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Introduction

Membrane transporters serve to move chemicals in and out of the cells according to 

metabolic needs or the presence of toxic compounds. These processes are mediated by 

facilitated diffusion or active transport through the lipid bilayer that is the cell membrane. 

There exist two main categories of membrane transporters, the more passive solute carrier 

transporters (SLCs) and the ATP binding cassette transporters (ABCs). SLCs allow for 

passage of ions, sugars, lipids, amino acids and other compounds down a gradient, 

contributing to a cell’s passive permeability for such compounds. ABCs feature a highly 

conserved nucleotide binding domain (NBD) which contain peptide sequences responsible 

for ATP hydrolysis such as the Walker A and B motifs. ABCs utilize the energy stored in 

ATP to transport chemicals against their concentration and/or electrical gradient and 

consequently alter expected biological conditions. Transporters are now recognized as 

crucial barriers (e.g., efflux transporters) as well as possible delivery pathways to consider 

when designing new pharmaceutical agents as many traditional therapeutics are being 

recognized as transporter substrates [1–3]. Drug resistant tumors and the blood-brain barrier 

(BBB) for example have been shown to actively express efflux transporters preventing 

therapeutic agents from reaching clinically relevant intracellular concentrations and/or 

physiological targets in the brain [4–7].

Consequently, in 2010 the International Transporter Consortium put forth the ‘white paper’ 

detailing the structure, location, and known substrates of various pharmacologically relevant 

transporters. This prompted action from American and European regulatory agencies to 

release guidelines on transporter-drug interaction studies [3]. P-Glycoprotein (MDR1), 

Breast Cancer Resistance Protein (BCRP), Organic Anion Transporter peptide (OATP), 

Organic Anion Transporter (OAT), Organic Cation Transporter (OCT), and Multi Drug 

Resistance Protein (MRP) are mentioned directly in the white paper and have been a focus 

of the ITC to be included in the in vitro to in vivo extrapolation (IVIVE) which refers to the 

qualitative or quantitative transposition of in vitro experimental results to predicts a 

physiological and/or pathological phenomena in vivo. P-glycoproteins (Pgp) and the 
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Cytochrome P450 enzyme CYP3A analogs share a significant number of substrates [8] and 

are both found in the intestines and liver [9–11]. Together they compose a first pass 

metabolism barrier for therapeutic agents taken orally [12,13]. Because Pgp effluxes 

compounds from the intestinal wall back into the lumen of the intestines, researchers may 

mistake increased mean residence time (MRT) for increased absorption when performing 

PK/PD studies [14]. Some of these CYP analogs such as CYP3A4, CYP2C9, CYP2C19, 

CYP2A6 and CYP2E1 are also expressed at the BBB endothelial level of the BBB under 

pathological conditions (e.g., drug resistant epilepsy). In some cases, the expression of a 

CYP enzyme (e.g., CYP3A CYP2C19 and CYP2C9) is regulated by the activation of the 

xenobiotic receptor pregnane X receptor (PXR) which also controls the expression of Pgp 

and other drug efflux systems [15,16]. With regard to the drug efflux transporters at the BBB 

level, multidrug resistance (MDR) is a major obstacle to treating patients with cancer and is 

often the result of overexpression of a 170- to 180-kDa plasma membrane glycoprotein 

known as P-glycoprotein (Pgp) [17,18] and multidrug resistance-related proteins (MRP1, 

190 kDa) [19,20]. Human Pgp is encoded by MDR1 and rodent Pgp by Mdr1a and Mdr1b 

[21–24]. Pgp and MRPs belong to the superfamily of ATP-binding cassette transporters. 

Unlike other selective (classical) transport proteins, MDR proteins recognize a wide range of 

substrates. This wide substrate specificity explains the cross-resistance to several chemically 

unrelated compounds, the characteristic feature found in the multi-drug resistance 

phenotype. In addition to their overlapping substrates specificity, each transporter can handle 

unique compounds. Pgp-MDR1 is a transporter for large amphipathic compounds either 

uncharged or slightly charged while the MRP family is mostly transporting hydrophobic 

anionic conjugates with glucuronide, sulfate or glutathione and also extrudes hydrophobic 

uncharged drugs [19]. Experiments designed to define the structure of Pgp suggest that there 

is no simple single drug-binding site or pore in Pgp. Amino acid substitutions in, or near, 

most of the transmembrane segments affect substrate specificity efficiency or transport. In 

drug refractory patients a synergistic effect between MDRs and CYP enzymes has been 

recently observed which antagonizes the passage of drugs targeting the brain (e.g., 

antiepileptics, tumor suppressants, etc.) through a concerted set of mechanisms [15]. The 

efflux transporters extrude the drug from the brain across the BBB back into the blood 

circulation while the CYP enzyme metabolize the drug substrate into (at large) inactive 

derivate(s), thus rendering the drug bioavailability ineffective from a therapeutic standpoint. 

Other than MDR, altered activity of efflux transporters have been linked to a number of 

neurological disorders including Alzheimer’s disease [25], Parkinson’s diseases [26] and 

Creutzfeldt-Jakob disease [27].
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