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ABSTRACT: TTF- and exTTF-containing [(μ-S2)Fe2(CO)6] com-
plexes have been prepared by the photochemical reaction of TTF or
exTTF and [(μ-S2)Fe2(CO)6]. These complexes are able to interact with
PAHs. In the absence of air and in acid media an electrocatalytic
dihydrogen evolution reaction (HER) occurs, similarly to analogous [(μ-
S2)Fe2(CO)6] complexes. However, in the presence of air, the TTF and
exTTF organic moieties strongly influence the electrochemistry of these
systems. The reported data may be valuable in the design of [FeFe]
hydrogenase mimics able to combine the HER properties of the [FeFe]
cores with the unique TTF properties.
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■ INTRODUCTION

Hydrogenase enzymes are natural catalysts that promote the
reversible transformation of protons into molecular hydro-
gen.1−5 Among the three natural classes of hydrogenases,
namely [FeFe] hydrogenases, [NiFe] hydrogenases, and [Fe]
hydrogenases, the [FeFe] class shows an outstanding activity in
hydrogen production.6,7 It is not surprising that efforts to
prepare simple nonprotein systems based on the main
structural features of natural [FeFe] hydrogenases or related
compounds have witnessed an explosive growth during the last
20 years.7−12

In this regard, derivatives of the [(μ-S2)Fe2(CO)6] basic
motif have been thoroughly studied for hydrogen production
in the presence of an external electron donor.7−13 The active
site of [FeFe] hydrogenases (H-cluster) comprises a [2Fe]
subcluster covalently linked via cysteine to a [Fe4S4] cluster.
Both sites are redox-active, and electron transfer is proton-
coupled. The [Fe4S4] cluster is a critical component that
modulates the redox and catalytic properties of the H-cluster,
acting as an electron injection site.1−5

Efforts to attach this critical component to a [FeFe]
molecular model began with the incorporation of modified
[Fe4S4] clusters,14 but more recent examples have used
ferrocene,15−18 maleic anhydride,19 some bipyridine deriva-
tives,20 and C60 fullerene derivatives

21 for this purpose. In fact,
the only two examples of a [FeFe] mimic having a functional
electron relay are the complex [μ-{(SCH2)2NBn}-
Fe 2 (CO) 3 (F cP* ) (dppv ) ] (1 ; F cP* = Cp*Fe -
(C5Me4CH2PEt2)) (Figure 1) and its derivatives containing
phosphole ligands coordinated to the [FeFe] center.22,23 It is

worth noting that among the plethora of [FeFe] hydrogenase
mimics prepared, only these examples address the problem of
attaching an electron relay (likely behaving as the “natural”
[Fe4S4] moiety).
An alternative to the covalent attachment of the “electron

reservoir” to the [FeFe] moiety is the use of systems such as 2
(Figure 1), which afford self-assembled entities in the presence
of zinc tetraphenylporphyrin.24 Several supramolecular struc-
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Figure 1. Examples of [FeFe] complexes bearing active redox
moieties.
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tures have been prepared, and their ability to promote electron
transfer from the electron donor to the bimetallic catalytic
moiety together with the photophysical properties of these
systems has been studied.13,24−27

Tetrathiafulvalene (TTF) derivatives have been thoroughly
studied in molecular and noncovalent chemistry because of
their unique π-electron-donating properties.28,29 The incorpo-
ration of TTF and extended tetrathiafulvalenes (exTTFs) as
the donor moiety in donor−acceptor (D−A) systems is
currently a well-established methodology in the building of
organic-based materials with applications in different fields
related to organic electronic devices.30 In this regard, the
oxidation of TTFs and exTTFs has been thoroughly and
extensively studied because of their fundamental role in D−A
organic molecules and devices.28,29,31−35 The electrochemical
oxidation of the neutral TTF shows two reversible and well-
separated one-electron steps, which account for the formation
of the radical cation and dicationic species, respectively.36−40

These processes result in the intramolecular charge transfer
(ICT) associated with the ground state of oxidized TTF
derivatives.41

A less studied aspect of TTFs and exTTFs is their redox
behavior in acid media and the role of the protonated TTF
species in the reduction of O2. The four-electron reduction of
oxygen by TTF42 in acidified dichloroethane and at the
interface between two immiscible electrolyte solutions (ITIES)
points to the relevant role of protonated TTF as the key
species in the process. The selective reduction of O2 and the
reduction of protons by photoexcited HTTF+ have been
addressed in the presence of strong acid.42,43 The protonation
of the TTF is crucial for these reactions, and it is followed by
the direct four-electron reduction of oxygen to water (Scheme
1).42 In this regard, the production of TTF•+ was reported to

be much faster under aerobic conditions than that under
anaerobic conditions. Also, protonated TTF-based molecules
were indicated to be promising photoactivated redox shuttles
for dihydrogen generation in the presence of metals.44

On the basis of these previous results, we were interested in
studying the behavior of TTF (or exTTFs) when they are
incorporated in a system that is designed for dihydrogen
generation in the presence of acid. The combination of TTF
and exTTFs with [FeFe] hydrogenase models is appealing, not
only for their redox properties but also for their unique self-
assembly properties and their ability to interact with planar
polyaromatic hydrocarbons (PAHs) through π−π interactions.
These properties render them ideal candidates for the design of
supramolecular models of [FeFe] hydrogenases able to interact

with aromatic substrates or, by extension, with graphite or
modified graphite surfaces.31−35,45−48

Reported herein are the synthesis and electrochemical
properties of the first TTF-[(μ-S2)Fe2(CO)6] and exTTF-
[(μ-S2)Fe2(CO)6] [FeFe] hydrogenase models. Our approach
uses a mild photochemical procedure to incorporate the [(μ-
S2)Fe2(CO)6] moiety in sensitive substrates. NMR studies of
the interaction of the prepared compounds and three simple
PAHs will also be discussed.

■ EXPERIMENTAL SECTION

Materials and Methods
Unless otherwise stated, all of the reactions were carried out under Ar
atmosphere using anhydrous solvents. The reaction workups were
performed in air. [(μ-S2)Fe2(CO)6],

49 9,10-bis(1,3-dithiol-2-ylidene)-
9,10-dihydroanthracene (4),50 and 5,12-bis(1,3-dithiol-2-ylidene)-
5,12-dihydronaphthacene (5)51 were prepared according to the
corresponding reported protocols. Complex 9 was prepared following
literature procedures.52 Commercially available tetrathiafulvalene (3)
was used as received without further purification. 1H, 13C, and 2D
COSY, HMQC, and HMBC NMR spectra were recorded at ambient
temperature in CDCl3 on a Bruker 500 MHz instrument; NOE
spectra were recorded at 5 °C. Chemical shifts are expressed in parts
per million and are referenced to residual solvent peaks (1H, and 13C).
ESI-HRMS was performed on an Agilent 6500 accurate mass
spectrometer with a Q-TOF analyzer. Cyclic voltammograms were
recorded using a Metrohm Model PGSTAT302N Autolab Potentio-
stat with a 3 mm glassy-carbon working electrode, Ag/AgCl 3 M as
the reference electrode, and a 2 mm Pt-wire counter electrode. All of
the measurements were performed at room temperature from
CH3CN solutions containing 10−1 M [NBu4]PF6 as the supporting
electrolyte, with analyte concentrations of 10−3 M. Unless otherwise
stated, the experiments were carried out under an argon atmosphere.

Computational Details
Geometry optimizations without symmetry constraints were carried
out by using the Gaussian 16 suite of programs.53 All calculations
were performed at the DFT level by using the M06-2X func-
tional54−56 with an ultrafine integration grid.57 Fe atoms were
described by using the scalar relativistic Stuttgart−Dresden SDD
pseudopotential58 and its associated double-ζ basis set complemented
with a set of f-polarization functions.59 The 6-31G** basis set was
used for the H, C, N, and O atoms.60,61 All of the structures were fully
optimized in CH3CN (ε = 8.93) by using the SMD continuum
model.62

General Procedures for the Cycloadditions
In a Pyrex tube, [(μ-S2)Fe2(CO)6] (1 equiv) and the corresponding
tetrathiafulvalene (1 equiv) were dissolved in THF. The solution was
bubbled with CO for 10 min, and the tube was sealed and irradiated
(medium-pressure Hg lamp, 125 W, Pyrex filter, and Pyrex immersion
well) for 16 h. After this time, the solvent was removed in vacuo, and
the residue was purified by column chromatography.

Compound 6. By the general procedure with 50 mg of [(μ-
S2)Fe2(CO)6], and 30 mg of TTF (3) in 50 mL of THF as the
starting materials, complex 6 was obtained as a red solid in 32% yield
(25 mg) upon column chromatography (SiO2, hexane).

1H NMR
(500 MHz, CDCl3): δ 6.28 (s, 2H), 4.94 (s, 2H) ppm. 13C NMR
(126 MHz, CDCl3): δ 207.1 (CO), 128.0 (C), 119.0 (CH), 108.8
(C), 70.0 (CH) ppm. IR (film): ν(CO) 2084 (m), ν(CO) 2033 (s),
ν(CO) 1993 (vs) cm−1. HRMS-ESI: m/z calcd for C12H5Fe2O6S6 [M
+ H]+ 548.71092, found [M + H]+ 548.71150.

Compound 7. By the general procedure with 145 mg of complex
[(μ-S2)Fe2(CO)6], and 160 mg of exTTF 4 in 58 mL of THF as the
starting materials, product 7 was obtained as an orange solid in 23%
yield (69 mg) upon column chromatography (SiO2, hexane/benzene
1/1). Complex 7 was obtained as a mixture of two conformers (7/3
ratio). 1H NMR (500 MHz, CDCl3): δ 7.74 (d, J = 7.7 Hz, 2H,
major), 7.70 (d, J = 7.6 Hz, 2H, minor), 7.51 (d, J = 7.5 Hz, 2H,

Scheme 1. Reaction of TTF (3) with Oxygen in Acid Media
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minor), 7.41 (d, J = 7.6 Hz, 2H, major), 7.36−7.24 (m, 4H, major; 4H,
minor), 6.38 (s, 2H, major), 6.30 (s, 2H, minor), 5.01 (s, 2H, major),
4.66 (s, 2H, minor) ppm. 13C NMR (126 MHz, CDCl3): δ 207.7 (br
s, CO), 207.1 (br s, CO) 137.3 (C, major), 137.1 (C, minor), 136.7
(C, major), 136.5 (C, minor), 136.1 (C, major), 135.1 (C, major),
134.4 (C, minor), 133.1 (C, minor), 127.1 (CH, major), 126.9 (CH,
major, minor), 126.8 (C, minor), 126.7 (CH, major), 126.4 (C, major),
126.0 (CH, minor), 126.0 (CH, major), 125.0 (CH, major), 125.0
(CH, minor), 121.6 (C, major), 121.5 (C, minor), 117.4 (CH, major,
minor), 68.0 (CH, major), 67.5 (CH, minor) ppm. IR (film): ν(CO)
2075 (s), ν(CO) 2037 (vs), ν(CO) 1993 (vs) cm−1. HRMS-ESI: m/z
calcd for C26H13Fe2O6S6 [M + H]+ 724.77352, found [M + H]+

724.77290.
Compound 8. By the general procedure with 200 mg of complex

[(μ-S2)Fe2(CO)6] and 250 mg of exTTF 5 in 100 mL of THF as the
starting materials, product 8 was obtained as an orange solid in 26%
yield (116 mg) upon purification by column chromatography (SiO2,
hexane/benzene 1/1). Complex 8 was obtained as a mixture of two
conformers (7:3 ratio). 1H NMR (500 MHz, CDCl3): δ 8.06 (br s,
1H, major), 8.02 (br s, 1H, minor), 7.92−7.89 (m, 1H, minor), 7.84−
7.80 (m, 3H, major), 7.77−7.76 (m, 1H, major, 2H, minor), 7.73 (d, J
= 7.6 Hz, 1H, minor), 7.50−7.43 (m, 3H, major, 3H, minor), 7.37−
7.32 (m, 1H, major, 1H, minor), 7.30−7.26 (m, 1H, major, 1H,
minor), 6.41 (ABq, J = 6.8 Hz, 2H, minor), 6.33 (ABq, J = 6.8 Hz, 2H,
minor), 5.04 (ABq, J = 7.2 Hz, 2H, minor), 4.62 (ABq, J = 7.3 Hz, 2H,
minor) ppm. 13C NMR (126 MHz, CDCl3): δ 137.7 (C), 137.6 (C),
137.6 (C), 137.3 (C), 137.2 (C), 136.8 (C), 136.1 (C), 135.1 (C),
135.1 (C), 134.5 (C), 134.5 (C), 134.5 (C), 134.4 (C), 134.0 (C),
133.4 (C), 132.1 (C), 132.0 (C), 131.5 (C), 128.1 (CH), 127.8
(CH), 127.7 (CH), 127.4 (CH), 127.2 (CH), 127.1 (CH), 126.9
(CH), 126.8 (CH), 126.4 (CH), 126.4 (CH), 126.3 (CH), 126.2
(CH), 126.2 (CH), 126.2 (CH), 125.8 (CH), 125.3 (CH), 125.2
(CH), 125.2 (CH), 123.9 (CH), 123.8 (CH), 121.6 (C), 121.5 (C),
117.4 (CH), 117.4 (CH), 117.3 (CH), 67.9 (CH), 67.9 (CH), 67.5
(CH), 67.1 (CH) ppm. M−CO signals were not observed. IR (film):
ν(CO) 2076 (s), ν(CO) 2038 (s), ν(CO) 1998 (vs) cm−1. HRMS-
ESI: m/z calcd for C30H15Fe2O6S6 [M + H]+ 774.78917, found [M +
H]+ 774.78596.

Crystal data for compound 7 (major isomer):

C26H12Fe2O6S6, Mr = 724.42, triclinic, a = 9.2289(5) Å, b =
10.3173(6) Å, c = 15.0606(8) Å, α = 91.047(2)°, β = 90.335(2)°, γ =
104.772(2)°, V = 1386.32(13) Å3, space group P1̅, Z = 2, T = 120(2)
K, λ = 0.71073 Å, Dcalcd = 1.735 g cm−3, μ = 1.540 cm−1, 63127
reflections measured, 9784 unique (Rint = 0.0549), red tablet obtained
by CH2Cl2/n-pentane diffusion, crystal structure solved by dual-space
methods with all non-hydrogen atoms refined anisotropically on F2

using the programs SHELXT and SHELXL-2018,63 hydrogen atoms
included using a riding model, GOF = 1.105, R(Fo, I > 2σ(I)) =
0.0660, Rw(Fo

2, all data) = 0.1411.

■ RESULTS AND DISCUSSION
Commercially available TTF (3) and the synthesized exTTFs
4 and 5 were employed in this study. Irradiation of TTF (3)
and [(μ-S2)Fe2(CO)6] in THF (medium-pressure Hg lamp,
125 W, Pyrex filter and Pyrex immersion well) for 16 h
resulted in the formation of the photoadduct 6 (Scheme 2).
Compound 6 was obtained as a pure compound in 32% yield
after column chromatography, as a single cis diastereomer (see
below).64 Unreacted TTF and insoluble Fe residues were also
obtained as byproducts, but the corresponding bis-adduct was
not formed. The structure of the cycloadduct 6 was established
on the basis of spectroscopic grounds. Especially relevant were
the presence of a singlet at 4.94 ppm in the 1H NMR spectrum
attributable to the ethylene bridge of the newly fused [(μ-
S2)Fe2(CO)6] ring, together with a signal at 207.1 ppm
assignable to the CO ligands and the singlet of the newly
formed CH at 70.0 ppm in the 13C NMR spectrum. All

attempts to incorporate a second [(μ-S2)Fe2(CO)6] moiety to
complex 6 were unsuccessful.
Extended TTFs 4 and 5 were reacted next with [(μ-

S2)Fe2(CO)6] under conditions identical with those used to
prepare complex 6. Analogously, these reactions did not reach
completion and compounds 7 and 8 were isolated in low yields
(Scheme 2). The structures of compounds 7 and 8 deserve
further discussion, as their NMR spectra revealed that they
were obtained as a mixture of two conformational isomers in a
7/3 ratio (calculated by 1H NMR spectroscopy). This point
was confirmed by variable-temperature 1H NMR experiments
(DMSO-d6) carried out with complex 7. Thus, the signals at
6.81 ppm (major species) and 6.75 ppm (minor species),
assignable to the vinylic protons, collapse into a broad signal at
6.74 ppm at 348 K (see Figure S42). The interconversion
barrier for both conformers is ΔG⧧

348 = 18 kcal mol−1. The
structure of the major isomer was determined by an X-ray
diffraction analysis (Figure 2). The conformational exchange
could correspond to the rotation of the C(4)−C(15) bond.
Figure 3 represents the computed structures of both
conformers.
Interaction of Compounds 6−8 with PAHs

The interaction of compounds 6−8 with three PAHs
(anthracene, pyrene, and coronene; Figures S18−S26) was
studied next by 1H NMR spectroscopy. Figure 4 shows the
titration experiment of compound 7 with pyrene (1−14 equiv)
as a representative example. The shielding of the signal of the
S2CH−CHS2 protons of the minor conformer was clearly

Scheme 2. Synthesis of TTF and exTTF [(μ-S2)Fe2(CO)6]
Derivatives 6−8
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observed (∼0.1 ppm), whereas for the major conformer, the
signal shielding is slightly lower (∼0.08 ppm). Analogous
results were observed for complex 8 (Figure S24).
A similar study with anthracene (up to 10 equiv) showed a

small shielding of the S2CH−CHS2 signals of the minor
isomers (∼0.015 ppm for 7 and ∼0.05 ppm for 8), whereas in
the case of coronene, the shielding effect is more visible in the
signals of the major isomers of both complexes (see Figures
S22, S23, S25, and S26). These experimental data suggest a
relevant influence of the structure of the PAH in the
interaction with the complex. The interaction of complex 6
with PAHs shows small signal shifts (<0.05 ppm) in the NMR
studies (see Figures S18−S20). These experiments show that
complexes 6−8 interact with PAHs in solution, which indicates
that they may be good candidates for the study of interaction
of [FeFe] hydrogenase mimics with aromatic surfaces.
Electrochemistry

The electrochemical behavior of complexes 6−8 was studied
next (Figure 5 and Table 1). Complex 6, lacking aromatic

groups, shows an intense irreversible reduction wave at −1.53
V and two quasi-reversible events at −1.82 and −2.10 V. In
oxidation, a reversible wave, characteristic of the TTF moiety,
is observed at 0.26 V (Figure 5 and Figure S1).
Complexes 7 and 8, derived from exTTFs, present a similar

electrochemical behavior. Their cyclic voltammograms show a
quasi-reversible reduction waves at −1.52 and −1.47 V and
reversible oxidation waves at 0.19 and 0.33 V, respectively,
attributable to the exTTF fragment (Figure 5 and Figures S4
and S7).65

The shift in the cathodic potential with the scan rate (δEpc/δ
ln ν) (Figure 6) allowed the calculation of the number of
electrons that participate in the reduction event. As shown in
eq 1, the experimental value (25.6 mV) indicated a one-
electron process:23

ν
∂

∂
= = − =E RT

nF
n

ln
25.6 mV when 1

(1)

There is a clear difference in the electrochemical behavior
observed for the TTF-derived complex 6 and the exTTF
complexes 7 and 8, which can be explained by an analysis of
the distribution of their LUMO orbitals (Figure 7).66−70 Thus,
while the LUMO of complex 6 is centered on the [(μ-
S2)Fe2(CO)6] fragment, the LUMOs of complexes 7 and 8
(major isomers) are distributed along the exTTF moieties.
Hence, the reduction of complex 6 should involve the [(μ-
S2)Fe2(CO)6] moiety, which is known to undergo two
successive [FeIFeI]/[Fe0FeI] and [Fe0FeI]/[Fe0Fe0] reduction
processes.71−73 In contrast, exTTF derivatives 7 and 8 would
first experience reduction on the exTTF fragment rather than
reduction of the bimetallic moiety. The process should
generate an extended radical anion, species involved in the
successive redox processes.
The electrochemistry of complexes 6−8 in acid media was

studied next. These complexes did not show electrocatalytic
behavior at the first reduction level in the presence of
increasing amounts of acetic acid (pKa ≈ 22.3 in CH3CN)

74

(up to 20 equiv), but a peak appears at around −2.25 V whose
intensity grows with the acid concentration (see Figure 8 and
Figures S2 and S5; see Figures S9 and S10 for blank
experiments). This behavior is compatible with two successive
reduction processes followed by electrocatalytic production of
H2 by the species formed in the second reduction
event.67,75−77 The CV in Figure 8 also shows the appearance
of a peak at about −1.2 V that increases with an increase in the
amount of AcOH. The origin of this new wave is at this
moment unknown.
In the presence of a stronger acid, HBF4, there is a

significant electrocatalytic response in the first reduction event
in all of the cases (Figure 9, Figures S3 and S6, and Table 2).
Increasing the acid concentration up to 3.8 mol equiv leads to
an average current increase in this reduction wave of 300%
(Figure 10; see Figures S11 and S12 for blank experiments).78

The current height of this wave increases linearly with the
concentration of acid, and the plots of icat/ip versus the HBF4
concentration show different sensitivities of the complexes to
the acid concentration, compound 8 (having the most
conjugated exTTF spacer) being the least sensitive (Figure
10). At a high concentration of HBF4 a new electrochemical
event is observed at −0.93 V in 7 and 8. This new wave could
be attributable to the reduction of a protonated form of the
complexes in the distal CC bond (with respect to the [(μ-
S2)Fe2(CO)6] fragment) of the TTF moiety.79 The generation

Figure 2. X-ray thermal ellipsoid plot for the major isomer of
compound 7 (50% probability level). Selected bond lengths (Å) and
angles (deg): Fe(1)−Fe(2) 2.5184(8), Fe(1)−S(1) 2.2469(10),
Fe(1)−S(2) 2.2304(10), Fe(2)−S(1) 2.2335(10), Fe(2)−S(2)
2.2257(11), C(1)−C(2) 1.528(5), C(4)−C(15) 1.352(5), S(2)−
Fe(1)−S1 80.30(4), S(2)−Fe(2)−S(1) 80.69(4), C(15)−C(4)−
S(3) 122.1(3), C(15)−C(4)−S(5) 124.3(3), S(3)−C(4)−S(5)
113.53(19), C(4)−C(15)−C(22) 124.5(3), C(4)−C(15)−C(21)
121.6(3), C(22)−C(15)−C(21) 113.8(3).

Figure 3. Computed structures of both conformers of complex 7.
Exchange barrier (experimental): ΔG⧧

348 = 18 kcal mol−1.
Calculations were carried out at the M062X-D3-6-31G**-SDD,
CH3CN-SMD level; see the Supporting Information for additional
data.
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of a protonated species in the strong acid medium was
confirmed by 1H NMR experiments of complex 7 in the

Figure 4. 1H NMR (CDCl3) spectra of complex 7 and increasing amounts (1−14 equiv) of pyrene.

Figure 5. Cyclic voltammograms (CVs) of complexes 6−8. Data were
obtained from 10−3 M CH3CN solutions containing 10−1 M
[NBu4]PF6 as the supporting electrolyte at 25 °C: counter electrode,
Pt; working electrode, glassy carbon; potentials given in V vs Fc+/Fc;
scan rate, 100 mV/s.

Table 1. Electrochemical Data of Compounds 6−8a

reduction

complex Epc Epa E1/2 oxidation E1/2

6 −1.53 −0.96 −1.79 0.26
−1.82 −1.75 −2.05
−2.10 −1.99

7 −1.52 −1.40 −1.46 0.19
8 −1.47 −1.34 −1.41 0.33

aData in V vs Fc+/Fc; scan rate (ν) 100 mV/s.

Figure 6. Epc versus ln ν for complex 8. The purely kinetic region is
shown inside the black square.

Figure 7. Distribution of the LUMOs of complexes 6 and 7.
Calculations were carried out at the M062X-D3-6-31G**-
SDD,CH3CN -SMD level; see the Supporting Information for
additional data.
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presence of variable amounts of HBF4 (see Figures S43−
S45).80

Being aware of the redox reactivity of TTF in acid media
(see above),42−44 we necessarily had to consider the
contribution of electrochemical reactions due to the TTF
moieties in the above processes. In this regard, we decided to
synthesize the well-known [FeFe] complex 9, which could
serve as a model for this study, since it contains the [FeFe]
center but lacks the TTF or exTTF moiety. Complex 9 was
prepared (45% yield) following literature procedures by the
reaction of the commercially available benzene-1,2-dithiol with

Fe2(CO)9 (Scheme 3),52 and its electrochemical behavior was
recorded.

The study of the electrochemical response of model complex
9 under an anaerobic atmosphere (Figure 11) shows a

behavior compatible with the electrochemistry of the [FeFe]
moiety, with the characteristic two-electron reduction wave at
−1.41 V corresponding to the formation of dianion 92−.70,83−86

This wave experienced changes when air was bubbled in the
solution (Figure 11). A similar behavior was observed when
the experiment was performed in the presence of HBF4 (Figure
S14). The reactivity of [FeFe] hydrogenases with O2 has been

Figure 8. Cyclic voltammograms of a CH3CN solution of compound
8 (10−3 M) with HOAc (0−20 equiv of H+) containing 10−1 M
[NBu4]PF6 as the supporting electrolyte at 25 °C: counter electrode,
Pt; working electrode, glassy carbon; potentials given in V vs Fc+/Fc;
scan rate, 100 mV/s.

Figure 9. Cyclic voltammograms of a CH3CN solution of compound
8 (10−3 M) with HBF4·Et2O (0−19 equiv of H+) containing 10−1 M
[NBu4]PF6 as the supporting electrolyte at 25 °C: counter electrode,
Pt; working electrode, glassy carbon; potentials given in V vs Fc+/Fc;
scan rate, 100 mV/s.

Table 2. Electrochemical Data for Complexes 6−8 in the
Presence of HBF4·Et2O

a

6 7 8

Ecat
b,81 −1.53 −1.49 −1.45

ηc −1.25 −1.21 −1.17
TOFd 5.9 3.4 1.2
TOFmax

e 5.9 13.7 11.0
aData in V vs Fc+/Fc. bData taken from Figures 9, S3 and S6.
cOverpotential (η) was calculated using E°HA = −0.28 V.81 dTOF
values in s−1 were calculated at 5.7 mM HBF4·Et2O.

82 eTOFmax values
in s−1 were calculated at the highest acid concentration tolerated by
each complex (5.7 mM for 6, 11.4 mM for 7, and 19 mM for 8).

Figure 10. Plots of icat/ip as a function of HBF4·Et2O concentration
for complexes 6−8.

Scheme 3. Synthesis of Complex 9

Figure 11. Comparison of cyclic voltammograms of complex 9 under
Ar and in air. The wave at −1.41 V corresponds to the formation of
dianion 92−. The process at −1.35 V is due to O2 (Figure S16). Data
were obtained from 10−3 M CH3CN containing 10−1 M [NBu4]PF6 as
the supporting electrolyte at 25 °C: counter electrode, Pt; working
electrode, glassy carbon; potentials given in V vs Fc+/Fc; scan rate,
100 mV/s.

ACS Organic & Inorganic Au pubs.acs.org/orginorgau Article

https://doi.org/10.1021/acsorginorgau.1c00011
ACS Org. Inorg. Au 2022, 2, 23−33

28

https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig9&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig11&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acsorginorgau.1c00011/suppl_file/gg1c00011_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsorginorgau.1c00011?fig=fig11&ref=pdf
pubs.acs.org/orginorgau?ref=pdf
https://doi.org/10.1021/acsorginorgau.1c00011?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


extensively studied.87−91 In the case of [FeFe] hydrogenase
mimics, recent work points to a relationship between the
reactivity with molecular oxygen and the structure of the
[FeFe] bridge, the azadithiolate (adt) derivatives being very
reactive whereas the propanedithiolate (pdt) derivatives
exhibit reduced reactivity.90 The results in Figure 11 show
that 9, having a benzenedithiolate (bdt) bridge, is also reactive
toward O2. Nevertheless, additional reduction events were not
observed when the cyclic voltammetry of 9 was recorded in air.
Analogous experiments were carried out with the exTTF-

[FeFe] complex 8. Figure 12 and Figure S15 show the

voltammograms under Ar and in the presence of O2. In
contrast to what was observed for complex 9, in an aerated
solution (Figure 11), in addition to the wave attributable to the
reduction of the [FeFe] moiety at −1.47 V, a new reduction
wave appears at −1.86 V. On consideration of the results with
model complex 9 (see above), this new wave should be
attributable to the presence of the exTTF moiety.
An analysis of the experiments above and the data in Figures

11 and 12 suggest that, as for complex 9, the electrochemical
responses of TTF and exTTF-[FeFe] complexes 6−8 in acid
media (HBF4·Et2O) under an inert atmosphere can be
interpreted as a consequence of their hydrogenase-like
behavior (see also Figures 8 and 9 and Figures S1−S7), not
from redox processes due to the TTF moieties. However, in
the presence of air, TTF and exTTF substituents clearly
influence the redox behavior of these complexes (see Figure
12).42,92

A computational study of the orbitals of the protonated
species sheds more light on the electrochemical behavior of
complexes 6−8 with HBF4 in the absence of air. As shown in
Figure 13, protonation of TTF and exTTF in 6 and 7 should
facilitate the reduction of the molecule and thence the catalytic
activity of the [FeFe] cluster. In fact, the LUMOs of 6H+ and
7H+ as well as the SOMOs of their reduced species (6H•+ and
7H•+) are mainly controlled by the TTF and exTTF fragments.

■ CONCLUSIONS
To conclude, new types of TTF-containing [(μ-S2)Fe2(CO)6]
complexes showing [FeFe] hydrogenase-like behavior have
been prepared and their electrochemical and electrocatalytic

properties, as well as their interaction with PAHs, studied.
Complexes with exTTF structures are able to interact with
PAHs, the interaction degree depending on the structure of the
PAH. Due to their electroactive nature, the incorporation of
the TTF and exTTF fragments in complexes 6−8 modifies
their usual behavior in reduction. In acidic anaerobic media a
clear electrocatalytic reaction, typical of dihydrogen evolution
(HER), occurs. However, under aerobic conditions the
presence of TTF and exTTF moieties strongly influences the
electrochemical behavior of complexes 6−8. This has been
demonstrated by carrying out different electrochemical experi-
ments in the presence and in the absence of air, as well as by
comparison of complexes 6−8 with the structurally related
complex 9, lacking the electroactive TTF moieties. Work to
translate the results of this study to the design of supra-
molecular models of [FeFe] hydrogenases able to interact with
aromatic or modified graphite surfaces is underway in our
laboratories.
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