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Background
Ewing sarcoma, characterized histologically by small, round sheets of blue-stained cells 
with prominent nuclei and sparse cytoplasm, is the second most common primary bone 
tumor mainly occurred in children, adolescents and young adult, which also can origi-
nate in soft tissues [1]. However, ES is a rare tumor with an incidence of about 1.5 cases 
per million in the world [2]. Meanwhile, it’s a lethal tumor with high rate of metastasis 
and high mortality. The relative 5-year survival rate reported by Timothy A. Damron 

Abstract 

Background:  Ewing sarcoma (ES) is the second most common primary malignant 
bone tumor mainly occurring in children, adolescents and young adults with high 
metastasis and mortality. Autophagy has been reported to be involved in the survival 
of ES, but the role remains unclear. Therefore, it’s necessary to investigate the prognos-
tic value of autophagy related genes using bioinformatics methods.

Results:  ATG2B, ATG10 and DAPK1 were final screened genes for a prognostic model. 
KM and risk score plots showed patients in high score group had better prognoses 
both in training and validation sets. C-indexes of the model for training and validation 
sets were 0.68 and 0.71, respectively. Calibration analyses indicated the model had 
high prediction accuracy in training and validation sets. The AUC values of ROC for 
1-, 3-, 5-year prediction were 0.65, 0.73 and 0.84 in training set, 0.88, 0.73 and 0.79 in 
validation set, which suggested high prediction accuracy of the model. Decision curve 
analyses showed that patients could benefit much from the model. Differential and 
functional analyses suggested that autophagy and apoptosis were upregulated in high 
risk score group.

Conclusions:  ATG2B, ATG10 and DAPK1 were autophagy related genes with potential 
protective function in ES. The prognostic model established by them exhibited excel-
lent prediction accuracy and discriminatory capacities. They might be used as potential 
prognostic biomarkers and therapeutic targets in ES.

Keywords:  Autophagy related genes, Protective, Ewing sarcoma, Survival, Prognostic 
model

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Wen et al. BMC Bioinformatics          (2022) 23:306  
https://doi.org/10.1186/s12859-022-04849-x

BMC Bioinformatics

*Correspondence:   
jxsrmyydongxieping@163.com

1 Medical College of Nanchang 
University, Nanchang 330006, 
Jiangxi, China
2 Department of Orthopedics, 
Jiangxi Provincial People’s 
Hospital, 152 Aiguo Road, 
Nanchang 330006, Jiangxi, China
3 JXHC Key Laboratory of Digital 
Orthopedics (Jiangxi Provincial 
People’s Hospital), 152 Aiguo 
Road, Nanchang 330006, Jiangxi, 
China
4 Department of Pediatrics, 
The Second Xiangya Hospital, 
Central South University, 
Changsha 410011, Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04849-x&domain=pdf


Page 2 of 19Wen et al. BMC Bioinformatics          (2022) 23:306 

et  al. is 50.6%, lower than osteosarcoma and chondrosarcoma [1]. Notably, the 5-year 
overall survival rate of patients with metastases is lower than 30% and up to 20–25% of 
patients present with metastases at diagnosis [3]. Meanwhile, patients who relapse have 
a dismal prognosis, especially relapse within 2 years after diagnosis, the 5-year survival 
rate was even less than 10% [4]. Despite the progresses have been made in the treat-
ment of ES, but the long-term survival rates of metastatic and relapsed patients have not 
improved significantly [2, 3]. Therefore, how to further improve the prognoses of the ES 
patients remains to be further studied and efforts on finding new molecular targets and 
new therapies for the existing targets are still ongoing.

Autophagy related genes (ARGs) in human referred to the human genes described so 
far as involved in autophagy and 222 ARGs were collected in the Human Autophagy 
Database to date (http://​www.​autop​hagy.​lu/). As is known that autophagy is a self-deg-
radation process of cytoplasmic proteins and damaged organelles precisely regulated by 
ARGs, which can prevent cell damage, promote cell survival in the absence of nutrients, 
respond to cytotoxic stimuli and etc. [5, 6]. It’s mainly activated by endoplasmic reticu-
lum stress, low energy, nutrient starvation, hypoxia and reactive oxygen species [5, 6]. 
Obviously, autophagy acts as a self-protection mechanism of cells under physiological 
conditions [5, 6]. However, this survival mechanism also can help tumor cells to survive 
and disseminate under stress conditions [5–9]. Besides, many drug resistances of can-
cers are associated with autophagy as well [10, 11]. It’s reported that autophagy plays a 
dual role in human health and diseases [5, 6]. Generally, autophagy tended to function 
as a tumor suppressor mechanism in the early stage of tumorigenesis, while on the late 
stage of tumor, it can promote tumor proliferation, aggressiveness and metastasis [7–9]. 
Nevertheless, the controversial role of autophagy has also been reported in ES [12, 13]. 
Then, what role does autophagy play in the prognosis of ES deserves further study. Thus, 
in this study, we intend to explore this issue by bioinformatic tools and bridge the gap in 
this area. The findings of it may also indicate potential prognostic biomarkers and thera-
peutic targets in ES.

Therefore, in this study we intend to preliminarily explore the association between 
potential protective ARGs that with better prognosis in high expression group in KM 
analysis and the prognosis of ES, so as to find some potential prognostic biomarkers and 
even therapy targets for ES. Currently, several prognostic models have been reported in 
ES [14–17]. They explored the prognostic value of genes related to some other processes 
in ES, whereas no model has been established by ARGs, together with their roles in the 
prognosis of ES have not been explored, either. Therefore, it’s necessary to bridge the gap 
in this area. In addition, our study is also a supplement of the existing models, which can 
deepen our understanding of ES from a new perspective.

Results
Clinical characteristics of the enrolled ES patients

Data of 64 and 46 ES samples were extracted from GSE17679 and GSE65155 respec-
tively. The former was set as training set and the latter was set as validation set. The 
clinical characteristics of the two sets showed that the characteristics of age and gender 
were similar between the two sets (Table 1).

http://www.autophagy.lu/
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Potential protective ARGs screened by survival analysis

48 and 46 ARGs were screened by univariate (P value < 0.05) and multivariate Cox analy-
ses (P value < 0.05), respectively (Additional file  1). 18 ARGs were retained by LASSO 
Cox regression analysis (λ = lambda.1se) (Fig. 1A, B). Then, KM analyses were performed 
for the 18 ARGs to select potential protective ARGs in training cohort (Figs. 1C, 2A–C). 
Results showed that ATG2B, ATG10, ATG12 and DAPK1 were ARGs with better prog-
nosis in high expression group (P value < 0.05) (Fig. 2A–C). Finally, ATG2B, ATG10 and 
DAPK1 were selected as final AGRs most related to survival with P value < 0.01 in uni-
variate Cox analyses. Map of autophagy pathway in human (hsa04140) were downloaded 
from KEGG website. 18 ARGs screened by LASSO were mapped to the autophagy path-
way map, only 9 were successfully mapped (the red and blue nodes in the map, the red 
nodes referred to the final ARGs) (Fig. 2D). As was shown in Fig. 2D, ATG2-WIPI com-
plex was involved in the processes from initiation to elongation of the autophagosome 
directly or by promoting ATG12-ATG-ATG16 complex formation. ATG10 acted as a E2 
for ATG12 in promoting ATG12-ATG5-ATG16 complex formation. DAPK could pro-
mote the phosphorylation of the Beclin-1 playing an important role in autophagy. Lastly, 
PPI network showed the interactions among the proteins encoded by genes screened by 
LASSO and it could be seen that proteins encoded by ATG2B, ATG10 and DAPK1 were 
important nodes in this network, which in turn reflected their key roles in autophagy 
(Fig. 2E).

Survival analysis for samples in different risk score groups

After risk scores were calculated and patients were divided into high and low risk score 
groups by median, KM analysis of the two group were performed. Result showed that 
there was significant difference between the low (blue curve) and high risk score (red 
curve) groups (P value = 0.00022) and patients in high score group got better outcomes 
in training set (Fig. 3A). The characteristics of samples from the two groups in training 
set were showed in Fig. 3B. The scatter plot in the middle of Fig. 3B showed that there 
were more blue dots in the upper left of the plot which means patients in high score 
group (left side of the plot) tended to have longer survival time, while more red dots in 
the bottom right of the plot which means patients in low score group (right side of the 
plot) tended to have shorter survival time. In sum, high risk score group tended to have 
better outcomes than low score group. Heatmap in Fig. 3B showed that ATG2B, ATG10 

Table 1  Clinicopathological characteristics in training and validation sets

Characteristics GSE17679 (Training set) GSE63155 (Validation set)

Age, mean ± SD 18.47 ± 6.69 12.29 ± 4.61

Gender, no. (%)

 Female 20 (31%) 19 (41%)

 Male 44 (69%) 27 (59%)

Overall survival time, median (interquartile 
range)

38.65 (16.05–67.3) 60.32 (52.04–77.29)

Overall survival status, no. (%)

 Alive 24 (38%) 32 (70%)

 Dead 40 (62%) 14 (30%)
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and DAPK1 tended to be highly expressed in high score group (Samples on the left side 
were high risk score group, right side were low risk score group. Blue color stood for low 
gene expression, red color stood for high gene expression in the heatmap). 

Evaluation of the prognostic model in training set

A Cox proportional hazards model was established by ATG2B, ATG10 and DAPK1, 
then visualized by a nomogram (Fig. 4A). An ES patient’s survival rate of 1-, 3- and 

Fig. 1  Screening protective ARGs with prognostic value by LASSO Cox regression analysis and KM analysis. A 
The LASSO coefficient profiles for the 46 genes in the tenfold cross-validations. B Partial likelihood deviance 
with changing of log (λ) plotted by LASSO regression in tenfold cross-validations. C KM plots for part of the 
ARGs screened by LASSO
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5-year could be predicted by just summing up the points of each final ARGs got 
and finding the corresponding rate in the scales at the bottom of the nomogram. 
The length of the lines for genes to some extent implied the importance of a gene 
in the model and obviously each of them played an important role in the model. 
C-index of the prognostic model in training set was 0.68 (95%CI: 0.63-0.72). Cali-
bration analysis showed that the predicted 1-year overall survivals were close to the 
overall survivals observed and the predicted 3-,5-year overall survivals were in high 
agreement with the overall survivals observed, which indicated high accuracy of the 
model (Fig.  4B–D). Time-dependent ROC analysis showed that the 1-, 3-, 5-year 
AUCs were 0.65, 0.73, 0.84 respectively (Fig. 4E). The AUC of 1 year was a little bit 
low, but the 3- and 5- year AUCs of the model were excellent, which might imply a 
good long term predictive value for ES patients. Decision curve analysis (DCA) for 
5-year prediction of the model indicated a higher net benefit than treat none and 
treat all plans (Fig. 4F). 

Fig. 2  KM analysis, pathway map and PPI network analysis for gene screening. KM plots for ATG2B (A), 
ATG10 (B) and DAPK1 (C) in training set: x-axis referred to living time (months), y-axis referred to the survival 
probability (up) and  the group (down), number table in the lower part of the plot referred to number of 
patients at risk. (D) Autophagy pathway map (hsa04140) from KEGG website: red nodes referred to ATG2B, 
ATG10 and DAPK1, blue nodes were the other mapped ARGs screened by LASSO. (E) PPI network for 
proteins encoded by LASSO screened ARGs (interaction score ≥ 0.4): the width of the line referred to the 
co-expression strength between the two nodes
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Validating the model in validation set

Nomogram for validation set (GSE63155) was shown in Fig. 5A. ATG10, with the long-
est line in nomogram, played the most important role in the model, which was also seen 
in training set. KM plot (Fig. 5B) indicated that patients in high risk score group (red 
curve) got a significant better outcomes than that in low score group (blue curve) (P 
value = 0.0043). Meanwhile, this was also seen in the middle plot of Fig. 5C: more alive 
patients with long survival time in high score group (more blue dots in the upper left 
of the plot). Heatmap of Fig.  5C showed that ATG2B, ATG10 and DAPK1 tended to 
be highly expressed in high score group (Samples on the left side were high risk score 
group, right side were low risk score group. Blue color stood for low gene expression, red 
color stood for high gene expression in the heatmap). C-index of the prognostic model 
in training set was 0.71 (95%CI: 0.63-0.78), even higher than that in training set. Calibra-
tion analysis showed the predicted 1-, 3-,5-year overall survivals by the model were in 
agreement with the overall survivals observed, which indicated its high prediction accu-
racy in validation set (Fig.  5D–F). Time-dependent ROC analysis showed that the 1-, 
3-, 5-year AUCs were 0.88, 0.73, 0.79 respectively (Fig. 5G). The AUCs in the validation 
set were outstanding, they were even higher than that in training set, which suggested 
excellent prediction accuracy and discriminatory capacities of the model. Besides, DCA 
for 5-year prediction of the model also indicated a higher net benefit than the other two 
plans (Fig. 5H). 

Differential expression analysis of the final genes

Differential expressions of ATG2B, ATG10 and DAPK1 were explored between differ-
ent groups in training and validation sets (Fig.  6A–I). Figure  6A showed that ATG2B 

Fig. 3  KM analysis for high and low risk score groups in training set and characteristics of samples in the two 
groups. A KM plot for high and low risk score groups in training set: x-axis referred to living time (months), 
y-axis referred to the survival probability (up) and risk score group (down), number table in the lower part of 
the plot referred to number of patients at risk. B Scatter plots for the survival characteristics of patients with 
increasing risk score and heatmap for the expression of final genes in patients with increasing risk score: 
the vertical dashed lines divided the samples into high and low score group, left side referred to high score 
group, right side referred to low score group
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Fig. 4  Establishing a prognostic model with final genes and evaluating it in training set. A Nomogram for 
the Cox proportional hazards model in GSE17679. Calibration of nomogram for 1-year (B), 3-year (C), 5-year 
(D) in GSE17679: x-axis referred to the predicted probability of overall survival by the model, y-axis referred 
to the actual probability of overall survival, the diagonal (dashed line) referred to the ideal status that the 
predicted survival rate equaled to the actual survival rate, the blue solid line referred to the actual status 
of the predicted and actual survival rate. (E) Time-dependent ROC curve of the model in GSE17679: x-axis 
equaled to 1—specificity of the model, y-axis was the sensitivity of the model. (F) 5-year DCA in GSE17679: 
x-axis referred to threshold probability for treatment or intervention, y-axis referred to the net benefit. Green 
line stood for no treatment for all samples, the net benefit was 0. Red line stood for treat all samples with the 
assumption of all samples would die within 5 years. Blue line stood for treat samples by the prediction of the 
model
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Fig. 5  Validating the model in validation set. A Nomogram for the Cox proportional hazards model 
in GSE63155. B KM plot for high and low risk score groups in GSE63155. C Scatter plots for the survival 
characteristics of patients with increasing risk score and heatmap for the expression of final genes in patients 
with increasing risk score: the vertical dashed lines divided the samples into high and low score group, 
left side referred to high score group, right side referred to low score group. Calibration of nomogram for 
1-year (D), 3-year (E), 5-year (F) in GSE63155: x-axis referred to the predicted probability of overall survival 
by the model, y-axis referred to the actual probability of overall survival, the diagonal (dashed line) referred 
to the ideal status that the predicted survival rate equaled to the survival rate, the blue solid line referred 
to the actual status of the predicted and actual survival rate. G Time-dependent ROC curve of the model in 
GSE63155: x-axis equaled to 1—specificity of the model, y-axis was the sensitivity of the model. (H) 5-year 
DCA in GSE63155: x-axis referred to threshold probability for treatment or intervention, y-axis referred to 
the net benefit. Green line stood for no treatment for all samples, the net benefit was 0. Red line stood for 
treating all samples with the assumption of all samples would die within 5 years. Blue line stood for treating 
samples by the prediction of the model
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was highly expressed in ES cell lines and tumor tissues and there was significant dif-
ference between normal and tumor samples (P < 0.01), but there were no significant 
differences between cell line and normal groups, cell line and tumor groups. The expres-
sions of ATG10 in tumor tissues was also higher than that in normal tissues (P < 0.05) 
(Fig. 6B), and it was extremely highly expressed in ES cell lines. Significant differences 
were found between cell line and normal, cell line and tumor groups (P < 0.0001). At the 
same time, differential expressions of DAPK1 in these groups were similar to ATG2B 
(Fig. 6C). In Fig. 6D–F, ES tumor tissue group was divided into high and low risk score 
groups. Obviously, the expressions of the 3 genes in high score group were significantly 
higher than that in low score group (P < 0.0001). Meanwhile, we should notice that com-
pared to high score group, the expressions of ATG2B and ATG10 in low score group 

Fig. 6  Expression of ATG2B, ATG10 and DAPK1 in different groups. Expression of ATG2B (A), ATG10 (B) and 
DAPK1 (C) in normal, ES cell line and tumor groups in training set; expression of ATG2B (D), ATG10 (E) and 
DAPK1 (F) in normal, ES cell line, low and high risk score groups in training set; expression of ATG2B (G), 
ATG10 (H) and DAPK1 (I) in low and high risk score groups in validation set: x-axis was group, y-axis was the 
expression of specific gene (p significance level: no significance (ns), p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, 
p < 0.001, ****, p < 0.0001)
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were closer to normal group, especially ATG10, the expressions of it were almost the 
same in the two groups (Fig. 6D, E). And compared to other groups, the expressions of 
the 3 genes in high score group were closer to the cell line group (Fig. 6D–F). Besides, 
compared to normal group, DAPK1 was significantly highly expressed in both high and 
low score groups (Fig. 6F). In the validation set, the expressions of ATG2B, ATG10 and 
DAPK1 were found to be significantly highly expressed in high score groups (p < 0.0001) 
(Fig. 6G–I).

Identification and functional analysis of the differentially expressed genes between high 

and low score groups

137 DEGs were screened between high and low score groups (Additional file 2), volcano 
plot was shown in Fig. 7A. GO clustering of the DEGs showed that the top 3 biological 
processes (BP) clustered were regulation of developmental growth, fat cell differentiation 
and amino acid transport, the top 3 cellular components (CC) clustered were presynapse, 
synaptic membrane, neuron projection terminus, the top 3 molecular functions (MF) 
clustered were transcription corepressor activity, syntaxin-1 binding, amino acid trans-
membrane transporter activity (Fig. 7B). The top 5 pathways clustered by KEGG were 
Neuroactive ligand-receptor interaction, Chemical carcinogenesis receptor activation, 
Oxytocin signaling pathway, Calcium signaling pathway, MicroRNAs in cancer (Fig. 7C). 
GSEA showed that the top 4 enriched gene sets: acute myeloid leukemia, alcoholic liver 
disease, cGMP-PKG signaling pathway, olfactory transduction were all down regulated 
in the high score group (Fig. 7D). GO chord plot showed that BLC17A8, POU4F2, SYT4, 
APELA, SLC38A4, NPY1R, GDF10, EZH2, ENPP1, SHTN1, EGR2, SLC38A5, CYP26B1, 
TRPM4, SYT1, DCC, SLC7A5, ADRB1, ZFPM2, CCND1, ARX, ZBTB16, PRAME, RGS2 
were involved in the top 7 GO terms (Fig. 7E). KEGG chord plot showed that QRFPR, 
APELA, NPY1R, EZH2, CAMK1G, PRKCB, PAQR5, NPW, ADRA1D, ADRB1, GSTM5, 
ZFPM2, CCND1, TUBB2B and RGS2 were involved in the top 7 KEGG terms (Fig. 7F). 
PPI network showed that EZH2 and SYNPR were hub genes involved in two independ-
ent processes respectively (Fig. 7G).

Discussion
ES is a malignant tumor with high mortality, especially in patients with metastasis and 
recurrence. Recent development in treatment of ES has significantly improved the long-
term survival in localized ES patients, from 10% in the era before chemotherapy to about 
70% currently (5-year survival rate) [18–20]. However, the survival rates of patients with 
metastasis and recurrence are still unacceptable low [2]. To date, accumulating evidences 
suggest a close relationship between autophagy and ES [21–28]. Here, our finding that 
ATG2B, ATG10 and DAPK1 are potential protective ARGs with prognostic value in ES is 
valuable. It not only can deepen our insight into this area but may also contribute to the 
treatment of ES in future.

In our study, ATG2B, ATG10 and DAPK1 were strictly screened as the final poten-
tial protective ARGs by univariate and multivariate Cox regression, LASSO (Fig. 1A, B), 
KM analysis (Figs. 1C, 2A–C), pathway map analysis (Fig. 2D) and PPI network analy-
sis (Fig.  2E) for the prognostic model of ES. The prediction accuracy and discrimina-
tory capacities were accessed in both training and validation sets by KM analysis, risk 
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Fig. 7  Differential analysis between high and low risk score groups and functional analyses of DEGs. A 
Volcano plot for DEGs between high and low risk score groups: x-axis referred to log2 Fold change of gene 
expression between the two groups, y-axis referred to − log10(adjusted P value) of gene expression between 
the two groups. red dots stood for significantly up regulated genes and blue dots stood for significantly 
down regulated genes in high risk score group, grey dots stood for non differentially expressed genes. B Dot 
plot for GO analysis of DEGs: x-axis referred to gene ratio, y-axis referred to clustered GO process. C Dot plot 
for KEGG analysis of DEGs: x-axis referred to gene ratio, y-axis referred to clustered KEGG process. D GSEA 
analysis for DEGs: x-axis referred ranked samples by enrichment score, y-axis referred to running enrichment 
score (up) and ranked list metric (down). E Chord plot for top 7 clustered GO terms: left side of the chord was 
the top7 clustered GO process, right side of the chord was the top DEGs by fold change. F Chord plot for 
top 7 clustered KEGG pathways: left side of the chord was the top7 clustered KEGG process, right side of the 
chord was the top DEGs by fold change. G PPI network of the DEGs
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score plots, C-index, calibration analysis, time-dependent ROC analysis and DCA. KM 
analysis showed that high risk score group got a better outcome than low score group 
(P < 0.05) (Figs.  3A, 5B). Distribution characteristics of high and low risk score group 
samples also confirmed that high score group tended to have longer survival time 
(Figs. 3B, 5C). Expression heatmap of the hubgenes indicated their high expression in 
high score group (Figs. 3B, 5C). The expression trend of the hubgenes were coincident 
with the risk score in samples. C-index was 0.68 in training set and 0.71 in validation set, 
both indicated high prediction accuracy of the model. The more expression of the hub-
genes, the less points and the higher survival rate a patient got in nomograms (Figs. 4A, 
5A) also supported the potential protective function of the hubgenes in ES. Calibration 
analysis (Figs. 4B–D, 5D–F) and time-dependent ROC analysis (Figs. 4E, 5G) all indi-
cated high prediction accuracy of the model both in training and validation set. How-
ever, we noticed that the prediction accuracy of 1  year in training set was lower than 
that of 3- and 5- year (Figs. 4A, E, 5E). We considered this kind of fluctuation was mainly 
associated with two reasons here. Firstly, sequencing accuracy and sampling error 
including small sample size. We could see that the quality of the data in training set was 
inferior to that in the validation set by density plots. Secondly, differential expression of 
the genes in different stages and subtypes of tumor and their weight of role in the disease 
evolution. It’s true that some biomarkers worked well with long term survival, but with 
poor performance in short term survival prediction. The reliability of the model could 
be enhanced by improving the conditions above. In the end, DCA in training and valida-
tion sets indicated higher net benefits by the model than treat none and treat all strategy 
(Figs. 4F, 5H). In summary, the model established by the 3 potential protective hubgenes 
had high prediction accuracy and good applicability.

Moreover, the expression profiles of the 3 ARGs were explored in different groups in 
training and validation sets. First of all, we compared their expressions in normal tissues, 
ES cell lines and tumor tissues. Comparing to normal group, ATG2B, ATG10, DAPK1 
were all high expressed in tumor and cell lines (Fig.  6A–C). Meanwhile, the expres-
sions in cell lines even higher than that in tumor tissues, which might be mainly due to 
the higher purity of tumor cells in cell lines. Secondly, comparison of their expressions 
between high and low risk score groups showed that they were all highly expressed in 
high score group both in training and validation sets (Fig. 6D-I). The interesting thing 
was that when compared to normal and cell line groups, the expressions in low score 
group tended to be closer to that in normal group, which suggested that in vivo ES cells 
might gain more aggression by inhibiting autophagy. A potential explanation for this 
might be that autophagy could lead to programmed cell death in tumor cells while low 
autophagy might add to the accumulation of malignant mutations [5–8].

In addition, in order to further explore the potential reasons for the difference in prog-
nosis of the two score groups, differential and functional analyses of the two groups 
were performed. GO clustering of DEGs suggested that DEGs were mainly involved in 
membrane and transmembrane transport, which could be activated in autophagy pro-
cess (Fig. 7B, E). Meanwhile, we noticed that Calcium signaling pathway and MicroR-
NAs in cancer were top 5 clustered pathways in KEGG (Fig. 7C, F). It had been reported 
that calcium signaling pathway was mainly involved in the regulations of apoptosis, 
autophagy and cell proliferation in cancers and any impairment to this function might 
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result in low sensitivity to cell death inducers, thereby promoting tumor growth and 
metastasis [29]. While MicroRNAs were frequently considered as post-transcriptional 
regulators of gene expression and many key ARGs were also regulated by MicroRNAs 
[30, 31]. In addition, we also noticed that cGMP-PKG signaling pathway was enriched 
by GSEA (Fig. 7D). cGMP-PKG signaling pathway could inhibit apoptosis by decreasing 
the activity of caspase 3. While in our study, cGMP-PKG signaling pathway was down 
regulated in high score group which meant that the inhibition of apoptosis was released 
in that group and this might be also one of the reasons for the better prognosis in high 
score group. PPI network analysis of DEGs got two hub proteins, which might also con-
tribute to the prognostic difference in the two groups (Fig. 7G). Firstly, SYNPR, an intrin-
sic membrane protein of small synaptic vesicles, SYNPR may be involved in autophagy 
through membrane transport. It’s also involved in the top GO and KEGG processes 
(Fig.  7E, F). Secondly, EZH2 was upstream protein involved in cancer initiation, pro-
gression, metastasis, metabolism, drug resistance and immunity regulation [32]. Over 
expression of EZH2 might associated with the metastasis and poor prognosis in ES, but 
the mechanism was still unclear and it’s not involved in the top GO and KEGG pro-
cesses in our study [33–35].

Above all, our results suggested ATG2B, ATG10 and DAPK1 were potential protective 
ARGs with prognostic value in ES. They might affect the prognosis of ES by autophagy 
and interactions with other genes and processes directly or indirectly.

Firstly, ATG2B, autophagy related 2B, encoded a protein required for autophagy, 
which was involved in autophagosome formation. Mutation of this gene was reported to 
be associated with predisposition to myeloid malignancies (NCBI Reference Sequences 
(RefSeq)) [36, 37]. Besides, there were also many studies indicating that ATG2B was 
involved in many other tumors. Mi Ran Kang et al. proved that ATG2B mutation might 
contribute to cancer development by deregulating the autophagy process in gastric and 
colorectal carcinomas with high microsatellite instability [38]. Jiali Wei et  al. revealed 
that cell proliferation was inhibited in non-small cell lung cancer cells by targeting 
ATG2B to inhibit autophagy [39, 40]. Xuemei Zhang et  al. found that methylation of 
ATG2B CpG island promoter might be associated with the initiation and progression 
of breast carcinoma [41]. Xiaoqing Bi et al. reported that upregulation of ATG2B could 
inhibit cell proliferation and lead to cell apoptosis in cutaneous squamous cell carcinoma 
cells [42]. There were also many reports indicating that ATG2B was associated with drug 
resistance by activating autophagy in multiple tumors [10, 11]. Although ATG2B had not 
been reported in ES, but there had been plenty of reports that autophagy was associ-
ated with the prognosisi of ES [19–26]. In our study, ATG2B was found to be a poten-
tial protective factor in ES, the same as it’s in gastric and colorectal carcinomas, breast 
carcinoma and cutaneous squamous cell carcinoma, but opposite to non-small cell lung 
cancer.

Secondly, ATG10, autophagy related 10, was an E2-like enzyme involved in the ubiq-
uitin-like modification of ATG12-ATG5-ATG16 complex, which was essential for the 
elongation and maturation of autophagosomes. Meanwhile, ATG10 was also found to 
play important roles in several tumors. It’s reported that potentially functional poly-
morphisms in ATG10 were found to be associated with risk of breast cancer and acute 
myeloid leukemia [43, 44]. Hao Shen et  al. declared that ATG10 could inhibit tumor 
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migration and invasion by activating autophagy and apoptosis in papillary thyroid car-
cinomas [45]. Qing-Hua Cao et  al. analyzed 352 patients by bioinformatics methods 
finding that ATG10 was a favorable prognostic factor for the overall survival in gastric 
cancer [46]. Yoon Kyung Jo et al. found that knock down of ATG10 promoted cell migra-
tion and invasion of colorectal cancer cells [47]. Kaipeng Xie et  al. revealed that high 
expression of ATG10 leaded to short survival by facilitated tumor cell proliferation and 
migration in lung cancer. Herein, we found ATG10 was a favorable factor in the progno-
sis of ES. The same effect was also found in papillary thyroid carcinomas, gastric cancer, 
colorectal cancer, while the opposite effect was seen in lung cancer.

Lastly, DAPK1, death associated protein kinase 1, was a positive mediator of gamma-
interferon induced programmed cell death and a candidate for antioncogene (NCBI Ref-
Seq). It’s act as a tumor suppressor in multiple cancers, such as lymphomas [48], invasive 
ductal carcinoma [49], gastrointestinal cancer [50], gastric cancer [51], liver cancer [52], 
etc. It was reported to suppress tumor genesis and progress by promoting autophagy and 
apoptosis and this was in coincidence with the conclusion reached by our study [53, 54].

Although the function of autophagy was complex and often contradictory in can-
cers, but there were many evidences supporting that upregulation of ATG2B, ATG10, 
DAPK1 might contribute to good prognosis by promoting autophagy and apoptosis in 
ES. Conglin Ye et  al. reported that the proliferation, invasion and migration of Ewing 
sarcoma cells were decreased by knocking down Beclin-1 which was required for the 
formation of autophagosomes [23]. Séverine Lorin et al. found that 2-methoxyestradiol 
could treat ES patients by enhancing autophagy and apoptosis through the activation of 
both p53 and JNK pathways [26, 27]. Mojgan Djavaheri-Mergny et al. demonstrated that 
autophagy might amplify apoptosis and stimulation of autophagy might be a potential 
way to bypass NF-kappaB induced drug resistance in ES [28].

Generally, ATG2B, ATG10, DAPK1 were found to be potential protective ARGs with 
prognostic value in ES and established a prognostic model. The model was successfully 
validated in an independent external cohort with excellent prediction accuracy and dis-
criminatory capacities. The potential cause of the different prognoses between high and 
low score groups was that they might affect the apoptosis and malignance of ES cells 
through autophagy and crosstalk with other processes.

In the end, some limitations of this study should be noticed. For one thing, because ES 
is a rare tumor, data with large sample size are not available. For another thing, our con-
clusion is only validated in the existing public datasets and literature.

Conclusions
ATG2B, ATG10 and DAPK1 were autophagy related genes with potential protective 
function in ES. The prognostic model established by them exhibited excellent prediction 
accuracy and discriminatory capacities. They might be used as potential prognostic bio-
markers and therapeutic targets in ES.

Methods
Data collection

The Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​geo/) is an 
international public repository that provides microarray, next-generation sequencing 

https://www.ncbi.nlm.nih.gov/geo/
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and other forms of high-throughput functional genomics data submitted by the 
research community. In this study, we searched GEO website for datasets with RNA 
expression data of ES tissue specimens, corresponding survival data of patients 
and including at least 40 ES samples (March 27 2022). Then, only GSE17679 and 
GSE63155 were qualified. GSE17679 included normalized RNA array data by Affym-
etrix Human Genome U133 Plus 2.0 Array and survival data of 64 samples uploaded 
by university of Helsinki, Finland, on Aug 17, 2009 [55]. GSE63155 include normal-
ized RNA array data by Affymetrix Human Exon 1.0 ST Array [transcript (gene) ver-
sion] and survival data of 46 samples uploaded by university of Michigan, USA, on 
Nov 10, 2014 [56]. Meanwhile, GSE17679 also contained RNA expression data of 11 
in vitro cultured Ewing sarcoma cell lines (GSM439930-GSM439940: Ewing sarcoma 
cell line 6647, IOR-BRZ, IOR-BRZ, IOR-CLB, IOR-NGR, IOR-RCH, LAP35, RDES, 
SKES1, SKNMC, TC71) and 18 normal muscle tissue RNA expression data measured 
by the same method [55]. RNA expression data from GSE17679 and GSE63155 had 
already been normalized by RMA method and quantile method, respectively. Quality 
control was performed by box plots (Additional file  3A-B) and density plots (Addi-
tional file 3C-D). Results showed that the expression data were well normalized and 
comparable in each set with high quality and no outlier. 222 ARGs were downloaded 
from the Human Autophagy Database (http://​www.​autop​hagy.​lu/) (March 27 2022).

Identify ARGs with prognostic significance by univariate and multivariate Cox analyses 

and LASSO Cox regression analysis

Only common ARGs expressed both in GSE17679 and GSE63155 datasets were 
selected for survival analyses in case ARGs identified in training set could not be vali-
dated in validation set. In our study, GSE17679 cohort was set as training set, the 
other validation set. “survival” package was adopted to integrate survival data of 
samples for Cox analysis [57]. Then, univariate Cox regression analysis were used 
to screen genes with prognostic value. Genes with P value < 0.05 in univariate Cox 
regression analysis were further screened by multivariate Cox regression analy-
sis (P value < 0.05). Thereafter, genes filtered by multivariate Cox regression analysis 
were further screened again by the least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis with 10 times cross validation (λ = lambda.1se) [58].

Screen potential protective ARGs by KM analysis and explore their roles in autophagy

Then, KM analysis was used to explore the prognostic value of each retained gene 
by dividing patients into high and low expression groups with median expression of 
the gene. Genes with better prognosis in high expression group in KM analyses (P 
value < 0.05) and meanwhile with P value < 0.01 in univariate Cox regression analy-
sis were selected as final potential protective ARGs for a prognostic model in ES. 
Autophagy pathway map was downloaded from KEGG website (https://​www.​genome.​
jp/​kegg/) and protein protein interact (PPI) network analysis for proteins encoded 
by genes screened by LASSO were also employed to explore their roles in autophagy 
(interaction score ≥ 0.4).

http://www.autophagy.lu/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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Risk score calculation and survival analysis for samples in different groups

Risk scores for samples were calculated by sum up the risk score of each final 
ARG and risk score for a gene was calculated by multiplying its expression 
value by its coefficient value in multivariate Cox regression model (Formula: 
Risk score = n

i=1
Expgenei× coefficientgenei , Exp gene i referred to the expression of gene 

i, coefficient gene i referred to the coefficient value of gene i, n referred to the num-
ber of genes involved in the model). Then, samples were divided into low and high 
risk score group by median of the risk scores for samples. Thereafter, KM analysis 
was used to investigate the prognosis of the two groups. Meanwhile, scatter plots and 
heatmap were used to exhibit the distribution characteristics of samples and hub-
genes in the two groups.

Establish a prognostic model and evaluate it in training set

Final potential protective ARGs were used to build a prognostic model. Nomogram 
was used to visualize the Cox proportional hazards model. Then, the prediction accu-
racy and discriminatory capacities were assessed by C-index, calibration analysis, 
time-dependent ROC analysis and DCA in GSE17679.

Validate the model in validation set

The prediction accuracy and discriminatory capacities of the model were also vali-
dated in GSE63155 by KM analysis, risk score plots, C-index, calibration analysis, 
time-dependent ROC analysis and DCA.

Differential expression analysis of the final ARGs

Differential expression analysis of the final genes was investigated in GSE17679 
between normal tissue, ES cell line, low and high risk score groups by Wilcoxon 
method after removing batch effect by ComBat function of “sva” package and P 
value < 0.05 was considered statistically significant. Meanwhile, differential expression 
analysis was also performed in GSE63155 between low and high risk score groups but 
without removing batch effect (no batch effect in GSE63155).

Identification and functional analysis of the differentially expressed genes between high 

and low score groups

“limma” package was used to identify the differentially expressed genes (DEGs) 
between the high and low risk score groups, Benjamini and Hochberg method was 
used to adjust the P value (adjusted P value < 0.05, |log2FC| > 1) [59]. Then, GO and 
KEGG clustering, gene set enrichment analysis (GSEA), PPI network analysis were 
preformed to explore their functional enrichment and interactions (interaction 
score ≥ 0.4).

Statistical analysis

In this study, R software v3.63 was used to process data and generate charts. PPI net-
work analyses were explored on STRING website (interaction score ≥ 0.4) (https://​
cn.​string-​db.​org/) and visualized by Cytoscape software v3.7.1. Flexible statistical 

https://cn.string-db.org/
https://cn.string-db.org/
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methods were adopted for the statistical analysis. The work flow of this study was 
shown in Additional file 4.
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