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The current pandemic caused by the new severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021,

coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated

cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that

SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological

symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2

(ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain

areas and cell types. Thus, it is hypothesized that infection by this virus could generate

or exacerbate neuropathological alterations. However, the molecular mechanisms that

link COVID-19 disease and nerve damage are unclear. In this review, we describe

the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze

the neuropathologic mechanisms underlying this viral infection, and their potential

relationship with the neurological manifestations described in patients with COVID-19,

and the appearance or exacerbation of some neurodegenerative diseases.

Keywords: SARS-CoV-2, storm cytokine syndrome, neuroinflammation, blood-brain barrier, neurological

alterations, neurodegenerative diseases, Alzheimer’s disease

INTRODUCTION

Coronavirus disease 2019 (COVID-19) was first reported in December 2019 in Wuhan, in Hubei
province, China (1). InMarch 2020, the world health organization (WHO) declared the COVID-19
a pandemic. Almost a year later, on March 1, 2021, more than 114 million cases and 2.53 million
deaths have been reported (2–4). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
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the causative agent of COVID-19, is 100 nm with an oval
shape and covered with crown-shaped glycoprotein spikes (5).
It is transmitted through respiratory droplets from infected
individuals or contact with fomites. Once SARS-CoV-2 enters the
body, the onset of symptoms ranges from 2 to 14 days. Patients
can manifest clinically from asymptomatic or mild symptoms to
moderate or severe symptoms (6, 7). Mild to moderate symptoms
manifest as fever, dry cough, nasal congestion, sore throat,
runny nose, fatigue, myalgias, diarrhea, anosmia, and ageusia
as main symptoms (6, 7). The severe condition is characterized
by atypical pneumonia, which can be observed as “ground-
glass opacification” with bilateral multi-lobular consolidations
by imaging studies (8). Between 5 and 30% of patients develop
acute respiratory distress syndrome, characterized by rapid onset
and with generalized inflammation in the lungs, requiring
invasive life support therapy, such as mechanical ventilation
(6, 7). There is increasing evidence that these critically ill
COVID-19 patients suffer a so-called “cytokine storm syndrome,”
characterized by the release of many pro-inflammatory cytokines
[interleukin (IL)-1β and IL-6] and a low number of T cells
into the bloodstream (9). The mean period from the onset
of the symptoms to death is around 13 days [interquartile
range (IQR) 11–18 days], and this depends on advanced age
(>65 years) and comorbidities such as diabetes mellitus (DM),
hypertension, cardiovascular disease, or chronic obstructive
pulmonary disease (COPD) (10). These comorbidities are also
risk factors for severity and transfer to intensive care unit (ICU),
endotracheal intubation, and death in patients with COVID-19
(11). However, there may be bias in the epidemiological data
due to the in-hospital stay of the patient, as well as the human
development index of each country. SARS-CoV-2 also may be
able to invade multiple organs, including the nervous system,
and thus cause multiple organ dysfunction syndrome (MODS)
(12). The neurological manifestations are beginning to take on
unquestionable importance, mainly in the critical patient (13, 14).
Neurological manifestations of COVID-19 and other coronavirus
infections involve febrile seizures, disorientation, difficulty in
speaking, encephalitis, and stroke (15–18). The mechanisms by
which SARS-CoV-2 can spread, infect, cause damage to nerve
cells and finally affect both the central (CNS) and peripheral
(PNS) nervous system, are not yet understood. This review will
analyze the potential mechanisms by which SARS-CoV-2 can
invade the CNS and PNS and generate a neurotoxic environment
that may trigger or worsen neurological disorders.

SARS-CoV-2: Structure and Mechanism of
Infection
The coronaviruses (CoVs) belong to the Orthocoronaviridae
subfamily; order: Nidovirales; subordination: Cornidovirineae;
family: Coronaviridae (19). They can be grouped into four
genera, including α/β/γ/δ-CoV: α and β infect mammals and γ/δ
infect birds (20). CoVs are large, positive-stranded RNA viruses,
and they are enveloped with a lipid membrane derived from
a host cell. The protein protruding from the virus membrane
is the spike (S) protein, giving the virus the appearance of a
solar corona (1) (Figure 1A). Coronaviruses have single-stranded

RNA of between 26.4 and 31.7 kilobases, making them the
largest of RNA viruses (21). CoVs have several main structural
proteins (Figure 1A): nucleocapsid (N) proteins, which surround
the RNA genome; membrane (M) proteins (also known as
E1 membrane glycoprotein or matrix protein) (20); envelope
(E) proteins, involved in virus assembly, and S protein, which
mediates virus entry into host cells. Some CoVs also encode an
envelope-associated hemaglutinin-esterase protein (HE) used as
an invading mechanism (22).

The S protein is the main antigenic component of SARS-
CoV-2 structural proteins and is comprised of two subunits,
S1 and S2 (23). This protein is multifunctional, contributing
to host receptor binding, pathogenesis, and cell tropism. The S
protein binds to host receptors on target cells, inducing virion
particle endocytosis, and then catalyzes the fusion between host
and viral membranes, allowing the virus genome penetration
into the host cytoplasm (24). The S1 domain has a high-
affinity association with the host receptor angiotensin-converting
enzyme 2 (ACE2) (25). The receptor-binding domain (RBD)
of the S protein binds to the extracellular peptidase domain
of ACE2, mediating cell entry (25, 26). SARS-CoV-2 uses the
SARS-CoV receptor ACE2 for entry and the transmembrane
serine protease 2 (TMPRSS2) for S protein priming. The
endosomal cysteine proteases cathepsin B and L (CatB/L) can
be used to mature the S protein (27, 28). However, while
TMPRSS2 is indispensable for viral spread and pathogenesis,
the CatB/L activity is not essential (Figure 1B step 1). Once
the virus enters the host cell, viral replication begins with
translation of the replicase-polymerase gene and assembly of the
replication-transcription complex. This complex also transcribes
the genomic regions to structural proteins. New virions are
assembled in the endoplasmic reticulum and Golgi apparatus
released from the cell (Figure 1B step 1) (29). Finally, the newly
assembled SARS-CoV-2 virions possess protein S on the surface
and are ready to infect any cell that expresses the ACE2 receptor
with no further requirement for TMPRSS2 activity (30).

SARS-CoV2 Pathophysiology
The SARS-CoV-2 pathophysiology is not yet clear. It has been
suggested that it can be similar to SARS-CoV (31, 32) with two
possible responses (32):

1) After the viral infection occurs, active viral replication
and dissemination through ACE2 receptors occurs with
the associated host antiviral responses. SARS-CoV-2
downregulates ACE2 receptors, with loss of their catalytic
effect at themembrane surface. Inflammation and thrombosis
have been related to enhanced and unimpeded angiotensin
II effects through the ACE-Angiotensin II-AT1 receptor axis
(33) (Figure 1B step 2). The SARS-CoV-2 infection can lead
to an acute immune response. This response is driven by
inflammatory alveolar and monocyte-derived macrophages
that can be activated by pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) released by infected pneumocytes (34–36).
Subsequently, several pro-inflammatory mediators such as
tumor necrosis factor-alpha (TNF-α) and IL-1β, secreted
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FIGURE 1 | Pathological mechanisms of SARS-CoV-2 in the pulmonary alveolus. (A) Mode of transmission and main structural proteins of SARS-CoV-2. (B)

Mechanisms of SARS-CoV-2 infection and pulmonary inflammatory immune response. ACE2, angiotensin-converting enzyme 2; Ang, angiotensin; ARDS, acute

respiratory distress syndrome; AT1R, angiotensin II type I receptor; CASP1, aaspase 1; E protein, envelope small membrane protein; HE, hemagglutinin esterase;

IL1β, interleukin 1 beta; IRAKs, interleukin-1 receptor-associated kinases; M protein, membrane protein; MyD88, myeloid differentiation primary response 88; N

protein, nucleoprotein; N, neutrophils; NF-κB, nuclear factor Kappa B; NK, natural killer cells; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing

receptor, pyrin domain-containing 3; RNA, ribonucleic acid; S protein, spike protein; TMPRSS2, transmembrane serine protease 2; TRAF6, tumor necrosis factor

receptor-associated factor 6.

by alveolar macrophages, initiate the acute inflammatory
cascade that triggers cell death and damage. Aside from
PAMP/DAMP production, the recruitment of immune
cells and activation of the nucleotide-binding domain
leucine-rich repeat-containing receptor, pyrin domain-
containing 3 (NLRP3), establish a pro-inflammatory positive
feedback cascade (32, 34, 35) (Figure 1B steps 3 and 4).
This localized inflammatory cell death could lead to a
hyper-inflammatory microenvironment and spread to the
vasculature, inducing leakage, edema, and pneumonia in
COVID-19 patients (35, 37). Serum of COVID-19 patients
is characterized by increased levels of the following: IL-2,
IL-7, IL-10, TNF-α, protein monocyte chemoattractant-1
(MCP1; also known as C-C motif chemokine ligand 2 CCL2),
granulocyte colony-stimulating factor (G-CSF), macrophage
inflammatory protein 1 alpha (MIP1α; also known as CCL3),
C-X-C motif chemokine ligand 10 (CXCL10), C-reactive
protein (CRP), D-dimers and ferritin (19, 38–40).

2) The SARS-CoV-2 infection can also lead to the generation
of adaptive immunity and neutralizing antibody (NAb). The
virus-NAb complex can trigger Fc receptor (FcR)-mediated
inflammatory response and acute lung injury. SARS-CoV-2

can infect cells that have FcRs, which provide the ability
for antibody-mediated internalization. This mechanism can

occur in macrophages, monocytes, or B cells even without

ACE2 and TMPRSS2 expression, and especially during

infection (41). The internalization of the virus–antibody

immune complexes can also promote tissue damage and

inflammation by activating myeloid cells via FcRs (42). Both

primary and secondary responses culminate in the postulated

pathogenesis of SARS-CoV-2 infection (32). Interestingly, it

has been suggested that fatal COVID-19 is characterized as a

cytokine release syndrome (CRS) induced by a cytokine storm
and associated with adverse outcomes of acute respiratory

distress syndrome (ARDS) (Figure 1B step 5) and high
mortality rate (43, 44).

For mechanistic insights into the life cycle of SARS-CoV-
2, the mouse hepatitis virus (MHV) represents a suitable
comparator. MHV is a βCoV very similar to SARS-CoV, MERS-
CoV, and SARS-CoV-2 (45). Therefore, an MHV animal model
could contribute to the elucidation of the neuropathological
mechanisms of SARS-CoV-2 in the following aspects: (1)
MHV can invade and replicate in the CNS, triggering lesions
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in the white matter (45); (2) Infection with MHV induces
meningoencephalitis in an acute stage and subsequently subacute
chronic inflammatory demyelination in the brain and spinal cord
(46); (3) CD4 and CD8T lymphocytes, especially γδ T cells, play
an important role in the MHV-induced demyelination process
(47); (4) MHV can be translocated from the initial inoculation
brain area to the spinal cord through the transit of viral particles
in glial and neural cells, as well as by mechanisms that involve the
fusion of lipid membranes (48); (5) After intranasal MHV-CoV
inoculation in mice, the virus can access the CNS through the
olfactory nerve and spread from this area to neuroanatomically
interconnected structures such as the limbic system and the
brainstem (49).

Potential Neuroinvasive Pathways of
SARS-CoV-2
There are four possible routes by which SARS-CoV-2 could enter
the CNS: (1) the hematopoietic pathway and subsequent rupture
of the blood-brain barrier (BBB); (2) via blood-cerebrospinal
fluid (B-CSF); (3) transsynaptic viral spreading; (4) through the
entry to circumventricular organs (CVO). In this section, we will
discuss the four routes in greater detail.

1) Coronaviruses access the bloodstream via the airway and
infect immune cells, which may cross BBB facilitated by
pro-inflammatory cytokines and chemokines (Figure 2B step
1). The mechanism by which infected immune cells cross
the BBB may occur via intercellular adhesion molecule 1
(ICAM-1) mediated transport that is upregulated by TNF-α,
followed by activation of matrix metalloproteinases (MMPs)
such as MMP9, which specifically influences cellular leakage
and membrane degradation (50). Besides, SARS-CoV-2
tropism, toward the CNS endothelial cells (BECs) favors BBB
disruption; by entering the cytosol of the astrocyte via the
receptor; the virus increases the release of pro-inflammatory
cytokines, such as IL-2, IL-6, IL-7, IL-8, TNFα, CCL2,
CCL3, CCL7, and CXCL10. The reactive astrocyte could
lead to activation of microglia and the peripheral immune
infiltrate such as macrophages, neutrophils, and lymphocytes
(Figure 2B step 2) (51–54), which could end in neurotoxicity.
DM, hypertension, and metabolic syndrome are risk factors
for both contracting COVID-19 and a poor prognosis in
patients. These comorbidities also contribute to vascular
and BBB alteration (55), increase neuroinflammation, and
exacerbate neuropathology (56).

2) The CSF circulation comprises both a directional CSF flow
and a pulsatile to and from movement throughout the
entire brain and which involves a local fluid exchange
between blood, interstitial fluid, and CSF (57). It has
been suggested that viral infection may occur via B-
CSF and alter gene expression in the choroid plexus.
This process activates the nuclear factor kappa (NF-kB),
upregulates MMP9, and affects B-CSF permeability and
immune cell trafficking (MMP8, TNFα, IL6, IL1B, MCP1,
intercellular adhesion molecule 1 (ICAM1) (58), leading to a
neuroinflammatory environment.

3) Another entry route to the CNS for SARS-CoV-2 could
be through axonal transport and transneuronal spread
from olfactory, gustatory, trigeminal, and vagal nerves,
allowing the virus to infect the brainstem in the early stages
of infection (Figures 3A–D) (52, 59). The transneuronal
pathway is one of the potential routes that would allow
SARS-CoV-2 to enter through the primary sensory neurons,
which communicate with the mitral cells. Mitral cells have
projections toward the ventricle and the medulla, and this
favors the transfer of the virus from the cerebrospinal
fluid toward the lymphatic system within the CNS and
toward the PNS (60). The virus could also enter the CNS
following the transneuronal olfactory bulb pathway and
is reflected by changes at the level of the olfactory nerve,
bulb, and cortex (61–63). It has been proposed that SARS-
CoV-2 could spread retrogradely through transsynaptic
transfer, using an exocytosis/endocytosis mechanism
or via rapid axonal transport, which would move the
virus along the microtubules to the neuronal soma (64).
Supporting this hypothesis, it has been shown that some
CoVs and other viruses such as rabies and hemagglutinating
encephalomyelitis can enter and spread to the CNS via
retrograde transsynaptic pathways (65–67), from peripheral
nerve endings through membranous-coating-mediated
endocytosis and exocytosis (66). Mechanisms have also
been described by which viruses can enter and leave
axons, both retrograde and anterograde, through coupled
transport mediated by vesicles or separate transport which
is not mediated by vesicles (68). For this reason, it would
be interesting in the future to know if SARS-CoV2 uses
transsynaptic transport and to trace neural circuits, using
specific labeling techniques.

4) Finally, we suggest that SARS-CoV-2 might enter the CNS
through CVOs. CVOs include the subfornical organ, the
paraventricular nucleus, the nucleus tractus solitarius (NTS),
and the rostral ventrolateral medulla, all of which express
ACE2. Besides, these CVOs are highly vascularized and lack
a BBB (69). Therefore, these areas would be more susceptible
to the virus, triggering neurovascular damage, as we have
discussed previously.

Once SARS-CoV-2 enters the CNS, it could bind to CNS cells,
such as neurons, astrocytes, oligodendrocytes, and microglia
(70), due to the presence of ACE2 (28, 71) and TMPRSS2 (72)
receptors and probably via binding to other receptors (Table 1).
It is important to highlight that the expression of ACE2 is low
in the human brain, with a higher expression in certain areas
such as thalamus and choroid plexus. ACE2 also has access to
peptides in the circulation in the cerebrospinal and interstitial
fluid, and it is present in pericytes and smooth muscle cells of
human brain vessels (95). ACE2 receptors have been reported
in other organs, mainly enterocytes, renal tubules, gallbladder,
cardiomyocytes, male reproductive cells, placental trophoblasts,
ductal cells, eye, and vasculature. In the respiratory system, its
expression is limited (96). ACE2 plays a role in attenuating
microvascular pathology and protecting against atherogenesis,
endothelial dysfunction, thrombus formation, oxidative stress,
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FIGURE 2 | Schematic representation of the pathophysiological mechanisms of SARS-CoV-2. (A) Peripheral pathological events triggered by SARS-CoV-2 infection.

(B) Possible CNS pathological mechanisms caused by the severe peripheral hyperinflammation associated with COVID-19. ACE2, angiotensin-converting enzyme 2

receptor; AJs, adherent junctions; Aβ; amyloid-beta; BBB, blood-brain barrier; C1q, the complement component 1q; CASP1, caspase1; CCL, chemokine (C-C motif)

ligand; CNS, central nervous system; CXCL10, C–X–C motif chemokine 10; GSDMD, gasdermin-D; IL, interleukin; MMPs, metalloproteinases; NETs, neutrophil

extracellular traps; NF-κB, Nuclear factor Kappa B; N-GSDMD, N-terminal gasdermin; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing receptor,

pyrin domain-containing 3; TJs, tight junctions; TLR3, toll-like receptor 3; TNF-α, tumor necrosis factor-alpha; α-syn, alpha-synuclein.

and inflammatory cascades responsible formonocyte-endothelial
cell interaction (71, 97).

SARS-CoV-2 interaction with ACE2 could cause astrogliosis
and microgliosis, increase BBB permeability, allowing monocyte
and leukocyte infiltration to the CNS in multiple brain regions
(98, 99). These areas include the olfactory bulb, choroid
plexus, cerebral cortex, caudate/putamen, ventral striatum,
thalamus, hypothalamus (paraventricular nuclei), spinal cord,
hippocampus, frontal cortex (52, 95, 100), substantia nigra,
middle temporal gyrus (64, 101), and other brain areas (Table 1).
Since many viruses have neurotropic properties (102), SARS-
CoV-2 could spread through neuroanatomically interconnected
pathways (103) and lead to nerve cell dysfunction and
neurodegeneration in the CNS.

Can the Systemic Inflammation by
COVID-19 Trigger Neurovascular
Disturbance?
In this section, we highlight evidence at the systemic level and
locally in the respiratory tract tissue of patients with COVID-19.
Since this virus induces lung pathology, the detailed information
of other organs and systems such as the CNS has yet to be fully

investigated. Therefore, the nerve signaling pathways proposed
here are based on the systemic evidence from similar viruses.

Channappanavar and Perlman focused on the systemic
immune response against pathogenic human coronaviruses such
as SARS-CoV and Middle East respiratory syndrome CoV
(MERS-CoV). They proposed that a dysregulated immune
response in the host is responsible for triggering the pulmonary
pathology and fatal clinical manifestations (104).

On the other hand, high levels of viral replication in the host
could contribute to tissue damage. Two mechanisms might be
responsible: first, the delayed induction of interferon responses
and second, the production of interferon inhibitory proteins by
the human CoVs. Therefore, early unmitigated viral replication
could be responsible for the high and exaggerated production
of cytokines and chemokines by infected alveolar epithelial cells,
macrophages, and leukocytes infiltrated into the lung tissue,
which leads to severe damage (Figure 2A steps 1–3) (104). Other
investigators have concluded that COVID-19 is characterized
by an extreme hyper-inflammatory process followed by hyper-
coagulation (Figure 2A step 4) (105).

CRS is a systemic inflammatory response that can be triggered
by SARS CoV-2 infection, characterized by a drastic increase in
the levels of the pro-inflammatory cytokines (Figure 2A) (106).
The CRS may induce a MODS in COVID-19 patients, which
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FIGURE 3 | Potential routes for infection and spread of SARS-CoV-2 to systemic organs and the central nervous system through the cranial nerves (N). (A)

SARS-CoV-2 could enter through the olfactory mucosa (causing anosmia), spread through the olfactory nerve (N I) and end in the olfactory cortex. (B) SARS-CoV-2

could also enter through the lacrimal and salivary glands, spread through the facial (N VII) and glossopharyngeal (N IX) nerves, and end in their respective brain stem

nuclei. (C) The infection could spread from the taste buds (triggering ageusia) through the N VII and N IX nerves ending in the NTS located in the brain stem. (D)

SARS-CoV-2 could also enter through the respiratory tract, reach the respiratory system and via the vagus nerve (N X), spread to other systemic organs innervated by

this nerve, and end in the brain stem. (E) Finally, once the virus reaches the brain stem, it can spread to the brain through neuroanatomically interconnected pathways.

The SARS-Cov2 infection can cause multiple organ dysfunction syndrome (A–E). The red dashed arrows indicate the possible dissemination route for SARS-CoV-2

through the cranial nerves.
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TABLE 1 | Receptors or proteins related to SARS-CoV-2 infection in the nervous system.

Receptor

or protein

Expression in nerve

cells

Neuroanatomic areas of

gene expression*

Pathological effects on the nervous system References

ACE2 Neurons, astrocytes,

microglia, BECs,

OLGs

PG, Acb, Hy, SC, Cd, SN,

Cb, HiF, FroCx, Amg, Pu

and ACC

The direct binding of SARS-CoV-2 to the ACE2 receptor could trigger

microvascular dysfunction, disrupt coagulation processes, cause neuronal

depolarization, and increase expression of glutamate and MMPs, resulting

in neuroinflammation, seizures, and hemorrhages.

(56, 58, 69, 73–

75)

TMPRSS2 PG, Hy, Cb, Amg, Cd, HiF,

SN, Acb, ACC, FroCx, Pu

and SC.

It acts as a co-receptor for ACE2 and cleaves S protein, facilitating viral

binding to the ACE2 receptor and its activation. Therefore, it promotes the

same effects described for ACE-2.

(76–78)

DPP4 Astrocytes (in murine) FroCx, SC, ACC, PG, SN,

Hy, HiF, Amg, Cb, Acb, Cd

and Pu.

It is strongly associated with MERS-CoV. The murine models for DPP4

receptor infected with MERS-CoV have shown neuronal damage and

peripheral immune infiltrates.

(79–81)

TLR4 Astrocytes, microglia Cd, SN, Acb, Amg, Pu, SC,

ACC, FroCx, y, HiF and Cb.

Molecular docking studies have demonstrated the binding of the native S

protein of SARS-CoV-2 to TLR1, TLR4, and TLR6. However, TLR4 is most

likely to recognize molecular patterns from SARS-CoV-2 to induce

inflammatory responses. In CNS, it could promote the neuroinflammation

environment.

(82, 83)

ATR1 Neurons, astrocytes PG, SN, Hy, Cb SC,HiF, Cd,

Acb, Pu, Amg, FroCx and

ACC

It has been suggested that SARS-CoV-2 causes lung damage by increasing

Ang II production. The hyperactivation of Ang II/ATR1/ACE signaling results

in increased expression of pro-inflammatory cytokines, macrophage

activation, and possibly BBB dysfunction.

(84–87)

ITGB1 Microglia SC, PG, SN, Hy, HiF,Pu, Cd,

Amg, FroCx, Acb, ACC and

Cb.

It has been suggested that ITGB1 could bind to S protein through the RGD

or KGE motif. ITGB1 mainly activates the MI3K/MAPK pathways, inducing

an inflammatory response.

(24, 88, 89)

CatB and

CatL

Microglia, neurons,

astrocytes.

Cat B: FroCx, PG, SC, Cb,

Hy, Acb, ACC, Cd, SN, Pu,

HiF and Amg

Cat: PG, SC, FroCx, Cb,

SN, Hy, Cd, Acb, Pu, ACC,

HiF and Amg

It has been suggested that S protein priming is partly dependent on the

endosomal proteases, CatB and CatL. Nevertheless, TMPRSS2 is essential

for viral entry into primary target cells and viral spread in the infected host.

Also, CatB and CatL can contribute to the neuroinflammatory process.

(90, 91)

NLRP3 Microglia, astrocytes,

neurons

SC, FroCx, Acb, Hy, SN,

ACC, HiF, Amg, Cd, PG, Pu,

Cb

To date, it is unclear if SARS-CoV-2 activates the NLRP3 inflammasome.

However, SARS-CoV expresses at least three proteins (viroporins) that

activate the NLRP3 inflammasome: envelope (E), ORF3a, and ORF8b. The

NLRP3 inflammasome activation could trigger inflammatory cell death.

(92–94)

Neuroanatomic areas and nerve cells in which these receptors or proteins are expressed and their possible neuropathological effects.

Acb, nucleus accumbens; ACC, anterior cingulate cortex; ACE2, angiotensin-converting enzyme 2; Amg, amygdala; ATR1, angiotensin receptor type 1; BBB, blood-brain barrier;

BECs, brain endothelial cells; Cat, cathepsin; Cb, cerebellum; Cd, caudate nucleus; DPP4, dipeptidyl peptidase-4; FroCx, frontal cortex; HiF, hippocampal formation; Hy, hypothalamus;

ITGB1, integrin subunit beta 1; KGE, Lys-Gly-Glu; MAPK, Mitogen-Activated Protein Kinases; MERS-CoV, Middle East Respiratory Syndrome Coronavirus; MI3K, myo-inositol 3-kinase;

MMPs, matrix metalloproteinases; NF-kB, nuclear factor kappa B; NLRP3, nucleotide-binding domain-, leucine-rich repeat-containing receptor, pyrin domain-containing 3; OLGs,

oligodendrocytes; PG, pituitary gland; Pu, putamen; RGD, Arg-Gly-Asp; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SC, spinal cord (cervical c-1), SN, substantia

nigra; TLR, Toll Like Receptor; TMPRSS2, transmembrane protease serine 2.

*The GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2) was used to obtain the gene expression data (from highest to lowest expression) in several brain areas.

is characterized by acute failure of different organs such as the
liver, kidney, heart, and as well as hematological, gastrointestinal,
and neurological disorders (Figure 3) (107). Besides, it has
been proposed that patients who died from severe COVID-
19 have a significant endothelial affectation or “endothelitis,”
which may be associated with MODS. It has been suggested
that endothelial dysfunction in several organs may be triggered
by the interaction between SARS-CoV-2 with ACE2 receptors
that express endothelial cells and the subsequent inflammatory
response (108, 109). This inflammatory response can contribute
to increased vascular permeability, edema, and the synthesis
of coagulation factors (110). From a meta-analysis, it has been
reported that levels of D-dimer, an indicator of fibrinolysis,
have been reported following severe infection by COVID-19
(111). The formation of clots could result in the occlusion of
blood vessels and cerebral arteries, which can lead to cerebral

venous thrombosis. Therefore, we assume that some of the
symptoms and even neurological complications may be caused
by the systemic cytokine storm and subsequent endothelium
and BBB dysfunction (Figure 2). In this way, systemic hyper-
inflammation caused by maladaptive innate immunity may
trigger neurovascular function damage, a BBB rupture, and
activate the CNS innate immune signaling pathways (112). This
BBB disruption could promote immune cell infiltration (113)
(Figure 2B steps 1 and 2). The intracerebral cytokine storm
also could contribute to the BBB rupture (114, 115), leading
to a vicious cycle of increasing pathology. These events may
also be responsible for developing other neuropathies such as
necrotizing encephalopathy or Guillain-Barré syndrome (GBS)
(116, 117). The coagulopathy observed in COVID-19 could
make patients prone to thrombotic cerebrovascular or bleeding
events (118).
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On the other hand, microglia and astrocytes are the main
cell lineages that mediate immunological processes within the
CNS. Thus, microglia, the macrophage of the CNS par excellence,
can also promote states of hyper-inflammation that exacerbate
hypercoagulation by infiltration of professional immune cells
and coagulation elements. Nevertheless, we hypothesize that
SARS-CoV-2 could activate the microglia and, subsequently,
induce the reactivation of A1 astrocytes via secreting IL-1α, TNF,
and the complement component 1q (C1q), as occurs in other
neurological diseases (119) (Figure 2B step 3). Besides, exposure
to the viruses or their components promotes the expression
and activation of Toll-like receptors (TLR) in astrocytes.
This signaling promotes the production and release of pro-
inflammatory mediators and induces inflammatory responses
in the CNS (Figure 2B step 3), eliminating the pathogen as
demonstrated for Flavivirus infections (82, 120). Therefore,
this pathological signaling causes neuronal degeneration and
dysfunction of the nerve cells short or long term.

Viroporins belong to a family of small transmembrane
proteins that include CoV protein E (121, 122), which could
generate neurotropism of SARS-CoV. According to previous
studies, viroporins can promote the activation of the NLRP3
inflammasome (123, 124). The NLRP3 inflammasome is a
subcellular multiprotein complex that is highly expressed
in several nerve cells and CNS areas (Table 1). Activation
of the NLRP3 occurs after infection by the influenza A
virus and SARS-CoV (125) (Figure 2B step 4). After NLRP3
inflammasome activation, caspase-1 and other non-canonical
inflammasome caspases (caspase-4, caspase-5, or caspase-11)
activate gasdermin-D (GSDMD), which subsequently forms
pores in the cell membrane. These pores facilitate the secretion
of IL-1β and IL-18 and, importantly, they also enable the
simultaneous influx of Na+ and water molecules, facilitating
neuroinvasion by causing excessive cellular swelling, membrane
rupture, and subsequent pyroptosis, an inflammatory form of cell
death (126, 127). Therefore, it is possible that pyroptosis may
occur in nerve cells (Figure 2B step 4).

Neurological and Neuropsychiatric
Manifestations, Diagnostic, and Treatment
in Patients With COVID-19
The respiratory symptoms caused by the SARS-CoV-
2 virus are still the most readily identified and studied.
However, neurological manifestations are beginning to
take on unquestionable importance, mainly in the critically
affected patient. Our understanding of the long-term
neurological symptoms is limited and presents a real challenge
(13, 14, 62, 128). A physiopathological explanation for the
neurological and neuropsychiatric manifestations of COVID-19
has yet to be found. Although there are hypotheses about the
direct effects of SARS-CoV-2 on the CNS and PNS, evidence
suggests that these effects can be attributed to other causes such
as: (1) the impact of the systemic inflammatory response caused
by the virus and (2) the underlying comorbidities of the patients
(62, 129, 130). Patients with mild COVID-19 have been reported
to have non-specific neurological disorders such as headache and

myalgias, dizziness, dysgeusia, and anosmia with variations in
their prevalence (Table 2) (13, 14).

Some studies point to headache as the most common
neurological symptom and often as the only symptom of
COVID-19 (129, 147). However, other authors have defined
the headache as a consequence of systemic disease. It has been
suggested that the chronic release or exposure of vasoactive
peptides such as Calcitonin Gene-Related Peptide (CGRP; pain
and migraine-related peptide) (148) can activate trigeminal
sensory fibers and thus modulate the transmission of impulses
related to headache (149). Besides, in COVID-19, a close link
between cytokine storm and headache has been proposed, due
to the release of the vasoactive peptides (150).

In contrast, for hospitalized patients, encephalopathy with
neuropsychiatric manifestations such as delirium and agitation
have been observed. There has also been a considerable
increase in the reports of patients with neuromuscular diseases,
among which are GBS with some of its variants and several
rhabdomyolysis cases. However, it has not been possible to find
a clear relationship between these manifestations and COVID-
19. An increasing incidence of neurological manifestations has
been observed in COVID-19-infected patients that have been
associated with severe health conditions and prolonged hospital
stays (129, 134). However, there are also reports of neurological
manifestations in outpatients with COVID-19 infection (129,
138). Therefore, it is difficult to determine the incidence of each
of the neurological manifestations due to the different screening
methods applied for each reported case.

Neurological disorders such as multiple sclerosis (MS),
encephalopathy, and GBS, have been associated with SARS-
CoV2. In some cases, CNS demyelination has occurred shortly
after SARS-CoV-2 infection, suggesting a causal relationship
between these two pathologies (151). Viruses, such as the
Epstein-Barr virus (EBV), have been linked to MS, with
high titers of EBV antibodies found in MS patients. Viral
induced demyelination could be a direct result of viral infection
of oligodendrocytes, which leads to cell death and myelin
degeneration, or to the exacerbated inflammatory response
caused by virus replication (152, 153). The cytokine storm caused
by SARS-CoV-2 may cause the activation of glial cells and
the start of the demyelination process (154). Conversely, other
studies suggest that SARS-CoV-2 could act as an accelerating
factor for MS but not the trigger for the disaese (155). Likewise,
several case reports have reported the appearance of GBS after
SARS-CoV-2 infection (156–158). Although hypoxic/metabolic
changes caused by intense inflammatory response against the
virus together with the presence of comorbidities, may result
in encephalopathy (159) there is still insufficient evidence to
prove that SARS-CoV-2 virus infection invades the CNS directly
to provoke encephalopathy (151). In the same way, despite the
complications associated with SARS-CoV-2 infection in patients
with GBS, there is no clear evidence yet that COVID-19 initiates
GBS (151).

Cerebral events have been associated with SARS-CoV-2
patients, with cerebral ischemic events being the most frequent.
Cerebral hemorrhages and microhemorrhages are also noticed
(62, 144) (Table 2).
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TABLE 2 | SARS-CoV-2 infection in the central and peripheral nervous system: clinical manifestations, mechanism of pathogenicity, laboratory, and clinical findings and

suggested treatment.

Clinical manifestation The probable mechanism of

pathogenicity

Laboratory and/or clinical

alterations

Treatment or

recommendations

References

Central nervous system

Headache: occurs in

∼70% of patients, with an

average duration of 3 days.

(1) Direct viral invasion of the trigeminal

nerve endings in the nasal or oral cavity. (2)

An increase in the levels of peptides

related to the circulating calcium gene has

been linked to the trigeminal vascular

activation.

The use of neurological and

laboratory imaging techniques is only

recommended if the headache is

associated with focal neurological

symptoms.

(1) NSAIDs and steroids are

not recommended as they

can exacerbate COVID-19

symptoms. (2)

Anticonvulsants may offer

benefits.

(131–133)

Delayed awakening: has

been observed in some

patients after ventilation for

COVID-19-related ARDS.

A relationship between posterior

circulation inflammation and brainstem

function may be related to altered

consciousness.

(1) Brain MRA: an increase in the

abnormal contrast has been observed

in the arterial wall associated with

endotelialitis. (2) EEG: non-specific

changes have been observed. (3) In

serum and CSF: oligoclonal bands

have been observed.

The use of IV

methylprednisolone has

been proposed for 5 days,

followed by decreasing

doses of prednisone.

(130)

Encephalopathy: One

study Liotta et al. (134)

determined that it was

present in about a third of

patients, and was

associated with increased

mortality.

It has been proposed that they may be

involved in toxic-metabolic processes

such as hypoxemia, ROS production, and

organ failure.

MRI: intensity changes in the

leptomeningeal spaces, in the mesial

temporal lobe, and the hippocampus,

as well as frontotemporal

hypoperfusion.

The use of low potency

antipsychotic agents and

alpha-2 agonists has been

proposed to control

psychomotor agitation.

(134–136)

Ischemic stroke event: is

a life-threatening

complication and is

associated with

cardioembolic events.

(1) Elevated inflammation, DIC, and

hypoxia have been associated with a state

of hypercoagulability. (2) Complement

activation is associated with microvascular

damage leading to thrombotic injury.

(1) The neuroimaging patterns

observed are extensive vessel

thrombosis, embolism, or stenosis,

followed by affected multiple vascular

territories. (2) Laboratory studies have

revealed an increase of D-dimer,

fibrinogen, antiphospholipid antibody

levels.

Prophylactic or therapeutic

anticoagulation therapy, as

well as thrombectomy, have

been recommended.

(62, 137)

Hemorrhagic stroke: has

been attributed to

COVID-19 and risk factors

as anticoagulation, trauma,

and hypertension.

Lupus anticoagulant and antiphospholipid

antibodies have been suggested to play a

role in its pathophysiology.

Imaging studies have revealed

microhemorrhage foci, hematomas

larger than 5cm, surrounding edema,

and even descending hernia.

Reduce risk factors that

affect hypertension,

aneurysm, and states of

anticoagulation.

(62)

Peripheral nervous system

Olfactory disorders:

present around 86% of

COVID-19 patients:

anosmia (79%), hyposmia

(20.4%), phantosmia (12%),

and parosmia (32%)

Lechien et al. (138).

(1) Nasal epithelial damage is

characterized by a reduced number of

ORs and abnormal dendrites that do not

reach the epithelial surface or lack sensory

cilia. (2) Substitution of ONE with

metaplastic squamous epithelium. (3)

Inflammation can lead to impairment of

ORs and also damage of olfactory

neurons.

MRI has shown abnormalities in the

signaling of one or both olfactory

bulbs, edema of the olfactory bulb,

and microhemorrhage in one of the

olfactory bulbs.

The most widely used

treatments for olfactory

dysfunction are saline nasal

irrigations, nasal

corticosteroids, oral

corticosteroids, vitamins,

and trace elements.

(138–141)

Gustatory disorders:

present around 88% of

COVID-19 patients:

hypogeusia (79%) or

dysgeusia (21%) Lechien

et al. (138)

(1) Diffuse expression of ACE2 receptors

(modulation of taste perception) in the oral

mucosa, particularly in the tongue. (2)

SARS-CoV-2 can bind to sialic acid

receptors, accelerating the degradation of

taste particles.

Recent evidence suggests that

imaging or laboratory studies are not

usually done on patients who only

manifest gustatory disorders.

Treatment for these

disorders has not been

established; however,

l-carnitine or trace elements

and vitamins have been

used.

(138, 142)

Neuromuscular

disorders: myalgia and

fatigue affect between 44

and 70% of patients. About

10% of patients have a

skeletal muscle injury.

(1) SARS-Cov-2 could trigger viral

myositis. (2) Alteration in the expression of

ECA2 in skeletal muscle. (3) Skeletal

muscle damage from cytokine storm.

(1) Elevated serum creatine kinase

levels. (2) Muscle injury has been

associated with multiple organ

damage, such as liver dysfunction

(increased levels of LDH, ALT, and

AST) and kidney (increased levels of

blood urea nitrogen and creatinine).

The use of corticosteroids

has resulted in benefits.

(129, 143)

(Continued)
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TABLE 2 | Continued

Clinical manifestation The probable mechanism of

pathogenicity

Laboratory and/or clinical

alterations

Treatment or

recommendations

References

Guillain-Barre Syndrome

GBS: has been associated

with COVID-19.

Interestingly, the interval

between the onset of

COVID-19 symptoms and

the first symptoms of GBS

has ranged from 5 to 10

days.

(1) It has been proposed that it serves the

same mechanisms as typical GBS,

consisting of demyelination of peripheral

nerve roots. (2) Peripheral nerve damage

can be caused by the immune response to

SARS-CoV-2, driven by the production of

autoreactive antibodies (anti-ganglioside).

(1) Hematological and biochemical

examinations have shown

leukocytosis, leukopenia,

thrombocytosis, thrombocytopenia,

and elevated levels of CRP. (2) CSF

tests have shown cytological

dissociation of albumin. (3) EMG has

been associated with a demyelinating

process. (4) MRI has revealed an

enhancement in the caudal nerve

roots and the facial nerve.

The therapeutic protocol to

GBS associated with

COVID-19 has been

typically used for this

pathology: IV

immunoglobulin or plasma

exchange, supportive care,

and antiviral drugs.

(144–146)

ACE2, angiotensin-converting enzyme 2; ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; AST, aspartate aminotransferase; CNS, central nervous system; CRP,

C-reactive protein; CSF, cerebrospinal fluid; DIC, disseminated intravascular coagulation; EEG, electroencephalography; EMG, electromyography; GBS, Guillain-Barre syndrome; IV,

intravenous; LDH, lactate dehydrogenase; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; NSAIDs, non-steroidal anti-inflammatory drugs; ONE, olfactory

neuroepithelium; ORs, olfactory receptors; ROS, reactive oxygen species.

As discussed previously, the cranial nerves might also be
susceptible to a direct or indirect injury caused by SARS-CoV-
2. According to a recent study, about 86 and 88% of patients
with COVID-19 develop olfactory and gustatory alterations,
respectively (138). These findings might be specific for SARS-
CoV-2 infection and be useful to distinguish them from other
causes. Interestingly, the presence of these dysfunctions can
precede the onset of respiratory symptoms (160, 161) and may
predict a mild clinical course of the disease (162) (Table 2).
Besides, it has been proposed that pericytes of the olfactory
bulb, which express high levels of the ACE2 receptor, may be
responsible for triggering the cytokine storm and thus causing
olfactory disorders in COVID-19 patients (163).

On the other hand, neuroimaging data could help us
understand the pathological effects of SARS-CoV-2 in the
CNS and PNS. Unfortunately, published brain imaging
findings from confirmed COVID-19 patients are currently
scarce and limited to small case series. However, it has been
possible to correlate them with the potential pathophysiological
mechanisms involved. For example, in a recent study, it was
shown that patients with COVID-19 presented multifocal
petechial hemorrhages associated with BBB rupture (164).
In another study, microhemorrhages and macrohemorrhages
were associated with posterior reversible encephalopathy
syndrome (165) (Table 2). Although the underlying mechanism
of brain abnormalities detected through neuroimaging remains
to be understood, these findings provide further evidence
that CNS damage can occur in COVID-19 patients. The
correct understanding of pathophysiological mechanisms of
neurological manifestations may reveal potential therapeutic
targets (Table 3). Depending on the neurological complications
associated with COVID-19, treatments would need to be
adjusted accordingly (Table 2).

Neurohistopathological Findings by
COVID-19
The histopathological analysis of nervous tissue of patients
who presented neurological complications and died due to

COVID-19 is undoubtedly precious to our understanding of the
pathophysiology and potential therapeutic strategies (Table 4).

Solomon et al. analyzed nervous tissue from 18 patients
infected with SARS-CoV-2 who had also presented with certain
comorbidities such as DM, hypertension, cardiovascular disease,
hyperlipidemia, chronic kidney disease, and dementia. The
histological examination (Table 4) revealed a greater number of
copies of SARS-CoV-2, acute hypoxic-ischemic injury, neuronal
loss, and perivascular inflammation in several brain areas,
and even pathological features of Alzheimer’s disease (AD)
were observed (175). A different case report described the
brain from a 73-year-old man with unspecified neurological
manifestations (Table 4), hypertension and DM and positive
for SARS-CoV-2 with cranial computed tomography. The
results showed right cerebellar intra-parenchymal hemorrhage,
edema, medulla compression, and tonsillar herniation. After 18 h
without improvement, the patient died of palliative extubation.
Brain histopathology revealed severe global hypoxic changes with
scattered hypereosinophilic shrunken neurons in several brain
areas and mild perivascular inflammatory infiltrates (Table 4)
(177). This study also suggested a preference of the virus to
the cerebellar Purkinje cell layer. In addition, astrogliosis was
noted in the superior frontal and orbital cortices, while microglial
activation in the cortex was not evident (177).

A study focused on describing the SARS-CoV-2 tropism
within the olfactory mucosa to the CNS examined autopsy
material from 33 patients positive for the virus. The authors
showed viral RNA for SARS-CoV-2 within the olfactory mucosa
sampled directly beneath the cribiform plate. They also found
viral RNA in anatomically distinct regions such as cornea,
conjunctiva and oral mucosa. Using immunohistochemistry,
in situ hybridization, and electron microscopy, they suggested
that SARS-CoV-2 neuroinvasion to the CNS occurs via axonal
transport, thus explaining the well-documented neurological
symptoms (Table 4) (178). The authors also proposed that
SARS-CoV-2 infection in the cerebellar region may occur by
the migration of the virus-carrying leukocytes across the BBB,
without directly connecting this area to the olfactory mucosa.
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TABLE 3 | Current drugs used against COVID-19.

Drug Mechanism of action Results of clinical case

reports

Adverse effects Dose References

Antiviral drugs

Remdesivir The prodrug, belonging to the group

of nucleotide analogs, generates an

active metabolite capable of entering

cells and inhibits viral RNA

polymerase. Inhibitory capacity

against SARS-CoV-2 in vitro has

been observed*.

Decreased recovery time,

disease progression, as well

as mortality compared to

placebo.

- Infusion-related

hypotension

- Hepatotoxic

- Nephrotoxic

- Gastrointestinal symptoms

- First dose of 200mg

- 100 mg/day for 5–9 days.

(166)

TMPRSS2 antagonist

Camostat Produces GBPA, that inhibits many of

the serine proteases that SARS CoV

and SARS-CoV-2 use for

virus-to-host cell membrane fusion,

like TMPRSS2**.

Reduces the likelihood of

serious infection, as well as

morbidity and mortality.

- Eruption

- Pruritus

- Oedema

- Urticaria

It has been used at different

doses in humans and other

pathologies. e.g., : 200mg

every 8 h

(167)

Nafamostat

mesylate

Inhibited SARS-CoV-2S

protein-mediated entry into host cells

with about 15-fold-higher efficiency

than camostat, with a 50% effective

concentration.

In combination with

Favipiravir has shown a

decrease in mortality.

Hyperkalemia 0.2mg per kg/hour by

continuous IV infusion, for

14 days.

(168, 169)

Monoclonal antibodies

Tocilizumab IL-6 receptor antagonist May reduce the hospital

stay, the need for ICU

admission, and the need for

invasive mechanical

ventilation.

- Increased risk of

secondary infections.

- Hypersensitivity reactions

- Neutropenia and

thrombocytopenia

- Hepatotoxicity

>75 kg: 600mg single dose

<75 kg: 400mg

single dose***

(170)

Anakinra IL-1 receptor antagonist Reduced both needs for

invasive mechanical

ventilation and mortality in

severe COVID-19 patients.

- Elevation of liver enzymes

three times higher than

their reference value.

- Possible

thromboembolic events.

100mg every 6 h for a

maximum of 15 days.

(171, 172)

Mavrilimumab Binds to GM-CSFRα**** and disrupts

downstream signaling.

Fast clinical improvement,

decrease both the need for

mechanical ventilation and

mortality.

No adverse reactions to the

infusion were observed.

6mg/kg single dose. (173)

Steroids

Dexamethasone - Anti-inflammatory action.

- Inhibits phospholipase A2 and,

consequently, prostaglandin,

thromboxane, and leukotriene

synthesis

- Suppresses leukocyte migration

- Recovers the BBB by upregulation

of ZO-1 tight junction protein

Decreased mortality in

patients requiring oxygen

therapy and mechanical

ventilatory support when

treatment is initiated 7 days

after symptom onset.

- Hyperglycemia

- Increased risk of bacterial

and fungal infections.

6 mg/day for 10 days. (174)

GBPA, 4-[4-guanidinobenzoyl-oxy] phenylacetic acid; GM-CSF, Granulocyte-macrophage colony-stimulating factor (GM-CSF); TMPRSS2, Transmembrane serine protease 2.

*Inhibitory activity against SARS-CoV-1 and MERS-CoV has been demonstrated.

**The high expression of TMPRSS2 in different brain areas could be a potential therapeutic target for neurological manifestations and complications.

***According to safety criteria and clinical trial data.

****GM-CSF is a cytokine with a cardinal role in inflammation modulation. Ligand binding to the GM-CSF receptor-α (GM-CSFRα) activates multiple pro-inflammatory pathways and, in

macrophages and neutrophils, results in increased secretion of pro-inflammatory cytokines.

Other cranial nerves have been considered as the route
for entrance of the virus to the CNS (Figure 3) (181, 182).
Regarding ageusia, the pathogenesis may involve an alteration
in the glossopharyngeal, facial, vagus nerve, or the nucleus
tractus solitarii (NTS), at the brainstem level (183). In an
immunohistochemistry analysis of the cranial nerves from two
individuals, SARS-CoV-2 and viral proteins were found within

the medulla oblongata and in both glossopharyngeal and vagal
nerves from the lower brainstem (179), suggesting these areas
as a potential route for virus entry into the CNS and peripheral
tissue (Table 4).

Other authors found hypereosinophilia or nuclear and
cytoplasmic condensation of neurons in the cerebrum and
cerebellum of severe COVID-19 patients due to hypoxic
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TABLE 4 | Neurohistopathological findings in patients infected with SARS-CoV-2 and their association with neurological manifestations.

Characteristics of the

patients

Tissue and PMI Histopathological findings Neurological

manifestations

References

Central nervous system

n = 18

age range: 53–75 years

comorbidities: AF, ALL, BPH,

CAD, CKD, COPD, DM, ESRD

on HD, EtOH use disorder, HF,

HTN, ILD, MGUS, NHL, OCD,

OSA, PPV, PVD, RA-SLE.

Inferior-frontal lobe with

olfactory tract/bulb, corpus

callosum, hippocampus,

occipital lobe, anterior basal

ganglia, thalamus,

cerebellum, midbrain, pons,

and medulla. PMI: NS.

Acute hypoxic-ischemic injury with neuronal

loss in the cerebral cortex, hippocampus, and

cerebellar Purkinje cell layer. Arteriolosclerosis

with perivascular rarefaction, a microglial

nodule, and perivascular inflammation with

scattered microglia were also detected.

It is associated with the

confusional state, myalgia,

headache or, hypogeusia.

(175)

n = 6

age range: 58–82 years

comorbidities: EtOH use

disorder, HTN, COPD, CKD,

PHT, PVD, CAD, AF.

Hippocampus, neocortex,

cerebellum, and brainstem

nuclei. PMI: NS.

Lymphocytic panencephalitis and meningitis.

Neuronal cell loss and axon degeneration in the

dorsal motor nuclei of the CN X and V, NTS,

dorsal raphe nuclei, and medial longitudinal

fasciculus.

Associated with altered

consciousness.

(176)

n = 1

age: 73 years

commorbidities: DM and HTN.

Cortex, hippocampus,

amygdala, striatum. PMI:

NS.

Cerebellar hemorrhage, acute infarcts, global

hypoxic changes with scattered

hypereosinophilic shrunken neurons in the

cerebral cortex, striatum, thalamus, amygdala,

hippocampus, and the Purkinje cell layer.

Headache, nausea,

vomiting, and loss of

consciousness.

(177)

Cranial nerves and peripheric nervous system

n = 33

age range: 67–79 years

commorbidities: DM, HTN, CVD,

HLD, CKD, PS and dementia.

Olfactory mucosa, bulb and

tuber, oral mucosa,

trigeminal ganglion, medulla

oblongata, and cerebellum.

PMI: NS.

High levels of viral SARS-CoV-2 RNA

(RT–qPCR) and protein within the olfactory

mucosa. Lower levels were found in the

cornea, conjunctiva, and oral mucosa; and in

only a few COVID-19 autopsy cases, the

cerebellum was positive for SARS-CoV-2.

Alterations of smell and

taste perception, impaired

consciousness, headache,

and behavioral changes

(178)

n = 2

age: 51 and 94 years

commorbidities: COPD, IHD

and AML

Glossopharyngeal, vagal

nerves and other brain

areas. PMI: 3.3 days

SARS-CoV-2 viral proteins mapped to isolated

cells.

Ageusia (179)

n = 21

age range: 41–78 years

commorbidities: DM, CVD,

COPD, asthma, ASM and AHM.

Olfactory bulbs, NTS and

other brain areas. PMI: NS.

Extensive inflammation and infiltrating immune

cells.

Anosmia and dampening of

the respiratory system.

(180)

AF, atrial fibrillation; AHM, active hematological malignancy; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; ASM, active solid malignancy; BPH, benign prostatic

hyperplasia; CAD, coronary artery disease; CKD, chronic kidney disease; CN, cranial nerves; COPD, chronic obstructive lung disease; CVD, cardiovascular disease; DM, diabetes

mellitus; ESRD on HD, end stage renal disease on dialysis; EtOH use disorder, alcohol use disorder; HF, heart failure; HLD, hyperlipidemia; HTN, hypertension; IHD, ischaemic heart

disease; ILD, interstitial lung disease; MGUS, monoclonal gammopathy of undetermined significance; n, number of patients; NHL, non-Hodgkin lymphoma; NS, not specified; NTS,

nucleus tractus solitarius; OCD, obsessive compulsive disorder; OSA, obstructive sleep apnea; PHT, pulmonary hypertension; PMI, postmortem interval; PS, prior stroke; PVD, peripheral

vascular disease; RA-SLE, rheumatoid arthritis - systemic lupus erythematosus; RT-qPCR, reverse transcription-quantitative polymerase chain reaction.

brain changes (Table 4). The olfactory bulb histopathological
analysis showed many activated microglia with enlarged bodies

and T-cell extravasation into the parenchyma and elevated
levels of reactive astrocytes (180). Interestingly, the NTS

showed astrogliosis and a massive microglial activation with
the formation of a microglia nodule and T cells in the

leptomeninges of the medulla oblongata (180). This implies

extensive inflammation in this area, which results in a
dysregulation of the respiratory system (184). One of the

main limitations of these studies is that it is not clear
whether the histopathological findings are the result of patients’

comorbidities/aging, or due to SARS-CoV2 neuro-infection.

Further investigations are necessary to make the corresponding

comparison with healthy subjects with appropriate age ranges
and to understand the neuropathological mechanism of SARS-

CoV-2 and its relationship with neurological manifestations and

patient comorbidities.

The Potential Role of SARS-CoV-2 in the
Pathogenesis of Neurodegenerative
Diseases
The SARS-CoV-2 neurotropism has already been documented
in several reports (Table 2) (185–187). However, it
remains unknown whether SARS-CoV-2 contributes to
neurodegenerative pathogenesis. It has been hypothesized
that viruses can cause neurological problems by affecting
neurotransmitter release, lysing the cells, inducing apoptosis,
commanding neuronal transcriptional pathways or indirectly
activating the immune response (188).

Neuroinvasive animal CoVs, such as the porcine
hemagglutinating encephalitis virus (PHEV) or MHV have been
shown to induce different types of neuropathology. Similarly,
human CoVs, such as HCoV-229E and HCoV-OC43, have been
implicated in establishing or exacerbating neurodegenerative
diseases (189–192).
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AD is the most common cause of dementia among the elderly.
Neuropathological hallmarks of AD include the neurofibrillary
tangles, consisting of intraneuronal and hyperphosphorylated
tau, and the extracellular accumulation of amyloid β-peptide
(Aβ) in the brain parenchyma in the form of neuritic
plaques (193, 194). The neurovascular unit (NVU) and BBB
dysregulation are also critical pathophysiological events in
neurodegenerative diseases, including AD. Previous studies have
suggested a relationship between AD and infectious agents.
Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi,
and herpes simplex virus have been reported in post-mortem AD
brain (195) and a relationship between virus infection and Aβ has
been suggested. Soscia et al. noticed that Aβ exerted antimicrobial
activity against relevant microorganisms and was modulated in
response to some environmental stressors. Thus, transient viral
infection could initiate or accelerate Aβ accumulation in the
brain and neuronal damage (Figure 2B steps 5 and 6) (196).
ACE2 can induce an increase of nitric oxide (NO) in the brain,
which becomes neurotoxic. NO and other reactive species, which
could be produced as a consequence of viral internalization
and impairment of cell organelles (mitochondria, lysosomes),
could, in turn, increase misfolding and aggregation of cellular
proteins (197).

It has been proposed that SARS-CoV-2 could increase the
hyperphosphorylation of tau in the axonal region (52, 198–
200), promoting disassembly of microtubules and, subsequently,
neuronal degeneration (Figure 2B steps 5 and 6) (201). Likewise,
it has been suggested that persistent CoV infections can
induce a neuroimmune response and a pro-inflammatory
state, and activate glial cells (202). Microglial cells may be
chronically activated by a single stimulus, such as pathogen
infection, resulting in slow and progressive neuronal loss
through multiple neurotoxic factors (203). Interferon (IFN),
which has a role in mediating AD pathology, directly activates
microglia and stimulates a pro-inflammatory response derived
from SARS-CoV-2 infection (204). Therefore, it seems that the
neurotropism of SARS-CoV-2 can lead to the activation of
microglial cells, trigger chronic neuroinflammation, and finally,
neurodegeneration (Figure 2B).

Finally, it has been found that ACE2 is upregulated in the
cerebral vasculature of dementia cases. ACE2 increases the
intracellular level of angiotensin 2, causing vasoconstriction
and promoting brain degeneration (205). Buzhdygan et al.
demonstrated that S1 could promote BBB alteration in an
advanced 3Dmicrofluidic model of the BBB, being able to induce
different types of neuropathology (98).

Like AD, viral agents have been associated with parkinsonism
disorders. These include the post-encephalitic parkinsonism
linked to the 1918 influenza A H1N1 pandemic (206) and the
parkinsonism associated with Epstein Barr, Coxsackie,West Nile,
herpes and the human immunodeficiency (HIV) viruses (207–
209). Parkinson’s disease (PD) is the second most common
and fastest-growing neurodegenerative disorder (210). It is
characterized by dopaminergic neuronal loss in the substantia
nigra pars compacta and the accumulation of misfolded α-
synuclein (α-syn), which is found as intracytoplasmic inclusions
called “Lewy bodies” (211). SARS-CoV-2 could play a role in

the epidemiology of PD, since pro-inflammatory events triggered
by viral infections could act as predisposing factors to the
development of PD (Figure 2B steps 5 and 6) (Table 2) (212–
214). This inflammatory environment can trigger the long-
term neuronal loss, misfolding, aggregation, and spread of α-
syn through the CNS (215, 216). Interestingly, it has been
proposed that α-syn plays an essential role in response to
infection, promoting a higher expression of α-syn, as occurs
in the West Nile virus encephalitis (217, 218). Furthermore,
α-syn aggregation can activate microglia, favoring the pro-
inflammatory response and cellular damage signals, leading
to slow and progressive neuronal death (219). However, it
remains unknown whether SARS-CoV-2 could contribute to
neurodegenerative pathogenesis, or whether it only uses the CNS
as a reservoir, making it difficult for the virus to replicate, due to
the low level of ACE2 receptors expressed in CNS (220).

CONCLUSION

COVID-19 pandemic has become a real challenge for the
scientific community around the world. Although SARS-
CoV-2 mainly affects the respiratory tract, more evidence
suggests that this virus can also invade the CNS causing
neurological manifestations. The possible routes of SARS-CoV-
2 neuroinvasion include: (1) the hematopoietic pathway via the
BBB, (2) via the B-CSF, (3) via retrograde axonal transport
through the cranial nerves, and (4) via the circumventricular
organs. Once the virus enters the CNS, it binds to cell
receptors, including ACE2. This receptor is expressed in several
brain areas and in both neuronal and non-neuronal cell
types. The binding of SARS-CoV-2 with ACE2 can promote
neuroinflammation, hypercoagulation, microhemorrhages, BBB
dysfunction, generation of reactive species, phosphorylation of
tau, protein misfolding and aggregation, and neuronal death,
features that are closely related to the appearance or progression
of neurodegenerative diseases. Further studies on the molecular
changes in the brain triggered by SARS-CoV-2 infection would
facilitate timely diagnosis and therapeutic approaches.
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