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Summary
Background As a rare subtype of lung adenocarcinoma, the diagnosis of pulmonary enteric adenocarcinoma
(PEAC) remains challenging due to overlapping morphologic spectrum with lung metastatic colorectal cancer
(lmCRC). However, the molecular features of PEAC as a separate lung cancer entity are poorly understood.

Methods We performed whole-exome sequencing and targeted bisulfite sequencing of 32 PEAC and 30 lmCRC to
improve differential molecular characterization of the two diseases. We used machine learning methods to select
key markers and developed a diagnostic classifier. In addition, we validated the classifier in the internal test cohort
and an independently recruited external validation cohort with 17 PEAC and 7 lmCRC.

Findings Our results showed that EGFR was the key driver mutation in PEAC but at a lower prevalence compared to
typical lung adenocarcinomas, whereas ERBB2 and KRAS were more frequently observed in PEAC. By contrast, we
observed significant enrichment of KRAS and APC mutations in lmCRC compared with PEAC. At the chromosome
arm level, copy number variations in 13q, 14q, and 18p were the major chromosomal differences observed between
PEAC and lmCRC. Furthermore, by comparing differentially methylated regions (DMRs), we established a neat
DNA methylation-based classifier consisting of eight DMRs. This classifier correctly classified all samples in the
training cohort and 95% of the samples in the internal test cohort. An external validation cohort of 24 cases recruited
from multiple centers in China also reliably agreed with pathological diagnosis.

Interpretation These results provide solid evidence of PEAC-specific genomic characteristics and demonstrate the
potential utility of DNA methylation markers for auxiliary diagnosis of PEAC and lmCRC.
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Research in context

Evidence before this study

Pulmonary enteric adenocarcinoma (PEAC) is a rare sub-
type of lung cancer that presents intestinal morphology,
thereby challenging the pathological diagnosis from
lung metastatic colorectal cancer (lmCRC). Previous
studies comparing PEAC and lmCRC mainly focused on
selected drivers or hotspot mutations and were not con-
clusive for diagnostic differentiation. To date, no deep
and comprehensive analysis of broad genomic areas
has been performed to characterize PEAC. An important
earlier study aiming to distinguish the two diseases
used array-based DNA methylation data from public
datasets of primary lung and colorectal cancers. In this
study, we described PEAC-specific genomic and epige-
nomic features based on whole-exome sequencing and
targeted bisulfite sequencing of PEAC samples to better
understand this rare lung cancer entity.

Added value of this study

Our study is by far the largest cohort study to character-
ize PEAC. We present an in-depth description and statis-
tical analyses of somatic mutations, copy number
alterations, and DNA methylation profiles of PEAC and
lmCRC and demonstrated subtype-specific features in
comparison with population-matched public lung ade-
nocarcinoma data. Furthermore, we used machine
learning algorithms and carefully screened features
from genomic alterations and differentially methylated
regions (DMRs). Our resulting classifier is a neat eight
DMR-based model that achieved above 95% accuracy
in the training and internal test cohorts. The perfor-
mance of this classifier was confirmed through an inde-
pendently recruited multicenter validation cohort and
public datasets.

Implications of all the available evidence

In 2021, the World Health Organization updated the
diagnostic criteria of PEAC based on the expression of
intestinal IHC markers, which greatly improved the clar-
ity of PEAC’s diagnosis. However, PEACs with positive
intestinal markers but without TTF-1 or CK-7 expression
can only be diagnosed by clinical exclusion of lmCRC.
Therefore, an objective binary classifier is necessary to
clarify ambiguous cases from pathology assessments. In
addition to the rigorous characterization of PEAC-spe-
cific molecular features, our methylation-based classifier
has demonstrated great potential in clinical utility to
facilitate clinical decisions.
Introduction
Pulmonary enteric adenocarcinoma (PEAC) is a rare
subtype of primary invasive lung adenocarcinoma that
occurs in approximately 0.6% of pulmonary adenocarci-
nomas.1 PEAC was first described in 1991 by Tsao and
Fraser2 and first recommended as an official adenocarci-
noma classification by the International Association for
the Study of Lung Cancer/American Thoracic Society/
European Respiratory Society (IASLC/ATS/ERS) in
2011. Its diagnostic criteria were subsequently proposed
by the World Health Organization (WHO) in 2015.3,4

PEAC has been defined as a subtype of primary pulmo-
nary adenocarcinoma with a predominant (>50%)
intestinal epithelial-like component, showing either
enteric differentiation immunohistochemical (IHC)
markers or enteric morphology.3 The 2021 WHO Classi-
fication has been updated to clearly define the IHC crite-
ria for diagnosing PEAC.5 The essential diagnostic
criteria include the expression of at least one intestinal
marker (CDX-2, cytokeratin 20 (CK20), HNF4a or
MUC2), more than 50% of tumor histology resembling
enteric morphology, and clinical exclusion of colorectal
carcinoma. The desirable criteria include coexpression
of thyroid transcription factor-1 (TTF-1) or CK7. How-
ever, due to the presentation of enteric features, the dif-
ferential diagnosis of PEAC and lung metastatic
colorectal cancer (lmCRC) is still challenging in pathol-
ogy practice. An accurate pathological diagnosis is cru-
cial for personalized primary lesion-specific therapy,
prognostic evaluation, and prolonged survival. Patients
with PEAC, especially those without metastasis, have an
opportunity to undergo curative therapy, including radi-
cal surgery. In contrast, lmCRC is an advanced-stage
disease mainly treated with palliative therapy.

Currently, the differential diagnosis of PEAC and
lmCRC mainly relies on the clinical history, tumor site
and pathological examination. For example, key IHC
www.thelancet.com Vol 82 Month , 2022
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markers of typical lung adenocarcinoma (tLUAD), i.e.,
TTF-1 and CK7, could be helpful for distinguishing
PEAC from lmCRC.4,6 However, expression of these
markers is frequently lost in PEAC but positive in a
small proportion of colorectal cancers.7,8 Some intesti-
nal differentiation markers, such as CDX-2, CK20,
MUC2 and HNF4a, could also facilitate clinical differ-
ential diagnosis; however, they are inconsistently
expressed across studies concerning PEAC,7,9�11 and
can both be positive in PEAC and lmCRC. To increase
the accuracy of IHC-based diagnosis, many additional
markers have been evaluated, including CDH17,
SATB2, b-Catenin and Villin, but the sensitivity and
specificity are still under investigation.12,13 Therefore,
there is an urgent need to identify reliable biomarkers
for the accurate diagnosis of PEAC and lmCRC.

Current investigations of the genomic features of
PEAC mainly focused on key driver genes, such as
EGFR and KRAS, through hotspot or targeted next-gen-
eration sequencing,12,14,15 which provided limited clues
for differential diagnosis. The comprehensive genomic
profiles of PEAC are still unknown. In addition to
altered genomic events, aberrant epigenetic events,
such as DNA methylation in promoter regions, are fre-
quently observed in cancer cells.16 DNA methylation is
relatively stable and displays tissue-specific patterns,
rendering it useful for identifying tumors of unknown
origin or pathologically similar subtypes.15,17�20

In this study, we explored the comprehensive geno-
mic and epigenomic profiles of PEAC by whole-exome
sequencing (WES) and targeted bisulfite sequencing,
and identified characteristic molecular events in PEAC.
Based on DNA methylation profiles of PEAC and
lmCRC, we also constructed a classifier to distinguish
the two diseases, which was well confirmed in a multi-
center external validation cohort.

Methods

Clinical cohorts
For molecular profiling and model establishment, 32
patients with PEAC and 30 patients with lmCRC from
the Cancer Hospital, Chinese Academy of Medical Scien-
ces (Beijing, China) were included and separated into
training and test cohorts based on their time of diagnosis.
Specifically, formalin-fixed paraffin-embedded (FFPE)
tumor samples of 22 PEAC and 20 lmCRC patients diag-
nosed between March 2011 and October 2017 were col-
lected as the training cohort, and 10 PEAC and 10
lmCRC patients diagnosed between November 2017 and
February 2019 were collected as the test cohort. Matched
normal tissue samples were also obtained. For the exter-
nal multicenter validation, we collected 17 PEAC and 7
lmCRC samples, including samples from 8 PEAC and 6
lmCRC patients prospectively admitted in our center and
our affiliated Shenzhen center (Cancer Hospital Chinese
Academy of Medical Sciences, Shenzhen Center)
www.thelancet.com Vol 82 Month , 2022
between March 2019 and May 2020, and archived FFPE
samples of 9 PEAC and 1 lmCRC from the Renmin Hos-
pital of Wuhan University (Table 1). The samples in all
three clinical cohorts were diagnosed based on surgical
specimens. The IHC staining of the PEAC and lmCRC
with sufficient specimens was conducted according to
manufacturer’s instructions, using IHC antibodies
including TTF-1 (RRID: AB_2888646), CK7 (RRID:
AB_1658454), CK20 (RRID: AB_1658454), CDX-2
(RRID: AB_2819184), MUC2 (RRID: AB_10578542), and
HNF4a (RRID: AB_10818555). Each sample was histo-
logically reassessed by two experienced pathologists
according to the classification criteria of the 2021 WHO
guidelines. The researchers were blinded to the clinical
diagnosis when analyzing the external validation cohort.
All PEAC patients underwent either endoscopic evalua-
tion or PET-CT, or endoscopic evaluation plus abdominal
CT or MRI for the clinical exclusion of colorectal cancer.
The clinical data of these patients, including sex, age at
diagnosis, smoking status, and tumor staging (American
Joint Committee on Cancer (AJCC) 7th edition) were
obtained from the medical records. The study was
approved by the Ethics Committees of the Cancer Hospi-
tal Chinese Academy of Medical Sciences, the Renmin
Hospital of Wuhan University and Cancer Hospital Chi-
nese Academy of Medical Sciences, Shenzhen Center
(ethical approval number NCC-008634), and written
consent forms were obtained from all patients. For com-
parison with tLUAD, we obtained whole-exome sequenc-
ing data of an East Asian tLUAD cohort from the
cBioPortal website (https://www.cbioportal.org/
datasets).21

Library preparation and sequencing
Genomic DNA was extracted from FFPE samples using
the QIAamp DNA FFPE Tissue Kit (Qiagen) and frag-
mented by an M220 Focused-ultrasonicator (Covaris)
into approximately 250 bp fragments. A whole-genome
library was prepared using the KAPA Hyper Prep Kit
(KAPA Biosystems). Whole exome capture was per-
formed using the SureSelect Human All Exon V6 (Agi-
lent Technologies) according to manufacturer’s protocol.
Captured libraries were amplified with Illumina p5 (50
AAT GAT ACG GCG ACC ACC GA 30) and p7 (50 CAA
GCA GAA GAC GGC ATA CGA GAT 30) primers in
KAPA HiFi HotStart ReadyMix (KAPA Biosystems), and
purified using Agencourt AMPure XP beads. The
enriched libraries were quantified by qPCR using the
KAPA Library Quantification Kit (KAPA Biosystems) and
sequenced using the Illumina HiSeq 4000 platform as
paired 125 bp reads. The mean coverage of tumor and
normal samples was 104.6X and 57.3X, respectively.
Mutation calling
Trimmomatic was used to trim adaptors with a sliding
window quality control to remove low -quality reads
3
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Feature Training cohort Test cohort Validation cohort Total

PEAC lmCRC PEAC lmCRC PEAC lmCRC PEAC (N=49) lmCRC (N=37)

Sex— n/N (%)

Male 15/22 (68.2) 12/20 (60.0) 5/10 (50.0) 7/10 (70.0) 12/17 (70.6) 5/7 (71.4) 32/49 (65.3) 24/37 (64.9)

Female 7/22 (31.8) 8/20 (40.0) 5/10 (50.0) 3/10 (30.0) 5/17 (29.4) 2/7 (28.6) 17/49 (34.7) 13/37 (35.1)

Age at diagnosis — yr

Median 58.5 58 59 66 65 63 60 61

Range 25-82 39-77 30-70 42-76 48-83 55-72 25-83 39-77

Smoker— n/N (%)a

Yes 14/22 (63.6) 7/20 (35.0) 4/10 (40.0) 2/10 (20.0) 10/15 (66.7) 3/7 (42.9) 28/47 (59.6) 12/37 (32.4)

No 8/22 (36.4) 13/20 (65.0) 6/10 (60.0) 8/10 (80.0) 5/15 (33.3) 4/7 (57.1) 19/47 (40.4) 25/37 (67.6)

Tumor staginga,b

I 9/22 (40.9) 0/20 (0) 5/10 (50.0) 0/10 (0) 4/15 (26.7) 0/7 (0) 18/47 (38.3) 0/37 (0)

II 3/22 (13.6) 0/20 (0) 4/10 (40.0) 0/10 (0) 4/15 (26.7) 0/7 (0) 11/47 (23.4) 0/37 (0)

III 10/22 (45.5) 0/20 (0) 0/10 (0) 0/10 (0) 6/15 (40.0) 0/7 (0) 16/47 (34.0) 0/37 (0)

IV 0/22 (0) 20/20 (100) 1/10 (10.0) 10/10 (100) 1/15 (6.7) 7/7 (100) 2/47 (4.3) 37/37 (100)

TTF-1— n/N (%)a

Positive 14/22 (63.6) 0/18 (0) 7/10 (70.0) 2/9 (22.2) 7/16 (43.8) 0/6 (0) 28/48 (58.3) 2/33 (6.1)

Negative 8/22 (36.4) 18/18 (100) 3/10 (30.0) 7/9 (77.8) 9/16 (56.3) 6/6 (100)

CK7— n/N (%)a

Positive 20/21 (95.2) 0/15 (0) 9/9 (100) 0/9 (0) 16/16 (100) 0/7 (0) 45/46 (97.8) 0/31 (0)

Negative 1/21 (4.8) 15/15 (100) 0/9 (0) 9/9 (100) 0/16 (0) 7/7 (100)

CK20— n/N (%)a

Positive 16/22 (72.7) 18/18 (100) 7/10 (70.0) 9/9 (100) 9/15 (60.0) 7/7 (100) 32/47 (68.1) 34/34 (100)

Negative 6/22 (27.3) 0/18 (0) 3/10 (30.0) 0/9 (0) 6/15 (40.0) 0/7 (0)

CDX-2— n/N (%)a

Positive 18/22 (81.8) 18/18 (100) 7/10 (70.0) 9/9 (100) 11/16 (68.8) 7/7 (100) 36/48 (75.0) 34/34 (100)

Negative 4/22 (18.2) 0/18 (0) 3/10 (30.0) 0/9 (0) 5/16 (31.3) 0/7 (0)

MUC2— n/N (%)a

Positive 7/12 (58.3) 14/16 (87.5) 6/6 (100) 8/8 (100) 3/11 (27.3) 7/7 (100) 16/29 (55.2) 29/31 (93.5)

Negative 5/12 (41.7) 2/16 (12.5) 0/6 (0) 0/8 (0) 8/11 (72.7) 0/7 (0)

HNF4a— n/N (%)a

Positive 20/20 (100) 16/16 (100) 7/7 (100) 10/10 (100) 6/6 (100) 6/6 (100) 33/33(100) 32/32 (100)

Negative 0/20 (0) 0/16 (0) 0/7 (0) 0/10 (0) 0/6 (0) 0/6 (0)

Table 1: Baseline characteristics of PEAC and lmCRC patients in the training, test and multicenter validation cohorts.
a Some patients’ information was unavailable due to unattained medical records or insufficient quantity of samples.
b American Joint Committee on Cancer (AJCC) 7th edition.
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(quality reading below 20) and N bases from the FASTQ
files. Clean paired-end reads were then aligned to the
reference human genome (build hs37d5) using the Bur-
rows-Wheeler Aligner (BWA), and PCR deduplication
was performed using Picard. GATK3 was used to per-
form indel local realignment and base quality-score
recalibration. The matching of tumor and normal sam-
ple pairs was confirmed for the same single nucleotide
polymorphism (SNP) fingerprint using VCF2LR (Gene-
Talk). Subsequently, samples with a mean depth <30X
after removing deduplicate reads were removed. Cross-
sample contamination was estimated using ContEst
(Broad Institute) by evaluating the likelihood of detect-
ing alternate alleles of SNPs reported in the 1000G
database. Somatic SNVs and insertions/deletions
(INDELs) were called using VarDict (Ver 1.5.4). The
SNVs and INDELs of the protein-coding genes were
further filtered using the following criteria: i) minimum
�4 variant supporting reads and �2% variant allele fre-
quency (VAF) supporting the variant; ii) removed if
present in >1% population frequency in the 1000G or
ExAC database; and iii) filtered through an internally
collected list of recurrent sequencing errors (�3 variant
reads and �20% VAF in at least 30 of »2000 normal
samples) on the same sequencing platform. The final
mutations were annotated using vcf2maf. The tumor
mutational burden (TMB) was estimated from the total
number of missense mutations in the 32Mb human
genome coding region. For the mutational signature
analysis, both synonymous and nonsynonymous single
base substitutions (SBSs) were extracted and mapped to
the 72 mutational signatures from the Catalog of
Somatic Mutation in Cancer (COSMIC) database with
the R package sigminer (v1.2.1).22,23 The signatures
www.thelancet.com Vol 82 Month , 2022



Location (GRCh37/hg19) DMR length CpG
Island/Shore/Shelf

Methylation Status Promoter Genes body
(Genetic element)

chr6:10555801-10556300 500 - Hyper GCNT2 GCNT2(UTR)

GCNT2(exon)

chr17:46707701-46707900 200 Shelf Hyper - HOXB7(transcript)

HOXB-AS4 (transcript)

chr17:63554501-63554600 100 Shore Hyper - AC004805.1(UTR)

AC004805.1(exon)

AXIN2(CDS)

AXIN2(exon)

chr17:46697501-46697700 200 Shore Hyper - HOXB7(transcript)

chr7:27178801-27179600 800 Shore Hyper - AC004080.6 (transcript)

HOXA3(transcript)

HOXA-AS3 (transcript)

chr21:40195001-40195200 200 Shore Hyper - ETS2(UTR)

ETS2(exon)

chr2:10445001-10445100 100 Shore Hyper - HPCAL1(transcript)

chr19:30162701-30162800 100 Shore Hypo - PLEKHF1 (transcript)

Table 2: Chromosomal locations, reference genes and genetic elements corresponding to the eight DMRs, and the methylation status of
PEAC relative to lmCRC of each DMR.
Hypo, hypomethylated; Hyper, hypermethylated; DMR, differentially methylated region.
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were grouped into 10 categories according to their pro-
posed aetiologies.
Identification of copy number alterations
Copy number analysis of the WES data was performed
using FACETS (Ver 0.5.13). Copy number alteration
(CNA) events for amplification or deletion were
assigned based on the sample-ploidy adjusted copy
number calculated by the FACETS algorithm as previ-
ously described.24 In brief, chromosome arm-level CNA
gain was identified if the segments of gain accounted
for more than 60% of the total segments of the corre-
sponding chromosome arm. Arm-level CNA loss was
identified if the segments of loss accounted for more
than 60% of the total segments of the given chromo-
some. For focal CNA, segments contributing to deep
amplification and deep deletion events were considered
for analysis. Fisher’s exact test was used to compare
arm-level CNA differences with FDR adjustment of the
p values. Significantly amplified or deleted focal CNA
regions in each cancer were identified using the
Genome Identification of Significant Targets in Cancer
(GISTIC, v.2.0) algorithm with slightly relaxed parame-
ters considering our sample size as follows: q-
value<0.25, log2 ratio=0.2, broad = 1, brlen = 0.6, and
genegistic = 1.
Bisulfite treatment and targeted bisulfite sequencing
The extracted genomic DNA was fragmented as previ-
ously described. After end repair and A-tailing, adapters
www.thelancet.com Vol 82 Month , 2022
with methylated cytosines were ligated onto each DNA
fragment. Bisulfite treatment of unmethylated DNA
was then performed using the EZ DNA Methylation-
Lightning Kit (Zymo Research). A bisulfite-converted
DNA library was constructed using the Accel-NGS
Methyl-Seq DNA Library Kit for Illumina platforms
(Swift Biosciences) and hybridized with the SeqCap Epi
CpGiant probe pool from the SeqCap Epi CpGiant
Enrichment Kit (ROCHE). Noncomplementary library
fragments were washed away, leaving a recovered
library of interest targeting over 5.5 million CpGs.25 The
post-capture library was amplified using LM-PCR oli-
gos, and the enriched libraries were sequenced using
the Illumina HiSeq 4000 platform with a mean effec-
tive coverage of approximately 38.9X.
DNA methylation marker prescreening
Differentially methylated regions (DMRs) were ana-
lyzed using the methylKit package in R (v1.2.0),26 the
CpG clusters were initially divided into 100 bp windows
with a sliding step of 100 bp based on in-house assay
validation. The methylation level of each DMR was
determined by dividing the total methylated cytosines
by the total number of CpGs within each window. A rel-
atively stringent cutoff of a minimum 0.2 methylation
difference was used for DMR calling with q-value-based
false discovery rate (FDR) at a 0.05 significance level
controlled by the Sliding Linear Model (SLIM). DMRs
with low sequencing depth and low-quality reads were
filtered. The promoter region was defined as 1.5 kb
upstream and 500 kb downstream of the transcription
5
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start site (TSS) and the genetic elements were annotated
according to the GENCODE gene annotation file (gen-
code.v29lift37.annotation.gtf). The DMRs were pre-
screened by comparing PEAC with lmCRC and with
normal lung tissue in the training cohort. Contiguous
DMRs from the prescreened DMRs were subsequently
joined as a single DMR, resulting in 204 DMRs of
100 bp to 800 bp long as candidate markers for feature
selection.
Establishment and validation of the diagnostic
classifier
Starting with 711 genes mutated in either cancer type, 77
arm-level CNA events or 204 characteristic DMRs in the
training cohort for each feature category, we first
applied random forest (RF) algorithm-based recursive
feature elimination with ten-fold cross validation to
select the best sizes of variable subsets. The overall rank-
ing of the variables was calculated by the summed
importance rank from 200 repeats. This method sug-
gested 11 DMRs, 37 CNAs or one genetic mutation
(APC mutation), respectively as best subsets. The sec-
ond method we employed was the Least Absolute
Shrinkage and Selection Operator (LASSO). One stan-
dard error of minimum lambda from a 10-fold cross-val-
idation was used to minimize the loss of the mean
standard error and provide the most stringent feature
selection (for DMR and mutation variables). Alterna-
tively, minimum lambda was chosen for tuning the
CNA features, as using the more parsimonious lambda
would leave us with zero variable. Eight DMRs, 10
CNAs or APC mutation were kept for each category of
features in this method.

Overlapping features obtained from the two meth-
ods, resulting in the APC mutation alone, 10 CNAs or 8
DMRs from each feature category, were then used for
the development of mutation-based, CNA-based, or
DMR-based binary classification models, respectively,
by random forest. To further verify the optimal DMR
subset, we also trained a support vector machine (SVM)
model with linear kernel setting in the R package
e1071,27 and an XGBoost model with binary logistic
objective in the R package XGBoost28 as methylation
classifiers. For XGBoost, a prediction probability
between zero (PEAC) and one (lmCRC) was calculated
for each sample, and the final classification was deter-
mined by its closeness to 0 or 1, i.e., using 0.5 as the cut-
off. The performance of the classifiers was evaluated by
their sensitivity, specificity and overall accuracy.

For cross-platform evaluation of the selected DMR
features, 503 tLUAD samples and 453 CRC samples pro-
filed using the Illumina Infinium HumanMethyla-
tion450 BeadChip array were accessed through The
Cancer Genome Atlas (TCGA) database. Additionally,
14 PEAC and 4 lmCRC samples profiled using the Illu-
mina Infinium MethylationEPIC BeadChip (850K)
array were obtained from the Gene Expression Omni-
bus (GEO) repository (GSE116699).15 The methylation
levels of the 204 prescreened DMRs in these public
datasets were estimated by averaging methylation of
CpG that fell within each DMR.
Statistical analysis
All statistical analyses and data visualization were per-
formed using R (version 3.6.3), including the random-
Forest,29 e1071,27 XGBoost,28 caret,30 maftools,31 gplots
(heatmap.2)32 and ggplot233 packages. Sample cluster-
ing on heatmaps was measured using Euclidean distan-
ces. Fisher’s exact test was used to evaluate differences
in mutations or CNAs between the PEAC and lmCRC
cohorts. The Wilcoxon rank-sum test was used to assess
the statistical significance of each DMR. Two-tailed P
values <0.05 were considered indicative of statistical
significance.
Role of funding sources
The funders only provided funding, and had no role in
the study design, data collection, data analysis, interpre-
tation, and writing of the report.
Results

Clinicopathological features of the patients
In this study, we retrospectively collected archived FFPE
samples of 32 PEAC and 30 lmCRC patients from the
Cancer Hospital, Chinese Academy of Medical Sciences
(Beijing, China) for molecular biomarker discovery. The
diagnosis of all cases was confirmed based on the 2021
WHO criteria to ensure accurate classifier establish-
ment. We also collected a multicenter external cohort of
17 PEAC and 7 lmCRC patients for classifier validation.
Figure 1 illustrates the design of this study.

Our three cohorts had similar clinical characteristics.
Between the two cancer types, there were significantly
more smokers among the PEAC patients than among
lmCRC (p=0.016 by Fisher’s exact test). Other clinical
factors, including age and sex, were equally distributed
(Table 1). Although TTF-1 is a primary IHC marker of
lung cancers, two lmCRC patients (2/33, 6.1%) dis-
played weak TTF-1 staining. However, these two
patients had confirmed colorectal tumors and all
lmCRC patients were negative for CK7. Of the intestinal
IHC markers, median to strong staining of CK20 (34/
34, 100%), CDX-2 (34/34, 100%), and HNF4a (32/32,
100%) was observed in all patients, and weak to median
staining of MUC2 was observed in 29/31 patients
(93.5%). Conversely, the expression of these IHC
markers varied among PEAC samples, indicating the
clinical difficulty of its diagnosis. For PEAC, TTF-1 was
positive in 28/48 (58.3%) patients and CK7 was positive
in 45/46 (97.8%) patients, whereas positive staining of
www.thelancet.com Vol 82 Month , 2022



Figure 1. Graphical summary of the study design and data analyses. FFPE tumor samples from 22 patients with PEAC and 20
patients with lmCRC were obtained for pathological confirmation. Whole-exome sequencing and targeted bisulfite sequencing data
were performed to compare and screen genetic mutation, CNA, and DNA methylation markers. One PEAC sample and one lmCRC
sample in the training cohort failed the quality control for targeted bisulfite sequencing possibly due to insufficient sample input
and were removed from subsequent analyses. Random forest (RF) and Least Absolute Shrinkage and Selection Operator (LASSO)
were applied to select important markers and construct the diagnostic classifiers. These classifiers were tested in an independent
test cohort of 10 PEAC patients and 10 lmCRC patients, and validated in an independent multicenter external cohort for diagnostic
prediction. Pathology confirmation is illustrated with pictures of positive controls of each IHC marker. PEAC, pulmonary enteric ade-
nocarcinoma; lmCRC, lung metastatic colorectal cancer; WES, whole exome sequencing; BS, bisulfite sequencing; LASSO, least abso-
lute shrinkage and selection operator. QC, quality control.

Articles
CK20, CDX-2, MUC2, and HNF4a was observed in 32/
47 (68.1%), 36/48 (75%), 16/29 (55.2%), and 33/33
(100%) patients, respectively, albeit the overall staining
of these intestinal markers in PEAC was weaker than
that in lmCRC (Figure 2, Table 1, and Table S1).
www.thelancet.com Vol 82 Month , 2022
Somatic DNA alterations
To explore molecular biomarkers to differentiate the two
diseases, we first performed WES using DNA extracted
from the tumor and matched normal tissue samples of
each patient. In PEAC, the frequently mutated cancer
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Figure 2. Genomic and clinical features of PEAC and lmCRC patients. (a) Each patient is presented in a single column organized
by their clinical diagnosis and the corresponding cohort in our study. The occurrence of the selected genes is presented with the
percentage of the variation frequencies in either cancer type. For mutations, cancer-related genes with more than 10% mutation fre-
quency in either the PEAC or lmCRC cohort are shown. Immunostaining of key clinical diagnostic biomarkers, including TTF-1, CK7,
CK20, CDX-2, MUC2 and HNF4a is presented based on the staining intensity (negative to +++). Other clinical categories include
tumor stage, age, sex, and smoking history. (b) Frequency of chromosome arm-level copy number alterations. Darker colors repre-
sent events in PEAC (red, amplification; blue, deletion) and lighter colors are used to represent lmCRC. Arm-level alterations with
adjusted p values <0.1 by Fisher’s exact test are marked with orange dots. PEAC, pulmonary enteric adenocarcinoma; lmCRC, lung
metastatic colorectal cancer.
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genes included TP53 (62%), KRAS (19%), EGFR (16%),
ERBB2 (12%) and STK11 (12%), whereas lmCRC showed
a high prevalence of TP53 (67%), KRAS (63%), APC
(60%) and SMAD4 (20%) (Figure 2). Of these, we
found significant enrichment of APC (p<0.001 by
Fisher’s exact test), KRAS (p<0.001 by Fisher’s
exact test) and SMAD4 (p=0.01 by Fisher’s exact
test) mutations in lmCRC (Figure S2a). As expected,
www.thelancet.com Vol 82 Month , 2022
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EGFR-sensitive mutations (exon 19 deletion and exon 21
L858R) were exclusively found in PEAC (16%), but at a
frequency significantly lower than that in tLUAD
(p<0.001 by Fisher’s exact test) (Figure S2b). Notably,
one of the EGFR-mutant patients carried concurrent
L858R/T790M at the time of diagnosis. We also found
a slightly higher frequency of ERBB2 mutations in
PEAC (12%) than in tLUAD (4%) (p=0.11 by Fisher’s
exact test). These included two patients with ERBB2
exon 20 insertions, and two with ERBB2 missense
mutations at V659E and D769Y, and were mutually
exclusive from EGFR or KRAS mutations (Figure 2).
The prevalence of KRAS was also slightly higher than
that in tLUAD, but the difference was not statistically
significant. The mutants of KRAS in PEAC included
two G12C, two G12D, one G12S, and one concurrent
Q61H/R68W. Importantly, APC was also observed in
approximately 6% of tLUADs, but none in the PEAC
cohort. Overall, we observed low TMB in this study,
with no difference between PEAC and lmCRC (Figure
S1b). Interestingly, we found an enrichment of age-
related (clocklike) signatures (SBS1 and SBS5) in
lmCRC, whereas APOBEC (SBS2 and SBS13) contrib-
uted to a larger proportion of mutations in PEAC
(Figure S1c).

At the chromosome arm level, significantly ampli-
fied 13q and 20q, and significantly deleted 14q and 18p
were detected in lmCRC, whereas significantly ampli-
fied 14q was observed in PEACs (all with FDR<0.1)
(Figure 2b). For gene-level CNAs, we found significant
enrichment of BCL2L1 gain (p<0.001 by Fisher’s exact
test) and E2F1 gain (p=0.017 by Fisher’s exact test) exclu-
sively in lmCRCs (both with FDR<0.1) (Figure S2c).
Moreover, many focal CNA changes were detected by
the GISTIC 2.0 algorithm. Significant focal amplifica-
tion of 11q13.5 and focal deletion peaks of 6p22.2,
11p15.4 and 19q13.43 were enriched in PEAC, whereas
focal amplification of 12p13.32 and focal deletion of
6p22.2 was observed in lmCRC (Figure S3). Despite
these CNA differences, the overall fraction of genome
altered was similar between PEAC and lmCRC, as indi-
cated by the levels of chromosome instability in Figure
S2d.
Identification of differentially methylated regions
Next, we performed DNA methylation sequencing to
explore disease-specific DNA methylation changes in
PEAC and lmCRC. Overall, one PEAC sample and one
lmCRC sample in the training cohort failed the quality
control for targeted bisulfite sequencing possibly due to
insufficient sample input and were removed from sub-
sequent analyses. DMRs were extracted by comparing
tumor and matched normal tissues of these two dis-
eases. In the training cohort (21 PEAC and 19 lmCRC),
with a focus on PEAC, we identified a total of 14235
DMRs by comparing the methylation levels of PEAC
www.thelancet.com Vol 82 Month , 2022
tumors with those in corresponding normal lung tis-
sues, and 19791 DMRs by comparing PEAC tumors
with lmCRC tumors. In total, 1094 overlapping DMRs
were considered PEAC-specific and subsequently joined
as a single DMR if they were adjacent to one another,
and those with an overall sequencing coverage <50X
were filtered. This step helped increase the feature
diversity and avoid repeated hits from adjacent regions.
The resulting 204 DMRs were used as candidate
markers for classifier construction (Table S2).

Relative hypermethylation in PEAC was detected in
141/204 DMRs and hypomethylation was detected in
the remaining 63 DMRs. Some top-ranked regions were
hypermethylated within the promoter of genes, includ-
ing glucosaminyl (N-Acetyl) transferase 2 (I Blood
Group) (GCNT2), homeobox A4 (HOXA4), homeobox
A9 (HOXA9), activin A receptor-like type 1 (ACVRL1),
microRNA 196a-1 (MIR196A1) and Rho guanine nucle-
otide exchange factor 15 (ARHGEF15) (Table S2). For
cross-platform comparison, we evaluated whether the
candidate DMRs contained any CpG sites covered by
the 450K methylation chip array in the TCGA cohort.
We found that 81/204 DMRs contained zero CpG sites
and the remaining DMRs were represented by limited
number of CpGs (ranging from 1 to11 cg sites). The esti-
mated mean methylation level of each DMR in TCGA
LUAD is also shown (Table S2).
Development and validation of the diagnostic
classifiers
Although the genetic and epigenetic biomarkers
described above could well characterize PEAC, an inte-
grated diagnostic classifier is still essential for evaluat-
ing the molecular heterogeneity to assist decision
making. Therefore, we constructed independent classi-
fiers with gene mutation, CNA or DMR markers alone,
or with combined molecular events. The candidate fea-
tures included all 711 genes mutated in either cancer
type, 77 arm-level CNA events, and 204 characteristic
DMRs. Two feature selection methods were performed
to reduce dimensionality and remove redundant genetic
or epigenetic features, resulting in 8 DMRs, 10 CNAs,
and the APC mutation in each category (Figure S4,
Table S3). First, we established separate classifiers with
only DMR, CNV, or mutational features. With the DMR
features, the principal component analysis (PCA) of
selected DMRs demonstrated two distinct groups that
represented the PEAC and lmCRC samples, which were
better separated than with all 204 DMRs (Figure 3a and
Figure S5a). Similarly, unsupervised hierarchical clus-
tering based on eight DMR markers also presented a
clearer separation of the PEAC and lmCRC tumors than
the clustering of all 204 DMRs (Figure 3b and Figure
S5b). Of these eight DMRs, only one showed higher
methylation level in lmCRC, whereas the methylation
levels of the others were higher in PEAC (Figure S6).
9



Figure 3. Classification of PEAC and lmCRC based on methylation analysis. (a) Principal component analysis (PCA) based on
eight selected DMRs showing the coordinates of two principal components of individual patients. The separation of lmCRC and
PEAC can be observed as two groups. (b) Unsupervised hierarchical clustering based on eight DMRs in both the training and test
cohorts. The colored bar indicates the methylation level. (c, e) Confusion matrices summarizing the sensitivity and specificity of the
DMR diagnostic classifier in the training and test cohorts. (d, f) Receiver operating characteristic curves of the diagnostic classifier in
the training and test cohorts. PEAC, pulmonary enteric adenocarcinoma; lmCRC, lung metastatic colorectal cancer; AUC, area under
the curve.
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Then, we constructed a predictive model by the ran-
dom forest algorithm using the eight DMR markers to
distinguish between PEAC and lmCRC. The classifier
successfully classified all lmCRC and PEAC cases in the
training cohort, yielding a total accuracy of 100% (40/
40) (AUC=1) (Figure 3c, d, and Figure S7a). Applying
this model to the internal test cohort, 90% (9/10) of the
lmCRC cases and 100% (10/10) of the PEAC cases were
correctly predicted with an accuracy of 95% (19/20)
(AUC=0.98) (Figure 3e, f). Specifically, one lmCRC
patient, P979, was predicted to have PEAC (Figure
S7b). Furthermore, we ran these samples through the
SVM and XGBoost machine learning algorithms to
assess the robustness of the selected markers. Both
SVM and XGBoost produced an accuracy of 100% in
the training cohort. In the internal test cohort, SVM
generated the same predictions as RF, whereas
XGBoost exhibited a slightly lower sensitivity (90%)
and overall accuracy (90%). Notably, P979, who was
incorrectly classified by the RF model, was repeatedly
misclassified using SVM and XGBoost (Figure S8).

Despite the distinct CNA patterns observed between
PEAC and lmCRC, the classifier based solely on CNA
markers did not separate the two diseases well (training
cohort, sensitivity, 81.0%; specificity, 78.9%; overall
accuracy, 80%; internal test cohort, sensitivity, 60%;
specificity, 90%; overall accuracy, 75%) (Figure S9b and
Table S4). Additionally, all APC-wildtype lmCRC were
falsely categorized, indicating that a single genetic
mutation was not informative enough for disease classi-
fication (Figure S9a and Table S4). Furthermore, com-
bination of different molecular events, including the
APC mutation, 10 CNAs and 8 DMRs generated the
same prediction results as the pure DMR-based classi-
fier (training cohort, sensitivity, 100%; specificity,
100%; overall accuracy, 100%; internal test cohort, sen-
sitivity, 100%; specificity, 90%; overall accuracy, 95%)
(Figure S9c). Therefore, only DMR features were con-
sidered for the final classifier construction and evalua-
tion.

Finally, to validate the performance of our classifier,
we first performed external validation with samples col-
lected from multiple centers in China, including 17
PEAC and 7 lmCRC patients. Remarkably, all cases
agreed with their clinical diagnosis (Figure 4a and b).
Given the lack of public PEAC cases and DNA
www.thelancet.com Vol 82 Month , 2022



Figure 4. External validation of the classifier. (a, b) Confusion matrix and receiver operating characteristic (ROC) curve summariz-
ing the results of the diagnostic prediction of an independent multicenter external validation cohort of 17 PEAC and 7 lmCRC sam-
ples. (c) Box plots demonstrating the estimated methylation levels in each featured region in a GEO cohort of 14 PEAC and 4 lmCRC
samples. P values were extracted from the Wilcoxon rank sum test. (d, e) confusion matrix and ROC curve summarizing the results
of the diagnostic prediction of 14 PEAC and 4 lmCRC samples from the GEO cohort. PEAC, pulmonary enteric adenocarcinoma;
lmCRC, lung metastatic colorectal cancer; AUC, area under the curve.
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methylation data using NGS platforms, we further eval-
uated the potential generalizability of the classifier by
estimating the approximate methylation levels of the
eight DMRs using the mean methylation level of CpG
sites in methylation array-based GEO and TCGA data.
Specifically, a total of 15 CpG sites from the 450K array
overlapped with the eight DMRs, whereas no CpG from
the selected sites used to classify the GEO samples in
the previous study overlapped with the eight DMRs.15

In the GEO cohort, similar differences in the methyla-
tion levels of the eight DMRs were observed, although
three did not demonstrate statistical significance proba-
bly due to the small sample size (Figure 4c). Using the
estimated methylation levels for prediction, only sample
GSM3258624 (lmCRC) was misclassified as PEAC,
yielding an accuracy of 94.4% (sensitivity=100%, specif-
icity=75%, AUC=0.964) (Figure 4d and 4e). Similar
results were observed in TCGA samples, with markedly
different methylation levels of the eight DMRs between
LUAD and CRC (Figure S10a). Classifier resulted in the
misclassification of 80/453 CRCs and 30/503 LUAD,
giving sensitivity 94.0%, specificity of 82.3% and AUC
of 0.947 (Figure S10b and S10c). We further assessed
the documented clinicopathological status of these
TCGA tumors, including age at diagnosis, sex, smoking
history, and tumor staging. Interestingly, a significantly
higher proportion of stage I-III CRCs (19.6%) were mis-
classified than stage IV tumors (6.3%) (p=0.011 by Fish-
er’s exact test), probably because the classifier was
specifically trained for advanced CRCs. Other patient
characteristics were balanced between the correctly and
incorrectly classified samples.
Discussion
PEAC is a rare subtype of lung adenocarcinoma that is
easily misdiagnosed as lmCRC in the clinic due to their
shared pathological presentation. The mainstay criteria
for differential diagnosis rely on enteric and pulmonary
IHC markers and clinical history. However, the diagno-
sis of tumors with clinical features resembling each
other is still challenging, especially when clinical history
might not always be informative. The 2021 WHO classi-
fication guideline for lung cancers has greatly improved
the IHC criteria for PEAC diagnosis. However, current
pathology assessment still relies heavily on pathologists’
experience, which might result in difficulty in disease
classification. In this study, by analyzing whole exome
sequencing and targeted bisulfite sequencing data, we
identified PEAC-specific genetic and epigenetic markers
to distinguish PEAC from lmCRC. We also successfully
established a binary diagnostic classifier with selected
DMRs and showed its potential generalizability through
internal and external validations.

As a special subtype of lung adenocarcinoma, PEAC
demonstrates a characteristic genetic profile and occur-
rence of lung cancer drivers, which might inform
therapeutic options. According to previous literatures,
KRAS is among the most frequently altered genes in
PEAC, with a greatly varied frequency ranging from
7.7% to 60.0%, probably due to limited sample
sizes.12,14,15 In the current study, despite being one of
the top PEAC driver mutations, KRASmutation was sig-
nificantly less mutated in PEACthan in lmCRC. Never-
theless, future clinical efficacy in KRAS G12C-mutant
PEAC might be achieved by sotorasib, as shown by the
latest data of CodeBreaK100 study.34 Moreover, EGFR
sensitive mutations were exclusively found in five PEAC
patients, which is similar to a previous Chinese report
on PEAC.35 Less frequent EGFR mutations have been
described in other European studies possibly due to dif-
ferent mutation profiles across ethnic groups.12,14,15,36

Importantly, as most PEACs are diagnosed at early
stages, the EGFR mutation status could guide the
choice of adjuvant or neoadjuvant therapies.37,38

Although no ALK, MET or ROS1 alterations were identi-
fied in our cohorts and others,15 we found a higher prev-
alence of ERBB2 mutations in PEAC, suggesting
potential benefit from ado-trastuzumab emtansine or
trastuzumab deruxtecan at advanced stages.39,40 Addi-
tionally, as a known driver of CRC, the APC mutation
was found to be a major biomarker to distinguish
lmCRC from PEAC, at a frequency similar to those in
previous reports.41,42 However, APC is found in approx-
imately 6% of all lung cancers,21 suggesting that more
data might be necessary to prove its association with
PEAC specifically.

To date, limited research has been conducted to
investigate CNAs in PEAC. Overall, the CNA landscape
of PEAC was similar to that of tLUAD.43 However, we
found distinct CNA profiles between PEAC and lmCRC.
In concordance with previous studies, our results
demonstrated the frequently observed arm-level amplifi-
cations of 13q and 20q, and deletions of 14q and
18p in CRCs, which are less frequent in lung
adenocarcinomas.41,43 Focal amplification of 12p13.32
spanning across CCND2 was identified in both the
TCGA CRC data and ours.41 However, in both cancer
types, broader spectra of focal alterations were reported
by TCGA, probably due to larger sample sizes, which
affected the statistical significance in the GISTIC
analysis.

Our analysis of DNA methylation revealed that
PEAC-specific epigenetic features enable robust diag-
nostic classifier development. For high-dimensional bio-
informatics or genomic data, such as DNA methylation,
machine learning methods can quickly reduce
dimensionality and extract key molecular features for
biomarker identification and classifier construction.
Recently, many studies15,17 have taken advantage of pub-
lic databases (e.g., TCGA and GEO) of known primary
lesions to identify epigenetic biomarkers and train diag-
nostic models to analyze the origin of tumors on the
consensus of DNA methylation’s tissue-specificity.18,44
www.thelancet.com Vol 82 Month , 2022
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However, models established based on features from
primary tumors might affect the correct classification of
metastatic lesions. Stromal cells in the tumor microen-
vironment could bring mixed methylation patterns and
confuse the classifier. For example, an lmCRC biopsy
with low tumor fraction might over-resemble the lung
tissue and be misclassified as PEAC because the normal
para-tumor tissue of lmCRC harbors methylation fea-
tures from the lung rather than the colon.45 Impor-
tantly, the final eight DMRs did not overlap with the top
10000 CpGs selected using TCGA data, indicating that
the most important features used to distinguish PEAC
from lmCRC might differ from those that distinguished
primary tLUAD and CRC.15 Hence, the external valida-
tion with these public datasets resulted in slightly lower
overall accuracies. Importantly, to reduce interference
from adjacent tissue in this study, normal lung tissues
were also sequenced and used to screen PEAC-specific
DMR features. Another limitation of using public
microarray-based DNA methylation data is the experi-
mental and inter-individual variability induced by dis-
crete CpG sites and a relatively narrow scope of
epigenome analysis.46 Here, we employed targeted
bisulfite sequencing technique to overcome both the
low genome coverage of methylation arrays and the
high cost and inefficiency of whole-genome bisulfite
sequencing while preserving the single-base resolution,
general reproducibility, and comparable results of these
two platforms.47,48

Notably, approximately 40% of the DMRs we identi-
fied covered CpG sites novel to the existing databases.
Of the top PEAC-specific DNA methylation features,
the highest ranked DMR located on chromosome 6 cor-
responded to the promoter hypermethylation of
GCNT2, indicating possible gene suppression. Remark-
ably, a previous study reported that GCNT2 hypomethy-
lation, which promoted the activation of this gene, was
closely related to the lymph node metastasis of primary
CRC.49�51 We also found aberrant methylation in a few
members of the HOX cluster of genes, including
HOXA9 and HOXA4. HOX genes were highly con-
served during evolution and are involved in numerous
aspects of biological processes. Recent studies have
shown their roles in cancer predisposition and
oncogenesis.52,53 MIR196A is a microRNA that closely
interacts with several members within the HOX family,
where methylation-induced silencing of these miRNAs
is frequently observed in colon cancers.53,54

A major concern of our study is whether the sample
size was large enough for solid binary classifier build-
ing. Given the low incidence of PEAC and limited pub-
lic datasets, we carefully selected the suitable algorithm
and further validated our model through a multicenter
external cohort and public datasets. We employed an
RF-based classifier as it is known as the most compati-
ble method for training high dimensional data and over-
coming overfitting problems from small sample
www.thelancet.com Vol 82 Month , 2022
sizes.55,56 Several studies have demonstrated the feasi-
bility to distinguish confusing tumor types or early
tumor screening using RF-based models.57,58 Through
rigorous biomarker screening, we developed a neat clas-
sifier of eight DNAmethylation-based markers to distin-
guish PEAC from lmCRC, and were able to achieve
near-perfect accuracies in both training, test and exter-
nal validation cohorts. Although different testing plat-
forms were used to assess DNA methylation, the
methylation classifier composed of the eight DMRs suc-
cessfully distinguished PEAC from lmCRC in the four-
teen publicly available PEAC samples,15 further
supporting the robustness of our classifier. We believed
that a near perfect performance of this classifier is
essential for a rare disease, such as PEAC. For future
clinical application, we could design probes targeting
the selected DMR regions (total 2200bp) instead of
broad genome coverage, improving the cost-effective-
ness of this model to facilitate clinical diagnosis of
PEAC.

To the best of our knowledge, this study is the largest
multi-omics study to directly compare PEAC with its
“unrelated twin”, lmCRC. We demonstrated PEAC-spe-
cific genomic and epigenetic features with a proof-of-
concept DMR-based classifier to facilitate the diagnosis
of the two diseases. With additional clinical validation
in the future, this diagnostic classifier could become a
powerful tool for auxiliary diagnosis of PEAC.
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