +
250HD birds showed lower Tb.Sp values compared to other Eime-
ria-challenged groups (P = 0.027).

Furthermore, the Eimeria challenge exhibited a significant in-
crease in trabecular pattern factor (Tb.Pf; 16.02 vs. 14.83 mm™;
P = 0.044) on 6 DPI (d 20; Table 11). The dietary treatments had a
significant influence on the structure model index (SMI) in the
femoral microstructural architectural of trabecular bones on 6 DPI
(d 20; P = 0.015; Table 11). Among the dietary groups, the NC birds
displayed a significantly higher SMI compared to PC birds (2.58 vs.
2.44; P = 0.015). However, supplementation with a combination of
phytase and 250HD (NC + PHY+250HD) resulted in a decreased
SMI to a level similar to that of the PC group (P = 0.015).

Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis total bone of broilers infected with mixed Eimeria spp. on 6 days post inoculation

(DPI) (d 20)L.

Item? TV, mm? BV, mm? BV/TV,% TS, mm? BS, mm? BS/BV, mm ™! BS/TV, mm ™! BMD, g/cm> BMC, mg
Interaction
UNCHA  PC 244.95 97.38 39.71 266.91 1087.47 11.13% 438 0.263% 64.34
NC 224.08 64.28 28.47 291.56 930.99 14.84% 411 0.191f 43.41
NC + PHY 239.03 82.89 34.84 268.55 952.39 11.45% 3.96 0.230Pcde 54.90
NC + 250HD 220.47 78.77 33.44 261.06 1047.36 13.23%¢ 435 0.2343bcd 55.44
NC + PHY + 250HD  260.05 94.63 36.88 277.64 1174.60 12.40%0<d 4.49 0.240%° 61.54
CHA PC 245.65 83.03 33.81 264.83 993.19 11.97% 4.04 0.227¢4e 55.71
NC 237.78 71.46 30.20 258.99 861.09 12.13%e 3.64 0.2059%¢f 48.65
NC + PHY 252.69 77.46 30.83 318.78 1113.17 14.54%° 4.40 0.218¢def 54,67
NC + 250HD 236.35 66.25 28.13 285.37 859.22 13.1120¢ 3.64 0.200°f 47.25
NC + PHY + 250HD  249.43 97.34 37.31 277.01 1013.03 10.04¢ 415 0.259%° 67.89
SEM 3.587 2.109 0.742 5.408 30.189 0.332 0.078 0.0044 1.350
P-value 0.738 0.165 0.185 0.185 0.368 0.023 0.159 0.038 0.069
Challenge effect
UNCHA 23831 83.59 34.67° 273.14 1038.56 12.61 426 0.232 55.92
CHA 24421 79.11 32.06° 279.69 966.38 12.44 3.97 0.222 54.83
P-value 0.353 0.169 0.037 0.471 0.238 0.680 0.059 0.164 0.604
Diet effect
PC 24530 90.20%° 36.76° 265.87 1040.32 11.55 421 0.245% 60.03%°
NC 230.93 67.87° 29.34° 275.27 896.04 13.49 3.88 0.198¢ 46.03¢
NC + PHY 245.86 80.17"¢ 32.84% 291.38 1032.78 13.00 418 0.224%¢ 54,78
NC+250HD 229.13 72.51¢ 30.79° 27321 953.29 13.17 3.99 0.217° 51.35%
NC + PHY+250HD 255.22 95.98? 37.09° 277.32 1101.16 11.32 432 0.250? 64.712
P-value 0.127 <0.001 <0.001 0.605 0.255 0.075 0.332 <0.001 <0.001

TV = tissue volume; BV = bone volume; BV/TV = bone volume/tissue volume ratio; TS = tissue surface; BS = bone surface; BS/BV = bone surface/bone volume ratio; BS/TV =
bone surface/tissue volume ratio; BMD = bone mineral density; BMC = bone mineral content.
af Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC + PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 25-hydroxycholecalciferol; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 25-hydroxycholecalciferol.
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Table 10
Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis total bone of broilers infected with mixed Eimeria spp. on 12 days post inoc-
ulation (DPI) (d 26)".

Item? TV, mm? BV, mm? BV/TV,% TS, mm? BS, mm? BS/BV, mm~! BS/TV, mm™! BMD, g/cm> BMC, mg
Interaction
UNCHA  PC 422.73 175.77 41.66 375.35 1497.26 8.52 3.50 0.257 108.27
NC 421.70 142.12 33.91 372.50 1459.29 10.25 3.48 0.182 76.21
NC + PHY 431.56 175.84 40.78 382.54 1610.40 9.20 3.74 0.256 110.29
NC + 250HD 401.02 145.72 36.50 359.02 1329.70 9.14 3.30 0.213 85.18
NC + PHY + 250HD  420.95 180.25 4292 376.02 1424.69 7.98 3.37 0.263 110.15
CHA PC 381.80 161.27 43.88 347.20 1391.43 9.41 413 0.263 97.35
NC 392.47 145.09 37.18 351.51 1321.42 9.95 3.68 0.211 80.12
NC + PHY 408.43 163.56 40.58 367.63 1438.53 9.25 3.76 0.247 102.35
NC + 250HD 380.96 135.19 35.52 345.04 1272.27 9.44 3.33 0216 82.04
NC + PHY + 250HD 41837 175.55 4234 373.83 1547.89 8.92 3.68 0.260 107.78
SEM 4.442 3.110 0.690 3.265 32.395 0.208 0.076 0.0049 2.209
P-value 0.699 0.801 0.727 0.750 0.611 0.857 0.702 0.520 0.563
Challenge effect
UNCHA 419.592 163.94 39.15 373.09% 1464.27 9.02 3.48 0.234 98.02
CHA 397.22° 155.88 39.90 357.61° 1395.63 9.39 3.72 0.239 93.87
P-value 0.008 0.114 0.529 0.012 0.285 0.372 0.115 0.464 0.159
Diet effect
PC 406.36 169.97° 42777 364.09 1454.93 8.96 3.82 0.260° 103.90°
NC 408.41 143.47° 35.55° 362.96 1396.62 10.10 3.58 0.196° 77.99°
NC + PHY 421.05 170.26° 40.68%° 375.76 1532.27 9.23 3.75 0.252° 106.68°
NC + 250HD 390.99 140.45° 36.01° 352.03 1300.98 9.29 3.32 0.214° 83.61°
NC + PHY + 250HD 419.66 177.90° 42,637 374.93 1486.29 8.45 3.53 0.261% 108.97°
P-value 0.146 <0.001 <0.001 0.087 0.207 0.173 0.248 <0.001 <0.001

TV = tissue volume; BV = bone volume; BV/TV = bone volume/tissue volume ratio; TS = tissue surface; BS = bone surface; BS/BV = bone surface/bone volume ratio; BS/TV =
bone surface/tissue volume ratio; BMD = bone mineral density; BMC = bone mineral content.
b Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 25-hydroxycholecalciferol; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 25-hydroxycholecalciferol.

Table 11
Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis trabecular bone of broilers infected with mixed Eimeria spp. on 6 days post
inoculation (DPI) (d 20)'.

Item? TV, mm? BV, mm?> BMD, g/cm? BMC, mg Tb.Th, mm ' Tb.Sp, mm Tb.N, mm Tb.Pf, mm ™! SMI
Interaction
UNCHA PC 123.91 6.79 0.107%° 13.28 0.102 2.522b¢ 0.54 13.92 2.41
NC 141.47 5.54 0.100%° 12.73 0.099 2.12¢ 0.53 15.50 2.58
NC + PHY 135.88 6.52 0.086%" 12.03 0.101 2.463°¢ 0.47 15.36 2.53
NC + 250HD 137.60 6.42 0.119% 16.68 0.100 2.16¢ 0.54 15.09 2.52
NC + PHY + 250HD 139.43 7.44 0.096%° 12.98 0.099 2.422b¢ 0.54 14.38 2.43
CHA PC 141.09 6.48 0.091° 12.67 0.099 2.81°2 0.47 14.89 2.46
NC 148.12 5.70 0.090° 13.30 0.099 2.80% 0.39 16.06 2.59
NC + PHY 151.31 7.90 0.108% 16.03 0.097 2.13¢ 0.54 17.18 2.63
NC + 250HD 152.45 5.65 0.095% 14.66 0.095 2.70% 0.39 17.14 2.61
NC + PHY + 250HD 127.95 7.81 0.1172 17.16 0.102 2.25b¢ 0.52 14.84 2.50
SEM 2.883 0.272 0.0029 0.590 0.0010 0.062 0.016 0.294 0.018
P-value 0.523 0.770 0.028 0.365 0.657 0.027 0.221 0.857 0.908
Challenge effect
UNCHA 135.66 6.62 0.102 13.54 0.100 2.34 0.52 14.83° 2.50
CHA 144.74 6.71 0.100 14.76 0.098 2.54 0.46 16.02° 2.56
P-value 0.145 0.761 0.821 0.304 0.426 0.081 0.059 0.044 0.075
Diet effect
PC 132.50 6.63 0.099 12.98 0.100 2.67 0.50 14.40 2.44¢
NC 144.79 5.63 0.094 13.01 0.099 2.46 0.46 15.81 2.58°
NC + PHY 143.59 7.21 0.097 14.03 0.099 2.29 0.51 16.27 2.582
NC + 250HD 145.03 6.00 0.107 15.67 0.098 2.43 0.47 16.12 2.56%°
NC + PHY + 250HD 134.21 7.63 0.106 15.07 0.100 233 0.53 14.61 2.47%
P-value 0.446 0.156 0.528 0.507 0.907 0.274 0.564 0.124 0.015

TV = tissue volume; BV = bone volume; BMD = bone mineral density; BMC = bone mineral content; Tb.Th = trabecular thickness; Tb.Sp = trabecular separation;
Tb.N = trabecular number; Tb.Pf = trabecular pattern factor; SMI = structure model index.
2“Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

On 12 DPI (d 26), no significant interaction was noted between exhibited a significant decrease on TV of birds (215.81 wvs.
Eimeria challenge and diets concerning femoral microstructural 231.77 mm>; P = 0.049) on 12 DPI (d 26). Additionally, the dietary
architecture, as detailed in Table 12. However, the Eimeria challenge treatments exerted impact on the microstructural architecture
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Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis trabecular bone of broilers infected with mixed Eimeria spp. on 12 days post

inoculation (PDI) (d 26)".

Item? TV,mm> BV,mm> BMD,g/cm® BMC,mg TbTh,mm TbSp,mm Tb.N,mm™' TbPfmm' SMI
Interaction 223.07 15.76 0.124 27.62 0.137 3.00 0.50 7.07 1.93
UNCHA PC 256.81 14.47 0.083 21.53 0.126 3.34 0.46 9.50 222
NC 231.52 17.90 0.131 30.18 0.133 291 0.59 7.27 1.94
NC + PHY 231.88 1255 0.090 21.21 0.129 353 0.41 8.77 2.12
NC + 250HD 215.57 14.07 0.121 25.90 0.150 3.03 0.44 6.71 1.97
NC + PHY + 250HD  189.95 9.60 0.107 20.28 0.127 3.47 0.47 8.80 214
CHA PC 224.47 12.51 0.077 17.28 0.127 3.22 0.43 8.73 213
NC 221.85 15.83 0.123 27.35 0.140 3.39 0.52 6.75 1.92
NC + PHY 222.08 11.29 0.097 21.47 0.133 351 0.38 9.62 2.26
NC + 250HD 214.53 15.38 0.121 26.08 0.145 3.44 0.50 6.24 1.86
NC + PHY + 250HD  223.07 15.76 0.124 27.62 0.137 3.00 0.50 7.07 1.93
SEM 4.357 0.628 0.0043 1.084 0.0018 0.067 0.017 0.251 0.028
P-value 0.675 0.453 0911 0.768 0.464 0.442 0.798 0.287 0.136
Challenge effect
UNCHA 231.772 14.95 0.111 25.42 0.135 3.16 0.48 7.87 2.03
CHA 215.81° 13.08 0.105 22.68 0.134 341 0.46 8.03 2.06
P-value 0.049 0.101 0.528 0.190 0.846 0.069 0.524 0.702 0.582
Diet effect
PC 209.82 13.30 0.1172 24.68 0.132° 3.24 0.49 7.93% 2.04%
NC 242.11 13.58 0.080° 19.41 0.126° 3.28 0.44 9.12? 2.17°
NC + PHY 227.12 16.96 0.1272 28.89 0.136% 3.15 0.55 7.01° 1.93°
NC + 250HD 226.98 11.92 0.094%° 21.34 0.131° 3.52 0.40 9.20° 2.19°
NC + PHY + 250HD 215.05 14.73 0.1212 25.99 0.1472 3.24 0.47 6.48° 1.91°
P-value 0.148 0.101 0.002 0.057 0.002 0.463 0.065 <0.001 <0.001

TV = tissue volume; BV = bone volume; BMD = bone mineral density; BMC = bone mineral content; Tb.Th = trabecular thickness; Tb.Sp = trabecular separation;
Tb.N = trabecular number; Tb.Pf = trabecular pattern factor; SMI = structure model index.
b Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

parameters of femur bones on 12 DPI (d 26). Birds fed with a
reduced Ca and avP diet (NC) displayed lower BMD compared to PC
birds (0.080 vs. 0.117 g/cm?; P = 0.002), whereas supplementing
phytase, or 250HD, or both, improved BMD to same level as the PC
group (P = 0.002). No significant difference was found between the
NC and PC groups in trabecular thickness (Tb.Th; P > 0.05), but birds
in the NC + PHY + 250HD group showed higher Tb.Th than the
birds from other groups (P = 0.002). The NC + PHY and NC + PHY +
250HD groups showed significantly decreased Th.Pf and SMI values
compared to the NC and NC + 250HD groups on 12 DPI (d 26;
P < 0.05).

3.5.3. Cortical bone

The impact of Eimeria challenge and dietary variations on
femoral microstructure changes of the cortical bone is detailed in
Tables 13 and 14. On 6 DPI (d 20), an interaction effect between
Eimeria challenge and diets was observed regarding bone surface
(BS; P = 0.009; Table 13). The unchallenged NC, Eimeria-challenged
NC, and Eimeria-challenged NC + 250HD groups exhibited lower BS
compared to the unchallenged PC, unchallenged NC + PHY +
250HD, and Eimeria-challenged NC + PHY + 250HD groups
(P < 0.05).

While no significant effect was observed from Eimeria challenge
on the cortical bone microstructure on 6 DPI (d 20), the dietary
treatments exhibited significant influence on TV, BV, BMC, volume
of closed pores (Po.V(cl)), and surface of closed pores (Po.S(cl)) in
the femoral microstructure of cortical bones on 6 DPI (d 20;
P < 0.05; Table 13). Among the dietary groups, the NC birds dis-
played significantly decreased TV, BV, BMC, Po.V(cl), and Po.S(cl)
compared to PC birds (P < 0.05). However, supplementation with
phytase alone (NC + PHY), or a combination of phytase and 250HD
(NC + PHY + 250HD) increased these parameters to values similar
to those of the PC birds (P < 0.05).
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On 12 DPI (d 26), no significant interaction was noted between
Eimeria challenge and diets concerning femoral microstructure of
cortical bones, as detailed in Table 14. However, the Eimeria chal-
lenge exhibited a significant decrease on TS of birds (456.91 vs.
47516 mm?; P = 0.024) on 12 DPI (d 26). Additionally, the dietary
treatments exerted impact on cortical bone parameters on 12 DPI (d
26). Birds fed with a reduced Ca and avP diet (NC) displayed lower
TV, BV, BMC, Po.V(cl), Po.S(cl), and closed porosity percentage
(Po(cl)) compared to PC birds (Table 14; P < 0.05), while supple-
menting phytase alone (NC + PHY) or a combination of phytase and
250HD (NC + PHY + 250HD) improved TV, BV, BMC, Po.V(cl),
Po.S(cl), and Po(cl) to the same level as the PC group (P < 0.05). The
birds in the NC + 250HD group showed a decreased number of
closed pores (Po.N(cl)) compared to the PC group (910 vs. 1153;
P = 0.028).

3.6. Body composition

The results of body composition are summarized in Tables 15
and 16. On 6 DPI (d 20), there was no significant interaction be-
tween Eimeria challenge and diets regarding broiler body compo-
sition, as detailed in Table 15. However, the Eimeria challenge
resulted in a significant decrease in bone area (64.82 vs. 68.5 cm?;
P = 0.045), fat percentage (11.93% vs. 12.85%; P = 0.041), total tissue
(738.51 vs. 769.01 g; P = 0.040), and fat mass (88.38 vs. 99.09 g;
P =0.014) on 6 DPI (d 20). Additionally, the dietary treatments had
an impact on body composition parameters on 6 DPI (d 20). Birds
fed with a reduced Ca and avP diet (NC) exhibited lower BMD, BMC,
and bone area compared to PC birds (P < 0.05; Table 15), whereas
supplementing phytase alone (NC + PHY) or a combination of
phytase and 250HD (NC + PHY + 250HD), but not supplementing
250HD alone, improved BMD, BMC, and bone area to the same level
as the PC group (P < 0.05).
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Table 13
Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis cortical bone of broilers infected with mixed Eimeria spp. on 6 days post
inoculation (DPI) (d 20)".

Item? TV, mm> BV, mm? TS,mm? BS, mm? BMD,g/cm®> BMC,mg PoN(cl) PoV(cl), mm?> Po.S(cl), mm? Po(cl), %
Interaction
UNCHA  PC 113.55 378.17 378.17 832.96°  0.421 47.05 439 0.280 16.92 0.307
NC 74.51 395.94 395.94 62451°  0.325 2443 261 0.098 6.72 0.173
NC + PHY 95.32 379.38 379.38 699.77®*  0.411 38.89 316 0.191 11.24 0.250
NC + 250HD 92.21 378.21 378.21 747.49® 0357 32.40 306 0.142 9.01 0.197
NC + PHY + 250HD 112,58 39891 39891 878.48%  0.381 42.61 409 0.222 13.71 0.258
CHA PC 96.57 378.40 378.40 743.96®  0.400 38.62 313 0.177 10.72 0.235
NC 81.45 366.94 366.94 630.35"  0.369 30.21 309 0.149 9.40 0.230
NC + PHY 93.06 445.10 445.10 785.17%" 0340 31.74 297 0.141 8.87 0.200
NC + 250HD 75.54 375.74 375.74 615.63°  0.360 27.37 293 0.112 7.68 0.189
NC + PHY + 250HD  111.87 401.81 401.81 823.52* 0417 46.72 380 0212 13.14 0.224
SEM 2.569 2.022 6.553 21.860 0.0085 1.334 153 0.0121 0.680 0.0108
P-value 0.243 0.120 0.225 0.009 0.168 0.075 0.466 0.270 0.253 0.353
Challenge effect
UNCHA 97.63 74.20 386.12 756.64 0.379 37.08 346 0.187 11.52 0.237
CHA 91.70 70.10 393.60 719.73 0.377 34.93 318 0.158 9.96 0216
P-value 0.140 0.183 0.565 0.477 0.909 0.275 0.350 0.193 0.207 0.138
Diet effect
PC 105.06°>  81.33% 378.29 788.46 0.411 42.84% 376 0.228° 13.822 0.271
NC 77.98° 59.13¢ 381.44 627.43 0.347 27.32¢ 285 0.124° 8.06° 0.201
NC + PHY 94,19 70.68" 412.24 742.47 0375 35.31b° 307 0.166%° 10.06%° 0.225
NC + 250HD 83.88¢ 63.65¢ 376.97 681.56 0.359 29.89¢ 300 0.127° 8.34° 0.193
NC + PHY + 250HD 112.23° 8598 400.36 851.00 0.399 44.67% 394 0.217%° 13.43% 0.241
P-value <0.001 <0.001 0.330 0.364 0.081 <0.001 0.077 0.006 0.006 0313

TV = tissue volume; BV = bone volume; TS = tissue surface; BS = bone surface; BMD = bone mineral density; BMC = bone mineral content; Po.N(cl) = number of closed pores;
Po.V (cl) = volume of closed pores; Po.S (cl) = surface of closed pores; Po (cl) = closed porosity percentage; SEM = standard error of the mean.
#“Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

Table 14
Effects of phytase and 25-Hydroxycholecalciferol and their combination on femur metaphysis cortical bone of broilers infected with mixed Eimeria spp. on 12 days post
inoculation (DPI) (d 26)'.

Item? TV, mm> BV,mm? TS,mm? BS,mm? BMD,g/cm®> BMC,mg PoN(cl) PoV(cl), mm?> Po.S(cl), mm? Po(cl), %
Interaction
UNCHA  PC 189.63 156.47 480.94 111630  0.438 82.83 1092 0.980 51.79 0.620
NC 154.30 124.25 476.91 1039.72 0398 61.18 905 0.597 35.14 0.473
NC + PHY 189.84 154.41 489.05 1147.71 0435 82.43 1111 0.869 47.72 0.559
NC + 250HD 159.08 129.83 457.34 989.48 0.419 66.46 824 0.528 31.67 0.403
NC + PHY + 250HD  195.61 162.61 471.58 111110  0.443 86.26 891 0.760 39.80 0.607
CHA PC 182.77 148.69 445.76 113582 0431 78.93 1245 1.164 63.75 0.768
NC 157.99 129.26 447.44 981.55 0.413 65.19 917 0.688 36.99 0.533
NC + PHY 176.62 144.21 463.72 1079.44  0.437 77.14 1015 0.941 49.38 0.636
NC + 250HD 149.03 120.66 442.93 961.27 0.422 62.87 748 0.501 29.44 0.417
NC + PHY + 250HD  194.00 156.56 480.53 119415 0431 83.70 1089 0.978 52.60 0.603
SEM 3.487 2.992 4.262 23.282 0.0044 1.713 39.2 0.0460 2.264 0.0267
P-value 0.885 0.866 0.453 0.821 0.890 0.804 0.650 0.876 0.681 0.899
Challenge effect
UNCHA 177.69 145.51 47516  1080.86  0.427 75.83 967 0.746 4127 0.532
CHA 171.63 139.44 45691° 106849 0427 73.34 987 0.834 4535 0.578
P-value 0327 0.254 0.024 0.822 0.964 0.377 0.614 0.188 0.198 0.254
Diet effect
PC 186.89°  153.36°  466.87 112411 0435 81.27% 11532 1.0532 56.582 0.679°
NC 15598 12653 463,51 101328  0.405 63.00° 910% 0.638" 35.98"¢ 0.500"
NC + PHY 183.832 149.772 477.54 1116.68 0436 80.03% 1067 0.902%° 48.47% 0.594%°
NC + 250HD 154.06° 12525  450.13 97538  0.421 64.66" 786" 0.515¢ 30.56¢ 0.410°
NC + PHY + 250HD 194.80°  159.58%  476.06 1152.63 0437 84.98% 999%° 0.879% 46.78%° 0.605%°
P-value <0.001 <0.001 0.209 0.066 0.123 <0.001 0.028 <0.001 <0.001 0.012

TV = tissue volume; BV = bone volume; TS = tissue surface; BS = bone surface; BMD = bone mineral density; BMC = bone mineral content; Po.N(cl) = number of closed pores;
Po.V(cl) = volume of closed pores; Po.S(cl) = surface of closed pores; Po(cl) = closed porosity percentage.
2“Means within a column with different letter superscripts are significantly different (P < 0.05).

! n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

On 12 DPI (d 26), an interaction effect between Eimeria chal- for the NC + PHY group birds (12.40% vs. 15.42%; P = 0.036). No
lenge and diets was observed concerning fat percentage (P = 0.036; significant difference in fat percentage was observed among the
Table 16). The Eimeria challenge led to a decrease in fat percentage unchallenged groups (P > 0.05). However, in the Eimeria-
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Table 15
Effects of phytase and 25-Hydroxycholecalciferol and their combination on body composition of broilers infected with mixed Eimeria spp. on 6 days post inoculation (DPI) (d
20)L
Item? BMD, g/cm? BMC, g Bone area, cm? Fat percentage, % Total tissue, g Fat mass, g Lean mass, g
Interaction
UNCHA PC 0.147 11.15 75.92 13.37 794.13 106.25 687.84
NC 0.127 741 58.08 13.00 761.39 99.07 662.28
NC + PHY 0.143 10.44 73.25 12.53 791.56 99.60 691.92
NC + 250HD 0.129 8.14 63.33 12.25 748.77 91.89 656.88
NC + PHY + 250HD 0.146 10.51 71.92 13.10 749.18 98.62 650.49
CHA PC 0.149 9.91 66.50 13.00 735.09 95.59 639.49
NC 0.130 7.79 59.92 11.98 750.70 89.74 660.96
NC + PHY 0.144 10.06 69.75 11.02 732.06 81.61 650.41
NC + 250HD 0.132 7.79 58.83 11.42 744.69 85.73 658.96
NC + PHY + 250HD 0.151 10.44 69.08 12.22 730.02 89.24 640.81
SEM 0.0015 0.217 1.138 0.224 7.210 2.149 5.897
P-value 0.970 0.475 0411 0.950 0.602 0.928 0.545
Challenge effect
UNCHA 0.139 9.53 68.50% 12.85° 769.01° 99.09° 669.88
CHA 0.141 9.20 64.82° 11.93° 738.51° 88.38" 650.13
P-value 0.207 0.244 0.045 0.041 0.040 0.014 0.104
Diet effect
PC 0.148? 10.53% 71.21° 13.18 764.61 100.92 663.66
NC 0.129° 7.60° 59.00° 12.49 756.04 94.40 661.62
NC + PHY 0.1442 10.25% 71.50% 11.78 761.81 90.61 671.17
NC + 250HD 0.131° 7.97° 61.08° 11.83 746.73 88.81 657.92
NC + PHY + 250HD 0.148* 10.48* 70.50* 12.66 739.60 93.93 645.65
P-value <0.001 <0.001 <0.001 0.234 0.793 0.434 0.740

BMD = bone mineral density; BMC = bone mineral content; SEM = standard error of the mean.
2> Means within a column with different letter superscripts are significantly different (P < 0.05).

1

n = 6 replicate cages x 2 birds/cage = 12.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg

of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

Table 16
Effects of phytase and 25-Hydroxycholecalciferol and their combination on body composition of broilers infected with mixed Eimeria spp. on 12 days post inoculation (DPI) (d
26)".
Item? BMD, g/cm? BMC, g Bone area, cm? Fat percentage, % Total tissue, g Fat mass, g Lean mass, g
Interaction
UNCHA PC 0.154 19.18 124.75 14.7235 1306.69 192.40 1114.25
NC 0.140 13.58 96.67 13,953 1275.43 178.38 1097.05
NC + PHY 0.156 18.48 118.67 15.423° 1287.71 197.77 1089.98
NC + 250HD 0.144 15.43 107.58 14.173b<d 1264.88 179.24 1085.64
NC + PHY + 250HD 0.155 18.27 118.33 15.27%¢ 1269.08 195.16 1073.92
CHA PC 0.148 17.31 116.83 15.80% 1253.66 198.26 1055.36
NC 0.133 13.02 98.17 13.50< 1221.07 165.07 1056.00
NC + PHY 0.149 17.73 119.00 12.40¢ 1224.21 152.48 1071.69
NC + 250HD 0.137 14.41 105.25 14.38%°¢ 1268.81 182.19 1086.62
NC + PHY + 250HD 0.160 19.54 121.75 13.820d 127838 178.00 1100.34
SEM 0.0013 0.348 1.706 0.232 0.232 0.004 0.008
P-value 0.078 0.173 0.671 0.036 0.631 0.151 0.450
Challenge effect
UNCHA 0.150? 16.99 113.20 14.70 1280.76 188.59 1092.17
CHA 0.145° 16.40 112.20 13.98 1249.23 175.20 1074.00
P-value 0.015 0.149 0.697 0.094 0.112 0.057 0.248
Diet effect
PC 0.151° 18.25% 120.79° 15.26 1280.17 195.33 1084.81
NC 0.136° 13.30° 97.42° 13.73 1248.25 171.72 1076.53
NC + PHY 0.152° 18.11° 118.83 13.91 1255.96 175.12 1080.84
NC + 250HD 0.141° 14.92° 106.42° 14.28 1266.85 180.72 1086.13
NC + PHY + 250HD 0.1572 18.90° 120.04* 14.54 1273.73 186.58 1087.13
P-value <0.001 <0.001 <0.001 0.184 0.841 0.219 0.992

BMD = bone mineral density; BMC = bone mineral content.

2 -d Means within a column with different letter superscripts are significantly different (P < 0.05).

1

n = 6 replicate cages x 2 birds/cage = 12.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC, positive control; NC = negative control (reduced 0.20% Ca and avP); NC + PHY = NC + 1500 FTU/kg of
phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase -+ 5000 IU/kg of 250HD.

challenged groups, the NC, NC + PHY, and NC + PHY + 250HD
groups showed significantly reduced fat percentage compared to
the Eimeria-challenged PC group (P = 0.036). Additionally, Eimeria
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challenge and diets demonstrated main effects on 12 DPI (d 26).
Eimeria-challenged broilers exhibited decreased BMD compared to
unchallenged birds (0.145 vs. 0.15 g/cm?; P = 0.015). Like 6 DPI (d
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Table 17
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Effects of phytase and 25-Hydroxycholecalciferol and their combination on gene expression of duodenal-jejunal tight junction proteins of broilers infected with mixed Eimeria

spp. on 6 days post inoculation (DPI) (d 20)".

Item?® CLDN1 JAM2 OCLN 701 MUC2
Interaction
UNCHA PC 1.00 1.00¢ 1.00%¢ 1.00 1.00
NC 1.04 1.51%¢ 0.89°<d 1.10 0.94
NC + PHY 1.13 1.33¢ 1.1220 1.07 1.18
NC + 250HD 1.29 1.96%¢ 1.19? 1.55 0.91
NC + PHY + 250HD 1.05 1.42¢ 0.98%b¢ 1.14 0.92
CHA PC 1.71 2.64° 0.79% 1.33 0.66
NC 241 1.55"¢ 0.880<d 1.42 0.58
NC + PHY 221 2.45% 0.69¢ 1.12 0.84
NC + 250HD 1.80 1.63%b¢ 0.68¢ 1.10 0.57
NC + PHY + 250HD 1.99 1.18¢ 0.76% 1.28 0.84
SEM 0.102 0.121 0.033 0.048 0.032
P-value 0.527 0.020 0.050 0.070 0.217
Challenge effect
UNCHA 1.10° 1.44° 1.03? 117 0.99°
CHA 2.05% 1.89° 0.77° 1.26 0.70°
P-value <0.001 0.050 <0.001 0.425 <0.001
Diet effect
PC 1.29 1.82 0.90 1.16 0.83%
NC 1.72 1.53 0.88 1.26 0.76°
NC + PHY 1.62 1.84 0.92 1.09 1.03?
NC + 250HD 1.52 1.83 0.96 1.34 0.75°
NC + PHY + 250HD 1.52 1.30 0.87 1.21 0.88%°
P-value 0.688 0.406 0.954 0.589 0.003

CLDN1 = claudin 1; JAM2 = junctional adhesion molecule 2; OCLN = occludin; ZO1 = zonula occludens 1; MUC2 = mucin 2.
24 Means within a column with different letter superscripts are significantly different (P < 0.05).

T n = 6 replicate cages x 1 bird/cage = 6.

2 UNCHA = unchallenged group; CHA = Eimeria challenged group; PC = positive control; NC = negative control (reduced 0.20% Ca and avP); NC -+ PHY = NC + 1500 FTU/kg
of phytase; NC + 250HD = NC + 5000 IU/kg of 250HD; NC + PHY + 250HD = NC + 1500 FTU/kg of phytase + 5000 IU/kg of 250HD.

20), on 12 DPI (d 26), birds fed with a reduced Ca and avP diet (NC)
displayed lower BMD, BMC and bone area compared to PC birds
(Table 16), whereas supplementing phytase alone (NC + PHY) or a
combination of phytase and 250HD (NC + PHY + 250HD), but not
supplementing 250HD alone, improved BMD, BMC, and bone area
to the same level as the PC group (P < 0.05).

3.7. Gene expression of tight junction proteins

The results of gene expression of duodenal-jejunal tight junc-
tion proteins on 6 DPI (d 20) are summarized in Table 17. Interaction
effects between Eimeria challenge and diets were observed in
junctional adhesion molecule 2 (JAM2; P = 0.020) and occludin
(OCLN; P = 0.050). For JAM2 gene expression, Eimeria challenge
upregulated the mRNA expression of JAM?2 for the PC and NC + PHY
groups (P = 0.020). There was no significant difference on JAM2
mRNA expression among unchallenged groups (P > 0.05). However,
in Eimeria-challenged groups, the NC and NC + PHY-+250HD
groups showed downregulated expression of JAM2 mRNA
compared to the Eimeria-challenged PC group (P = 0.020). For OCLN
mRNA expression, Eimeria challenge downregulated the mRNA
expression of OCLN for the NC + PHY and NC + 250HD groups
(P = 0.050). In unchallenged groups, the NC + 250HD group
showed an upregulated mRNA expression of OCLN compared to the
NC group (1.19-fold vs. 0.89-fold; P = 0.050). However, no signifi-
cant difference on OCLN mRNA expression among Eimeria-chal-
lenged groups was observed (P > 0.05).

Additionally, Eimeria challenge and diets demonstrated main
effects on 6 DPI (d 20). Eimeria-challenged birds showed an upre-
gulated mRNA expression of claudin 1 (CLDN1; 2.05-fold vs. 1.1-
fold; P < 0.001) and JAM2 (1.89-fold vs. 1.44-fold; P = 0.050), and
a downregulated expression of OCLN (0.77-fold vs. 1.03-fold;
P < 0.001) and mucin 2 (MUC2; 0.7-fold vs. 0.99-fold; P < 0.001).
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Birds in the NC + PHY group showed upregulated expression of
MUC2 compared to the NC and NC + 250HD groups (P = 0.003).

4. Discussion

In commercial production, enhancing the utilization of P in feed
proves to be an effective way for mitigating P pollution. Extensive
research has investigated the impact of phytase or 250HD sup-
plementation in chickens. However, 250HD used together with
phytase in Eimeria-challenged broilers has not been previously
reported. The findings from the current study reaffirm the detri-
mental effects of coccidiosis on broilers and offer insights into how
supplementing phytase and 250HD in a Ca/P-reduced diet, either
individually or in combination, influences the growth performance,
gut integrity, bone development, and body composition of Eimeria-
challenged birds. Coccidiosis decreased BWG and FI from 0 to 6 DPI
and 0 to 12 DPL. It also increased the FCR of birds from 7 to 12 DPI
and 0 to 12 DPI. Additionally, it decreased the daily FI of birds from
4 to 7 DPI (acute phase) and started to recover from 8 DPI (recovery
phase) as shown in Table 5. Numerous studies have summarized
the detrimental impact of Eimeria challenge on the growth per-
formance of broilers, especially in acute phase, due to severe gut
damage, impaired nutrient absorption, and a strong immune
response diverting resources from growth (Yadav et al., 2020; Choi
etal,, 2023; Liu et al., 2024; Lopes et al., 2024). In the current study,
reducing Ca and avP levels in the diet did not affect the FI or BWG of
birds during 0 to 12 DPI, but negatively affected the FCR of birds
during 7 to 12 DPI and overall period 0 to 12 DPI. However, sup-
plementing phytase or 250HD, or both, could alleviate the adverse
effects of Ca and P reduction on FCR of birds. Similar results were
found in other studies reporting that reducing Ca and P in diet
during the grower phase (after d 14 to 28) did not affect the FI or
BWG but increased the FCR of birds during d 0 to 28 (Delezie et al.,
2015; Dersjant-Li et al., 2018). However, supplementing phytase, or
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250HD, or both improved the FCR to similar level of the PC group in
the current study; these findings are align with previous studies on
chicken (Angel et al., 2005; Ahmed et al, 2015; Taheri and
Mirisakhani, 2020; Yavas et al., 2020; Kermani et al.,, 2023) or
swine (Li et al.,, 1998; Zhao et al., 2022). The results of the current
study demonstrated that although Ca and avP were reduced in the
diet, it appears that there were no detrimental effects associated
with these reductions on growth performance during the recovery
phase (7 to 12 DPI) and overall period, except the FCR. Notably,
birds fed diets supplemented with both phytase and 250HD
showed better BWG or FI compared to the NC birds during 7 to 12
DPI and overall period. In the current study, dietary phytase or
combination of phytase and 250HD reduced the FCR of birds
compared to the NC group, suggesting that phytase is the main
contributor for reducing the FCR, while combination of phytase and
250HD had a superposition effect on growth performance.

During the acute phase (0 to 6 DPI), interaction effects were
found in BWG in the present study. Reducing Ca and P in the diet
(NC) had negative effects on BWG in unchallenged birds but not in
Eimeria-challenged birds. But, supplementing phytase or 250HD
alone but not combination improved the BWG of unchallenged
birds to same levels of unchallenged PC birds; however, in the
Eimeria-challenged groups, the phytase and 250HD combination
group had higher BWG compared to Eimeria-challenged PC group.
The results demonstrated that reducing dietary Ca and P levels had
more impact in unchallenged birds compared with Eimeria-chal-
lenged birds, and supplementation of phytase and 250HD combi-
nation had more benefit effect in Eimeria-challenged birds. This
may be attributed to the compromised gut health and integrity
caused by Eimeria challenge, evidenced by the elevated levels of
FITC-d, heightened intestinal lesion scores, and upregulated gene
expression of tight junction proteins (CLDN1 and JAM?2 in the pre-
sent study), leading to reduced absorption and utilization of nu-
trients, such as Ca and P. The supplementation of the phytase and
250HD combination may help to mitigate these effects by pro-
moting gut health and improving nutrient absorption efficiency,
thereby providing more benefits in Eimeria-challenged birds
compared to unchallenged birds.

In this study, we assessed the impact of phytase and 250HD
supplementation on intestinal integrity by evaluating gut perme-
ability, intestinal lesion scores, and mRNA expressions of tight
junction proteins. Our results indicated dietary treatments did not
affect the intestinal lesion scores of broilers. However, the 250HD
group exhibited an elevated level of FITC-d compared to both the
phytase and phytase + 250HD groups, with most of the increase
observed in the Eimeria-challenged 250HD group (135 ng/mL).
Providing a higher level of vitamin D was linked to increased
parasite replication and gastrointestinal tract (GIT) damage was
reported by a previous study (Sakkas et al., 2019a). In the current
study, the gene expression of MUC2 was upregulated in the phytase
group compared to the NC or 250HD alone group, which was also
reported by another study where the MUC2 expression was upre-
gulated by 3000 FTU/kg of phytase supplementation to a reduced
Ca and P diet (Ajuwon et al., 2020). MUC2, secreted by goblet cells,
adheres to the surface of intestinal villi, and serves as the primary
physical barrier of the intestine (Kim and Ho, 2010). Stimulating
goblet cells to secrete mucin can enhance the protective mucin
layer, protecting the intestinal tract against invasion of pathogenic
bacteria (Kim and Ho, 2010). In the current study, supplementing
phytase in the NC diet might prove beneficial for the proliferation of
intestinal goblet cells and the inhibition of bacterial translocation in
broilers (Klinsoda et al., 2020; Li et al., 2022). The finding on the
expression of MUC2 are consistent with prior research that Eimeria
challenge downregulates the expression of MUC2 (Forder et al.,
2012; Kitessa et al., 2014). It is plausible that as the intestine
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health is suppressed, MUC2 expression decreases, potentially
slowing the replenishment of the mucus layer.

The current study showed a significant upregulation in the gene
expression of CLDN1 and JAM2 due to coccidiosis, which has been
reported in other Eimeria challenge studies (Teng et al., 2021; Lin
et al., 2022). Additionally, interaction effects of Eimeria challenge
and dietary treatments were found in JAM2 and OCLN gene ex-
pressions. The JAM2 gene expression was upregulated in the chal-
lenged PC and NC + PHY groups compared to the unchallenged PC
group. However, it was downregulated in the challenged NC + PHY
+ 250HD group to the same level as the unchallenged PC group.
This result indicates that the combination of phytase and 250HD in
Eimeria-infected birds likely provides a protective effect on the
intestinal barrier, reducing the need for the body's emergency
response to maintain tight junction integrity. The Eimeria challenge
resulted in downregulation of OCLN gene expression in the current
study, a finding consistent with reports by Teng et al. (2021) and
Leung et al. (2019). This downregulation indicates increased gut
permeability, as the tight junction protein OCLN, along with clau-
dins and cadherins, is essential for proper intestinal epithelial
barrier function (Al-Sadi et al., 2011). This was further supported by
the FITC-d results in this study. Decreased expression of OCLN has
been noted in human patients with intestinal permeability disor-
ders, particularly in relation to macromolecules (Al-Sadi et al.,
2011). Changes in tight junction proteins can lead to defects in in-
testinal integrity and barrier dysfunction, aligning with observa-
tions of increased gut permeability due to Eimeria challenge.

As expected, our observations showed that coccidiosis
compromised the tibial bone ash parameters of broilers at 12 DPI,
with Eimeria-challenged birds, exhibiting significantly lower initial
bone weight, bone volume, FFBW and bone ash weight compared to
unchallenged birds. The bone formation, as indicated by the MAR,
was reduced by coccidiosis during 4 to 8 DPI. Furthermore, the bone
microstructure was compromised by coccidiosis at both 6 DPI and
12 DPI, as evidenced by decreased total bone BV/TV, TV, TS,
trabecular bone TV, and cortical bone TS. Consistent with our
findings, Oikeh et al. (2019) noted a decrease in tibia ash content
and ash percentage due to Eimeria challenge, with a more pro-
nounced effect observed on 12 DPI compared to 6 DPI. Similarly,
other studies have reported a reduction in bone ash by coccidiosis
on 6 DPI or/and 12 DPI (Sakkas et al., 2018), as well as a notable
decrease in femur microstructure parameters in broilers and pul-
lets (Sharma et al., 2023; Lopes et al., 2024), suggesting that Eimeria
challenge suppresses long bone development during the post-
infection stage, with affected birds unable to catch up with their
unchallenged counterparts even during the recovery phase.

Ca and P are essential for multiple physiological functions in the
chicken, including growth performance and skeletal system. When
the diet lacks adequate or has imbalanced levels of Ca and P, it can
lead to potential issues such as malabsorption of these minerals,
hindered bone mineralization and growth, and increased leg
problems (Matuszewski et al., 2020). In the current study, decrease
on bone ash, MAR, and bone microstructure parameters of broilers
due to reduced levels of Ca and avP in the diet was observed.
Similarly, previous studies have reported that a reduction in dietary
Ca and P levels led to suppressed bone ash parameters compared to
birds fed a nutritionally adequate diet, with improvements
observed upon supplementation of phytase by d 21 (Shi et al., 2022,
2023). However, a recent study observed no difference in bone ash
parameters between the Ca and P-reduced group (NC) and the basal
diet group (PC) on both 6 DPI and 9 DPI (Shi et al., 2024). Olukosi
and Fru-Nji (2014) reported that reducing the Ca and NPP level,
increasing the Ca/NPP ratio, or exclusion of phytase of the diet not
only decreased bone ash percentage, but also decreased Ca and P
concentration in tibia, therefore, the negative effect on bone ash is



H. Shi, V.S.R. Choppa, D. Paneru et al.

potentially extend to a reduction on the Ca and P content in the
bone. The inconsistency may arise from the more pronounced
reduction in Ca and P levels in this study compared to the previous
one, resulting in significant differences between the NC and PC
groups in bone ash parameters in the current study.

Interestingly, our investigation revealed that supplementing
phytase alone or in combination with 250HD, but not 250HD
supplementation alone, resulted in improvements in bone micro-
structure parameters comparable to those of the PC. This suggests
that the primary enhancement of bone structural soundness stems
from phytase supplementation rather than 250HD. Ghasemi et al.
(2019) reported a similar results that supplementation of 5 ug/kg
of 10—OH—D3 in a reduced Ca and NPP diet did not improve the Ca
and P content in tibia. In this study, we observed improved bone
ash parameters and bone microstructure, as indicated by tibia
FFBW, bone ash weight, bone ash percentage, bone ash concen-
tration, as well as femur BV, BV/TV, BMC, and BMD by feeding
treatments. These findings suggest that supplementing phytase at
1500 FTU/kg, either alone or combined with 250HD, positively
influences the mineralization and quality of broiler bones. Similar
results have been reported in our previous studies (Shi et al., 2022,
2023, 2024). Notably, the supplementation of 250HD to the NC diet
improved the BWG, and FCR of birds to levels comparable to those
of birds fed the PC diet during 7 to 12 DPI and 0 to 12 DPI, as well as
improved the MAR during 4 to 8 DPI, but not the bone minerali-
zation or bone microstructure during the post-infection stages in
the current study. Birds in the 250HD group exhibited elevated
FITC-d levels compared to other groups, indicating increased gut
permeability. Analysis of vitamin D3 levels in each diet showed that
the 250HD group had the highest concentration (5752.6 IU/kg)
among the dietary groups. The finding potentially explains the
medium effect on bone development with 250HD supplementa-
tion alone, as previous research has indicated that vitamin D3 levels
exceeding 5000 IU/kg in the diet may not have a linear effect on
tibia bone mineralization in broilers (Sakkas et al., 2019b). Re-
searchers have cautioned against supplementing vitamin D above
the maximum level recommended for commercial practice, which
is 5000 IU/kg (Whitehead et al., 2004). Whitehead et al. (2024)
reported that supplementation with vitamin D was found to
enhance bone formation and bone mineralization, though the
improvement on bone mineralization was not as effective as phy-
tase. Vitamin D is essential for Ca and P absorption in the intestines
and boosts the activity of osteoblasts, the cells responsible for bone
formation (Jones et al., 1998; Chen et al., 2020). However, the
absence of vitamin D impact on bone microstructure suggests that
other factors may also be involved in bone microstructure devel-
opment. Future research on bone resorption parameters might
shed light on this finding because bone remodeling involves both
bone formation and resorption, which together influence bone
microstructure (Goltzman, 2018). Although vitamin D is important
for providing Ca and P for bone mineralization, the process also
relies on the availability of these minerals in the diet and blood-
stream and the balance between osteoblast and osteoclast activity
(Rowe et al., 2018). This may explain the less pronounced effects on
bone mineralization observed in the group fed the diet supple-
mented with vitamin D.

Body composition is a critical parameter in broiler production,
closely associated with both meat yield and meat quality (Choi
et al., 2023). Eimeria challenge resulted in reduced bone area, fat
percentage, total tissue, and fat mass of broilers on 6 DPI, along
with a decrease in BMD on 12 DPI in this study. These findings align
with previous studies on Eimeria challenge (Fetterer et al., 2013;
Sharma et al., 2022), indicating the detrimental effect of coccidiosis
on broilers. Furthermore, the body composition outcomes from
dietary effect mirrored those observed for bone ash and bone
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microstructure. Specifically, reducing Ca and P in the diet
compromised BMD, BMC, and bone area of birds on both 6 and 12
DPI, while supplementing phytase, either alone or in combination
with 250HD, but not 250HD alone, improved these parameters.

5. Conclusion

In summary, our results indicated that supplementing phytase,
either alone or in combination with 250HD, to diets low in Ca and P
may mitigate the adverse effects of Eimeria infection on intestinal
health and bone development. This is demonstrated by improve-
ments in intestinal permeability, bone mineralization, bone
microstructure, and body composition. While 250HD supplemen-
tation on its own had a less significant impact on bone develop-
ment compared to phytase, it did show some positive effects on
growth performance, bone mineral apposition rate, bone ash con-
centration and bone ash percentage. In this study, the benefits of
phytase supplementation were generally more pronounced than
those associated with 250HD supplementation; however, the
combination of both induced more optimal effects.
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