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Abstract

Non-small cell lung cancer (NSCLC) represents a genomically unstable cancer type with

extensive copy number aberrations. The relationship of gene copy number alterations and

subsequent mRNA levels has only fragmentarily been described. The aim of this study was

to conduct a genome-wide analysis of gene copy number gains and corresponding gene

expression levels in a clinically well annotated NSCLC patient cohort (n = 190) and their

association with survival. While more than half of all analyzed gene copy number-gene

expression pairs showed statistically significant correlations (10,296 of 18,756 genes), high

correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes

(1.6%), including KRAS, EGFR and MDM2. Higher correlation coefficients were associated

with higher copy number and expression levels. Strong correlations were frequently based

on few tumors with high copy number gains and correspondingly increased mRNA expres-

sion. Among the highly correlating genes, GO groups associated with posttranslational pro-

tein modifications were particularly frequent, including ubiquitination and neddylation. In a

meta-analysis including 1,779 patients we found that survival associated genes were over-

represented among highly correlating genes (61 of the 301 highly correlating genes, FDR

adjusted p<0.05). Among them are the chaperone CCT2, the core complex protein NUP107

and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a com-

prehensive analysis we described a distinct set of highly correlating genes. These genes

were found to be overrepresented among survival-associated genes based on gene expres-

sion in a large collection of publicly available datasets.
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Introduction

NSCLC represents a morphologically and clinically heterogeneous cancer type, with overall

poor prognosis [1]. In small subsets of patients, distinct genomic aberrations have been identi-

fied that are now successfully exploited for therapeutic intervention. These clinically relevant

molecular events are either activating mutations, e.g. mutations in the receptor tyrosine

kinases EGFR, BRAF, or HER2, or fusion genes created by gene rearrangements involving

ALK or ROS1 [2–3]. Recently, amplifications of FGFR1 and MET were also identified as can-

cer driving mechanisms and were tested as potential therapeutic targets in clinical trials [4–6].

NSCLC is characterized by genomic instability, with a high frequency of somatic mutations

and extensive gene copy number variations in individual lung cancer genomes [7–8]. Genomic

alterations can either be focal or include larger regions and entire chromosomal arms [9–10].

For some genes, copy number alterations have been shown to correlate with mRNA expres-

sion. A well-known example is HER2 amplification in breast [11–12] and gastric cancer [13],

which translates into higher gene and protein expression and define distinct biological sub-

groups in these cancers. Such relations have also been described in NSCLC [8, 14–19]. How-

ever, factors influencing the correlation between gene copy number and gene expression level

have not been thoroughly described in NSCLC, neither has it been clarified to which degree

genes displaying a high correlation between expression level and copy number are associated

overall survival. Therefore, a genome-wide analysis of gene copy number and corresponding

gene expression was performed in a clinically well-characterized NSCLC patient cohort.

Methods

Patient cohort

Tumor tissue from 190 NSCLC patients was analyzed for both global gene expression levels

and genome-wide gene copy numbers using array-based technologies. All analyzed specimens

were procured within the infrastructure of an established biobank and stored at -80˚C until

later use. Selection criteria for study inclusion have been described previously [9, 20]. In brief,

tissue specimens from surgically resected non-small cell lung cancer patients, operated 1995–

2005 at the Uppsala University Hospital, fulfilling the inclusion criteria of (i) NSCLC histology

(adenocarcinoma, squamous cell carcinoma or large cell carcinoma) confirmed by hematoxy-

lin-eosin staining of the frozen tissue sample, (ii) tumor specimen larger than five mm, (iii)

tumor cell fraction >50% in analyzed specimen and (iv) RNA integrity (RIN) value >7, as

assessed on the Agilent 2100 Bioanalyzer (Agilent Biotechnologies, Palo Alto, USA), were ana-

lyzed. Information on clinicopathological parameters and overall survival time (S1 Table) was

obtained from the records of the population-based Uppsala-Örebro Regional Lung Cancer

Register. The analysis of human tissue specimens and corresponding clinicopathological data

was approved by the Uppsala Regional Ethical Review Board (#2006/325) and performed in

accordance with Swedish biobank legislation.

Microarray data preprocessing and analysis

For 190 NSCLC patients, global gene expression (GE) analysis was previously performed using

Affymetrix HG U133 Plus 2.0 arrays (GSE37745, [20]). The raw microarray data was normal-

ized by robust multi-array average (RMA) [21–22] using the R package ‘affy’ [23].

Genome-wide single nucleotide polymorphism (SNP) analysis was performed using Affy-

metrix Gene Chip Human Mapping 250K Nsp I arrays, as previously described [9]. The analy-

sis of SNP array data from 100 of these patients have been published previously (GSE28582

[9]). The data of this study, in total 190 cases, has been deposited under accession number
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GSE76730. Copy numbers (CN) were estimated using Robust Multichip Analysis (CRMA v2)

as implemented in the R package ‘aroma.affymetrix’ [24]. The preprocessing included quantile

normalization [23], fitting a log-additive probe-level model [21] for probe summarization,

combining the alleles and merging the strands, and fragment length normalization [25]. CN

estimates for each of the 261801 SNPs were calculated as the ratio of the preprocessed signal

intensity and median across 90 non-cancer HapMap reference samples (The HapMap project,

2003). These non-log scale values were multiplied by two and accordingly, a value of 2 implies

equal CN in the cohort to the median of HapMap reference [26]. Circular binary segmentation

(CBS) with default parameters was applied to the SNP-wise estimated CNs [27–28]. Calls for

normal CN, loss, gain, high gain or homozygous deletion were assigned to each of the 261801

SNPs using a two-level hierarchical mixture model which utilizes the breakpoint information

from the CBS [29]. CN frequency plots were created using the R package ‘CGHcall’ [29], plot-

ting the percentage of patients with a particular aberration (CN gain, high gain, CN loss,

homozygous deletion) across chromosomal positions.

Modified Manhattan plots based on the function ‘mhtplot’ in the R package ‘gap’ [30] were

created to illustrate genome wide segmented CN values. In the Manhattan plots, 95% percen-

tiles of segmented CN values are shown, because often only a relatively small fraction of

patients showed aberrant copy numbers, which would not be represented by e.g. the median

of segmented CN values. Gene expression was illustrated by plotting the median expression

value for each probe set. The simple moving median as well as the 5% and 95% moving quan-

tile of gene expression were calculated from 301 probe sets and added to the GE plot.

Genome-wide correlation analysis

The GE value for each of the 54675 probe sets included on the Affymetrix HG U133 Plus 2.0

array was assigned to its respective chromosomal position and matched to corresponding seg-

mented CN estimate. The R package ‘hgu133plus2.db’ [31] provided information about chro-

mosome number and start-stop positions for the individual probes that constitute a probe set.

Probe sets with missing or ambiguous information of genomic localization were omitted.

Probe sets mapping to the Y chromosome were not covered on the Affymetrix Gene Chip

Mapping 250K Nsp I array and were also omitted. For each of the remaining 39788 probe sets,

the mean chromosomal position was calculated using the minimum and maximum start and

stop positions. The 39788 probe sets corresponded to 18756 annotated genes with segmented

copy number estimates. To assess the correlation between GE and CN, the externally centered

correlation coefficient (ECCC) was calculated, essentially as described by Schäfer et al. [32]

using the R package ‘edira’ [33]. For each probe set, ECCC considers the equally directed devi-

ations of CN and GE intensities from the median of an external reference group. The HapMap

data set [26] was used as external reference to center the CN data and the median expression

value was used to center the GE data. The Wilcoxon signed rank test was used to test for devia-

tions from the reference median for equally directed abnormalities. In contrast to Schäfer et al.

[32], linear CN and GE values were included, i.e. the data was not log2-transformed.

Modified Manhattan plots (the exact code based on the function ‘mhtplot’ in the ‘gap’ R

package [30] is available upon request) were created to illustrate median gene expression and

the ECCC. Scatter plots were generated to visualize the relation between gene expression and

gene copy number, with linear GE values on the y-axis and matched CN values on the x-axis.

Median ECCC of ‘cancer genes’ (1728 probesets corresponding to 533 ‘cancer genes’ defined

by the Cancer Gene Census (http://cancer.sanger.ac.uk/cancergenome/projects/census/,

accessed 11/2015 [34]) were compared to all other probe sets by the Wilcoxon test and were

visualized as box plots. To test whether differences between ’cancer genes’ and all other genes
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were independent from copy number and gene expression a multivariate model was applied,

which was stratified for (i) copy number (as a continuous variable using the copy number of

all genes) and (ii) gene expression (as a continuous variable using the expression level of all

genes). The same method was used to test whether differences in ECCC between 43 lung can-

cer associated genes were independent from copy number and gene expression.

To further validate the correlations between CN and GE in an independent cohort, Affyme-

trix SNP 6.0 and RNA-seq data generated by the Cancer Genome Atlas (TCGA) were accessed

via the cBioPortal (http://www.cbioportal.org), [35–36]. Data from 520 adenocarcinomas

(LUAD; Query: TCGA provisional) and 504 squamous cell cancers (LUSC; Query: TCGA pro-

visional) were analyzed. The data for GE (continuous) and CN (categorized as putative copy-

number calls determined using GISTIC 2.0, where -2 = homozygous deletion; -1 = hemizygous

deletion; 0 = neutral / no change; 1 = gain; 2 = high level amplification) were downloaded via

the cBioPortal and analyzed using Spearman correlation. To visualize the relation between GE

and CN for the top-ten genes with the highest correlation in the Uppsala cohort for adenocar-

cinoma and squamous cell carcinoma, the box plots provided by cBioPortal were used.

Gene ontology

Gene ontology group enrichment was performed using the topGO package [37] and Fisher’s

exact test, and only results from the biological process ontology were considered. The resulting

p-values were adjusted for multiple testing by the Benjamini−Hochberg procedure [38].

Survival analysis and correlation with clinical parameters

A Cox proportional hazards model, according to Klein and Moeschberger [39], and the R

package ‘survival’ [40], was used to determine the association with overall survival for signifi-

cantly correlated CN-GE pairs based on CN and GE data. Overall survival (OS) was computed

from the date of diagnosis to the date of death.

To validate significant survival associations in independent patient cohorts, the R package

‘meta’ [41] was applied to perform a meta-analysis of ten publicly available NSCLC data sets

with Affymetrix HG U133A or Plus 2.0 array expression data and corresponding overall sur-

vival times (in total 1779 patients): GSE29013 [42], GSE30219 [43]; GSE31210 [44], GSE14814

[45], GSE19188 [46], GSE3141 [47]; Shedden et al., 2008 [48]; GSE4573 [49], GSE50081 [50]

and GSE37745 [20]. All data sets were downloaded from the Gene Expression Omnibus (http://

www.ncbi.nlm.nih.gov/geo/) except for Shedden et al. [48] which was downloaded from the

website of the National Cancer Institute (https://array.nci.nih.gov/caarray/). The raw data was

normalized using frozen robust multiarray analysis (fRMA) [51] apart from GSE4573 and

GSE3141 for which only MAS5 normalized data was available. Normal (non-tumoral) samples

and small cell carcinomas were removed. All data sets were checked for duplicates and a pair of

patients was considered duplicates when the correlation of their expression values was� 0.999.

Between the dataset of Shedden et al. [48] and GSE14814, 43 duplicates were removed in the lat-

ter. In GSE37745 two different measurements for one patient were removed [52]. Meta-analysis

was performed with random effects models based on the parameter estimates of log hazard

ratios of the univariate Cox survival models and their standard errors. Inverse variance weight-

ing was used to combine the single estimates to a pooled estimate. Significance of the overall

effect was assessed by the p-value of the random effects model. Results were visualized with for-

est plots, in which parameter estimates of all single studies and the pooled estimates along with

their confidence intervals are plotted on top of each other. All analyses were performed using R

version 3.2.1 [53]. Multiple testing adjustments of significance levels were performed using the

false discovery rate (FDR) [38]. Unadjusted p-values were considered as descriptive measures.
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To further confirm the results of the survival analysis for the probesets that showed a signif-

icant prognostic impact in the meta-analysis using Affymetrix gene array data, Kaplan-Meier

analysis was performed, using lung cancer RNA-seq data generated by the Cancer Genome

Atlas (TCGA), via an easy-to-use interface provided by the Human Protein Atlas (http://www.

proteinatlas.org, [54]). The unadjusted p-values based on the log-rank test, performed with an

optimized cut-off as described [54], for lung adenocarcinoma and squamous cell cancer, as

well as both combined, are reported.

Results

Visualization of genome-wide gene copy numbers and gene expression

levels

Tissue specimens of 190 NSCLC patients were analyzed for gene copy numbers (CN) and corre-

sponding gene expression (GE) levels. First, the frequencies of genomic alterations, i.e. the per-

centage of patients with gain or loss, across the genome were illustrated for the complete NSCLC

cohort, as well as for the histological subgroups of adenocarcinomas and squamous cell carcino-

mas (Fig 1A–1C, top panel). The observed pattern of gains and losses across the chromosomes

corresponded well to the results of previous studies [4, 14–15, 18–19, 55–58], (S2 Table).

Correlation of gene copy number and gene expression

To systematically study the relationship between gene copy numbers and RNA levels, the gene

expression (GE) value of each probe set and the corresponding gene copy number (CN) was

identified. Matched CN and GE data were available for 39,788 probe sets, corresponding to

18,756 genes. Correlation between these pairs of CN and GE was analyzed by the externally

centered correlation coefficient (ECCC). The ECCC frequency distribution of all CN-GE pairs

showed a shift towards positive values compared to permutated (random) data (Fig 2A–2C).

This shift to positive correlation coefficients is in line with the intuitive notion that copy num-

ber gain may lead to higher RNA levels or copy number loss to lower expression. In contrast,

inverse correlations between CN and GE are not observed to a higher degree than randomly

expected, as illustrated by the dashed line of permutated data (Fig 2). A statistically significant

correlation (FDR adj. p<0.05) between CN and GE was observed for 19,058 probe sets (10,296

genes) (Table A in S3 Table). Note that already very small ECCC values may result in p-values

smaller than 0.05. Since the biological relevance of very small correlation coefficients is ques-

tionable, we focused on CN-GE pairs with a high ECCC. Considering copy number gain and

increased gene expression, correlation coefficients (ECCC) were higher than 0.5 for 3,482

probe sets (1,351 genes). Correlations with ECCC higher than 0.7 were observed for 440 probe

sets (301 genes). The highest ECCC was 0.927 (Table A in S3 Table). The 25 probe sets with

the highest ECCCs are listed in Table 1.

In a next step, the correlation analysis was performed separately for the adenocarcinoma

and squamous cell carcinoma histological subtypes (Tables B and C in S3 Table). For adeno-

carcinomas, 13,282 probe sets (7,897 genes) showed a significant correlation between CN and

GE; 383 probe sets (269 genes) with ECCC>0.7 (Table B in S3 Table). For squamous cell carci-

nomas, the corresponding numbers were 9,560 probe sets (6,014 genes) and 626 probe sets

(465 genes), respectively (Table C in S3 Table). For most genes, a strong correlation was

observed in one subtype only (adenocarcinoma: 219; squamous cell cancer: 415), while only 50

genes showed a strong correlation in both histologic entities.

Only 178 probe sets (113 genes) showed a significant correlation (FDR adj. p<0.05)

between copy number loss and decreased gene expression, whereby copy number loss was
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Fig 1. Gene copy number changes of non-small cell lung carcinomas. Copy number (CN) call

frequencies are given for all NSCLC cases (A), adenocarcinomas (B) and squamous cell cancer (C). The

frequency plots (upper graphs) give the proportion of cases with loss and gain for each chromosomal position.

Positions of selected genes (ERBB4, FHIT, APC, EGFR, MET, PTEN, LRP1, ERBB2, CCNE1) were

highlighted in red.

https://doi.org/10.1371/journal.pone.0187246.g001
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defined by a median copy number below 1.9 and a 25% quantile below 1.5. These correlations

were relatively weak (only seven probe of them reached an ECCC higher than 0.4) and were

not further analyzed in this study.

High copy number and high gene expression is associated with higher

correlation coefficients

We next focused on factors that might have an impact on the correlation between copy num-

ber and gene expression. First, we analyzed a possible association of gene expression levels on

ECCC. Comparing percentiles of probe sets with increasing gene expression, higher median

gene expression levels were associated with higher ECCCs (Fig 3A–3C), and significant differ-

ences between individual groups and the next were indicated after FDR adjustment (Wilcoxon

test, FDR adj. p<0.05). To then determine the influence of median gene copy number on the

ECCC, percentiles of probe sets with increasing copy numbers were formed, illustrating a sig-

nificant association of correlation coefficients (ECCC) and median copy number (Wilcoxon

test, FDR adj. p<0.05 for each group tested the following) (Fig 3D–3F).

Fig 2. Correlation of gene copy number and corresponding gene expression values. Density analysis

of the externally centered correlation coefficient (ECCC) log transformed (blue) mRNA expression values for

all NSCLC cases (A), adenocarcinomas (B) and squamous cell cancer cases (C). The line forming a Gauss

curve illustrates correlation values of randomly generated data. Randomization was achieved by permutation

of gene copy number/mRNA pairs.

https://doi.org/10.1371/journal.pone.0187246.g002
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Relatively small numbers of tumors with high expression and high copy

numbers explain most of the high correlation coefficients

In the further analyses we focused on the 440 probe sets (301 genes) with high correlation coeffi-

cients (ECCC>0.7; FDR adj. p<0.05) identified in the analysis of the complete cohort (i.e.

including all histological tumor types), hereafter referred to as “highly correlating probe sets”
and, correspondingly, “highly correlating genes”. To visualize the relationship between gene copy

number and gene expression of the 440 highly correlating probe sets, scatter plots with gene

expression on the y-axis and gene copy number on the x-axis were generated (S1 Fig). A typical

feature in many of these scatter plots is that only a relatively small fraction of tumors shows

high copy numbers and high expression values, which explains the high correlation coefficients.

For 394 of the 440 probe sets (90%), at least one tumor exhibited high copy number gain.

The following constellations were frequently observed (Fig 4A–4C): for 79 highly correlating

probe sets (56 genes), only one tumor displayed high copy number gain as illustrated for the

example of CDCA4 (Fig 4A); for 29 highly correlating probe sets (14 genes), more than ten

tumors showed high copy number gain, exemplified by in Fig 4B (ECCC = 0.771); and for 46

highly correlating probe sets (40 genes), no tumor demonstrated high copy number gain (Fig

4C).

Table 1. Top 25 probe sets with highest ECCC of gene copy number levels and mRNA expression for tumors from 190 NSCLC patients.

gene symbol gene chromosome probe set ECCC* FDR# frequency of gain (in %)

CDCA4 cell division cycle associated 4 14q32.33 218399_s_at 0.93 0.0166 15.26

EAPP E2F-associated phosphoprotein 14q13.1 202623_at 0.93 < 0.0001 19.47

KIAA0391 KIAA0391 14q13.2 202713_s_at 0.93 < 0.0001 19.47

BTBD6 BTB (POZ) domain containing 6 14q32.33 225389_at 0.92 < 0.0001 15.26

SRP54 signal recognition particle 54kDa 14q13.2 203605_at 0.92 < 0.0001 18.95

PACS2 phosphofurin acidic cluster sorting protein 2 14q32.33 212778_at 0.92 < 0.0001 15.26

PACS2 phosphofurin acidic cluster sorting protein 2 14q32.33 34406_at 0.92 < 0.0001 15.26

MTA1 metastasis associated 1 14q32.33 211783_s_at 0.92 < 0.0001 15.26

NXT1 nuclear transport factor 2-like export factor 1 20p11.21 218708_at 0.90 < 0.0001 26.84

BAZ1A bromodomain adjacent to zinc finger domain, 1A 14q13.2 217986_s_at 0.90 < 0.0001 19.47

KRAS Kirsten rat sarcoma viral oncogene homolog 12p12.1 204009_s_at 0.90 < 0.0001 13.16

KAT6A K(lysine) acetyltransferase 6A 8p11.21 226547_at 0.89 < 0.0001 13.68

GEMIN2 gem (nuclear organelle) associated protein 2 14q21.1 205063_at 0.89 < 0.0001 16.84

GEMIN2 gem (nuclear organelle) associated protein 2 14q21.1 211115_x_at 0.89 < 0.0001 16.84

BAZ1A bromodomain adjacent to zinc finger domain, 1A 14q13.2 217985_s_at 0.89 < 0.0001 19.47

NAPB N-ethylmaleimide-sensitive factor attachment protein, beta 20p11.21 225111_s_at 0.89 < 0.0001 26.32

SNX6 sorting nexin 6 14q13.1 217789_at 0.89 < 0.0001 19.47

CST3 cystatin C 20p11.21 237623_at 0.88 0.0014 26.32

CNOT2 CCR4-NOT transcription complex, subunit 2 12q15 217798_at 0.88 < 0.0001 13.16

GZF1 GDNF-inducible zinc finger protein 1 20p11.21 225884_s_at 0.88 < 0.0001 26.84

GEMIN2 gem (nuclear organelle) associated protein 2 14q21.1 211114_x_at 0.88 < 0.0001 16.84

GEMIN2 gem (nuclear organelle) associated protein 2 14q21.1 210779_x_at 0.88 < 0.0001 16.84

EGFR epidermal growth factor receptor 7p11.2 201984_s_at 0.88 < 0.0001 28.42

SLC35E3 solute carrier family 35, member E3 12q15 218988_at 0.88 < 0.0001 12.11

NAPB N-ethylmaleimide-sensitive factor attachment protein, beta 20p11.21 1570441_at 0.88 0.0004 26.32

* ECCC = externally centered correlation coefficient
# FDR = false discovery rate

https://doi.org/10.1371/journal.pone.0187246.t001
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As shown in the section about correlation of gene copy number and gene expression, corre-

lation can be tumor subtype specific. CAND1 represents an example, where high CN gain is

associated with increased gene expression in adenocarcinomas but not in squamous carcino-

mas (Fig 4D). The opposite constellation was observed for example for TBL1XR1 (Fig 4E).

RAP1B represents an example where high CN gain of both adeno- and squamous carcinomas

is associated with high gene expression (Fig 4F).

Fig 3. Dependency of the externally centered correlation coefficient of gene expression levels and

gene copy numbers. Influence of gene expression levels. Probe sets were subdivided into seven classes,

based on quantiles, according to their median gene expression levels. The boxplot represents the externally

centered correlation coefficients for all probe sets within each class (A-C). Influence of copy numbers. Probe

sets were subdivided into seven classes, based on quantiles, according to their median gene copy number.

The boxplot represents the externally centered correlation coefficients for all probe sets within one class

(D-F). The analyses were performed for all NSCLC (A, D), adenocarcinomas (B, E) and squamous cell cancer

(C, F). The asterisks indicate significantly different ECCC values compared to the next lower group.

https://doi.org/10.1371/journal.pone.0187246.g003

Fig 4. Relationship between gene copy number and corresponding gene expression values for selected probe sets. Gene expression values in a

linear scale were plotted against gene copy number values (also linear) for all 190 NSCLC cases for selected genes. Triangle and square symbols

represent adenocarcinomas and squamous cell cancer, respectively, while the circles stand for undifferentiated large cell carcinomas. Dark green

represents a high gain, green represents gain and red copy number loss. The correlation is given as externally centered correlation coefficient (ECCC).

Abbreviated gene names and the accession numbers of the corresponding probe sets are given in the left corner of each panel.

https://doi.org/10.1371/journal.pone.0187246.g004
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Visual inspection of modified Manhattan plots indicated that the highly correlating genes

appeared to cluster in distinct chromosomal regions (Fig 5A). To objectify these regions, we

applied moving windows of different genomic sizes (5, 10, 15, 20 and 50 Mbp) and scanned

the genome for regions with at least ten highly correlating genes per window (“hotspots”).

With a width of 15 Mbp we identified ten regions of increased density of highly correlating

genes, including between 14 and 48 highly correlating probe sets (11–29 genes, in total 169

genes) (S4 Table). To illustrate a representative pattern of highly correlating genes, a region on

chromosome 1p34 was selected (Fig 5B). This chromosomal region comprised 18 genes (23

probe sets) with strong correlations highlighted by red color. The dotted vertical lines indicate

the position of the 15 Mbp window in the upper and lower panel (Fig 5B). The indicated

region on chromosome 1p34 illustrates that the density of highly correlating genes is higher

within p34.2 and p34.3 compared to the up- and downstream neighborhood. Chromosomal

positions of these regions on chromosomes 3, 8, 9, 12, 14 and 19 coincide with high values of

the 95% quantiles of the segmented gene copy numbers (S2 Fig). This is in agreement with the

aforementioned observation that high correlation coefficients (ECCC) are typically obtained

for genes with high copy numbers in some patients and that high copy number is associated

with higher ECCC (Fig 3).

Enrichment of biological motifs among highly correlating genes

Next, we analyzed if certain biological motifs were overrepresented among highly correlating

genes. Twenty-four significantly overrepresented gene ontology (GO) terms (FDR adj. p< 0.05)

were identified (Table A in S5 Table). Among these, GO groups associated with posttransla-

tional protein modifications were particularly frequent. Altogether, 27 highly correlating genes

were involved in ubiquitination (GO:0016567, GO:0032436, GO:0010265), neddylation

(GO:0045116, GO:0010265) and protein destabilization or catabolic processing (GO:0031648;

GO:1903363). A well-known highly correlating gene in these motifs is MDM2, an oncogene

and an E3 ubiquitin-protein ligase, which targets the tumor suppressor p53, and was repre-

sented by five probe sets (ECCC 0.78–0.85). Also five additional E3 ubiquitin-protein ligases

(RNF38, SIAH1, SIAH2, HECTD1, G2E3) were identified by the GO enrichment analysis.

For the highly correlating genes identified in the adenocarcinoma and squamous cell

carcinoma subgroups, respectively, we identified inter alia significantly overrepresented GOs

associated with DNA repair (GO:0045739, GO:0010569) and embryonal development

(GO:0001824) in the adenocarcinomas, and GOs related to apoptosis (GO:0042771) in squa-

mous cell cancer (FDR adj. p<0.05) (Tables B and C in S5 Table).

Gene copy number/gene expression correlations are higher for ‘cancer

genes’

Numerous oncogenes and tumor suppressor genes play a role in NSCLC development and

progression. For some of them, copy number aberrations are considered to be involved in

their activation or inactivation. To evaluate whether genes with a known link to cancer show

high correlations between copy number and gene expression, the ECCC of 533 ‘cancer genes’

(1728 probesets; Table A in S6 Table) defined by the Cancer Gene Census (http://cancer.

sanger.ac.uk/cancergenome/.projects/census/, [34]) were compared to those of all other genes.

The ‘cancer genes’ were found to exhibit higher ECCC (p<0.001; Wilcoxon test; Figs A-C in

S3 Fig). The association between the 533 ‘cancer genes’ and high ECCC may be due to the

above described association of ECCC with higher expression as well as higher copy number.

Therefore, a multivariate model was applied where the difference between ‘cancer genes’ ver-

sus all other genes was stratified for copy number and gene expression. For adjustment, the
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Fig 5. Correlation between gene copy number and corresponding gene expression values over all chromosomes. (A)

The modified Manhattan plot gives the median (red line) of the externally centered correlation coefficient (ECCC) and the 5%

and 95% quantile (black lines) along all chromosomal positions. The black dots indicate the probe sets with highest ECCC

(ECCC>0.7, FDR adj. p<0.05). The triangles show the position of hotspot regions. High correlation between copy number

variation and gene expression is not randomly distributed over the genome but mostly occurs within specific chromosomal

regions (hotspots). (B) Example of the hotspot region on chromosome 1p35-1p34 comprising 185 genes (gray bars) with 17
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95% percentile of copy number and gene expression was used, since the significance of correla-

tions (ECCC) often depends on a relatively small fraction of patients with high copy number

and high expression values. When adjusted for both, copy number and gene expression, the

difference in ECCC between ‘cancer genes’ and all other genes was no longer significant

(p = 0.788).

Next we focused on 43 genes (156 probe sets) that previously have been described as overex-

pressed or amplified in NSCLC (Table B in S6 Table). The ‘lung cancer genes’ were found to

exhibit higher ECCC compared to all other genes (p<0.034; Wilcoxon test; Figs D-F in S3

Fig). For 31 of the ‘lung cancer genes’ (86 probe sets), at least one probe set displayed a signifi-

cant correlation between copy number and gene expression, and for 3 genes (11 probe sets) at

least one probe set displayed a median ECCC>0.7. The latter are the well-established NSCLC

driver genes, KRAS (ECCC 0.71–0.90; 3 probe sets) and EGFR (ECCC 0.71–0.88; 3 probe sets),

as well as the p53-targeting E3 ubiquitin ligase MDM2 (ECCC: 0.78–0.85; 5 probe sets). How-

ever, in a multivariate model the difference in ECCC of the 43 ‘lung cancer genes’ and all other

genes was no longer significant after stratification for copy number and gene expression

(p = 0.24). For the histologic subtypes, the corresponding adjusted analyses led to a significant

difference for squamous cell carcinoma (p = 0.016) but not for adenocarcinoma (p = 0.172).

Highly correlating genes are enriched among survival-associated genes

To obtain a genome-wide overview of survival associations, we first determined for each gene

how gene expression, and gene copy number levels were able to separate between patients sur-

viving shorter and longer than two years after diagnosis by calculating the area under the

receiver operating characteristic (ROC) curve (AUC). Considering all 39,788 matched copy

number-probe set pairs, gene expression discriminated better between long- and short-term

survivors. This is illustrated by the AUC-value distribution that shifted towards higher values

for gene expression (RNA) as compared to gene copy number when all NSCLC were analyzed

(Fig 6A). A similar constellation as for the total group was also obtained for the adenocarcino-

mas (Fig 6B). However, for squamous cell carcinomas the two frequency distributions were

overlapping, illustrating that in this histological subtype gene copy number and gene expression

separate similarly well between patients surviving shorter and longer than two years (Fig 6C).

Next, we focused on the highly correlating probe sets (ECCC>0.7, FDR adj. p<0.05),

denoted by red and blue lines below the AUC-values histogram (Fig 6A–6C). None of the 440

highly correlating probe sets showed a significant association with survival after false discovery

rate adjustment in the uni- and multivariate analysis in the complete cohort as well as in the

adeno- and squamous carcinomas (S7 Table). However, the case number of 190 in the present

cohort may have been too low to allow identification of prognostic significance under condi-

tions of false discovery adjustment. Therefore, the 440 highly correlating probe sets were ana-

lyzed in a meta-analysis of ten publicly available gene expression cohorts with totally 1,779

patients, including also the Uppsala cohort. In total 70 of the 440 highly correlating probe sets

(16%) revealed a significant association with survival (FDR adj. p<0.05) in the meta-analysis

of all NSCLC (Table A in S8 Table). This is a significantly higher number than randomly

expected considering all prognostic probe sets that are represented on the microarray (2,843 of

39,348 probe sets, p<0.002, Fisher-test). Thus, survival associated probe sets are significantly

overrepresented among the 440 highly correlating probe sets (results of the histological sub-

groups in Tables B and C in S8 Table).

highly correlating genes (red bars). Each dot represents the ECCC of a probe set based on the analysis of all 190 NSCLC

cases.

https://doi.org/10.1371/journal.pone.0187246.g005
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Three examples of genes that showed strong correlations between copy number and gene

expression with ECCC>0.7 and were significantly associated with survival based on gene

expression level information in the meta-analysis of 1,779 non-small cell lung cancer patients

are shown in Fig 7: Chaperonin Containing TCP1, Subunit 2 Beta (CCT2); Nucleoporin

107kDa (NUP107), a component of the nuclear pore complex; and Cullin-Associated And

Neddylation-Dissociated 1 (CAND1), which plays a role in protein ubiquitination and neddy-

lation. For all three genes also the Kaplan Meier plots for the Uppsala cohort are shown,

Fig 6. Impact of gene copy number and gene expression on survival. The plot shows the number of probe sets in relation

to the AUC as a measure of survival association for gene copy number (red) and gene expression values (blue) in the complete

set of NSCLC (A), adenocarcinomas (B) and squamous cell cancer (C). Considering all 39,788 matched copy number/RNA pairs

it is evident that RNA levels exert a higher prognostic impact than gene copy number in the total group and in adenocarcinomas,

while a similar influence of RNA levels and gene copy number is seen in squamous carcinomas. The red and blue strokes at the

x-axis represent genes with highest externally centered correlation coefficients (ECCC>0.7, FDR adj. p<0.05).

https://doi.org/10.1371/journal.pone.0187246.g006
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differentiating between patients with copy number gain versus non-gain as well as low versus

high gene expression. In contrast to the meta-analysis, significance was not reached for all

analyses when the Uppsala cohort was analyzed alone, probably due to the relatively low case

number of 190 patients but the trend was that high expression is associated with worse progno-

sis, similarly as for the meta-analysis (Fig 7).

External validation using TCGA data

As a final point, matched CN and GE data generated by the Cancer Genome Atlas (TCGA)

were used to study whether the results could be confirmed in an independent cohort. Firstly,

TCGA data from 520 adenocarcinomas and 504 squamous cell cancers were used to study the

correlation between CN and GE (S9 Table). The analysis of the highly correlating genes of the

Uppsala cohort resulted in Spearman correlation coefficients of>0.7 for 7%,>0.6 for 29%

and>0.5% for 63%, when adenocarcinomas and squamous carcinomas were analyzed

together (Table A in S9 Table), and similar concordance were obtained when the analysis was

performed for the two histological entities separately (Tables B and C in S9 Table, S4 Fig).

Secondly, the association with survival in the TCGA RNA-seq data set was analyzed for the

70 highly correlating probe sets that were associated with survival in the meta-analysis. In the

combined analysis of both adenocarcinomas and squamous cell carcinomas, 23%, 49% and

Fig 7. Highly correlating genes and association with survival. The meta-analysis of 10 NSCLC cohorts revealed that 70 of 440 highly

correlating genes were associated with survival. For illustration three of the 70 genes are shown: CCT2, NUP107 and CAND1. The correlation

between copy number and gene expression is shown by scatter plots (left). Survival time is visualized by Kaplan Meier plots (two panels in the

middle). Patients were dichotomized at the 75% percentile for copy number (middle, left) and gene expression (middle, right). The forest plots

illustrate the results of the meta-analysis including nine independent data sets and the Uppsala cohort (right).

https://doi.org/10.1371/journal.pone.0187246.g007
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69% of the probe sets showed unadjusted p-values < 0.01, 0.05 and 0.10 (log-rank test), respec-

tively (Table A in S10 Table). The corresponding FDR adjusted p-values are also given in

Table A in S10 Table. The percentage of genes with significant p-values < 0.01, 0.05 and 0.10

were 57%, 86%, and 90%, respectively, when the adenocarcinomas were analyzed separately

(Table B in S10 Table).

In conclusion, the correlation between CN and GE, as well as the association with survival

observed for a high fraction of the highly correlating genes in the meta-analysis, could be con-

firmed in an independent cohort from the TCGA.

Discussion

This study provides a genome-wide analysis of gene copy number changes and corresponding

gene expression levels in 190 NSCLC patients. Genome-wide analysis of copy number-gene

expression pairs revealed the following features: (1) While more than half of all analyzed gene

copy number-gene expression pairs showed a statistically significant correlations in the ana-

lyzed cohort (10,296 of 18,756 genes), strong correlations with ECCC>0.7 were obtained only

in a small subset of 301 genes (1.6%, represented by 440 probe sets), suggesting that only for a

minority of genes variability of gene expression is strongly associated with copy number varia-

tion. One explanation for the relatively low number of strong correlations is that many genes

show no or only very weak increases in copy number in the analyzed tumors. Variability in

copy number of a given gene is a precondition for a correlation with gene expression. Typical

examples, where high copy number gain correlates with high gene expression are MBIP,

CAND1, TBL1XR1 and RABP1B. (2) Higher correlation coefficients were associated with

higher copy number and expression levels. Recently, it has been reported that abundantly

expressed genes are more gene dosage sensitive than genes with low overall expression levels

[59], in agreement with the results of our study. (3) Strong correlations were frequently based

on only a few tumors with high copy number gain and correspondingly increased gene expres-

sion. (4) 24 significantly overrepresented gene ontology (GO) terms (FDR adj. p<0.05) were

identified among the highly correlating genes. Among them GO groups associated with post-

translational protein modifications were particularly frequent, including ubiquitination and

neddylation. While ubiquitination is involved in most cellular processes, neddylation is con-

sidered to be more specific with conjugation of the ubiquitin-like protein NEDD8 to cullin

family members and some further target proteins [60]. Recent evidence suggests that protein

ubiquitination and neddylation are involved in DNA damage response [60] and thus deregula-

tion may occur in response to malignant transformation or may be actively involved in carci-

nogenesis. Notably, genes involved in the neddylation pathway are upregulated in lung cancer

and protein expression in adenocarcinomas has been reported to be associated with worse

prognosis [61]. (5) Highly correlating genes were overrepresented among survival associated

genes. To study the association of gene expression and survival with sufficient statistical

power, we performed a meta-analysis with totally 1,779 patients, including the here analyzed

Uppsala cohort. This study demonstrated, based on gene expression data, that 70 of the identi-

fied highly correlating genes demonstrated an impact on prognosis.

Only few other studies systematically integrated gene copy number changes and gene

expression in a genome-wide analysis of clinical lung cancer samples. One of the first studies

evaluated nine squamous cell cancer samples with complementary data from custom made

BAC-CGH arrays and Agilent gene expression microarrays [14]. With overlay-tools the

authors identified that mRNA levels of more than 2,000 genes were explained by gene copy

number changes. The study of Lazar and colleagues integrated gene copy number alterations,

gene expression and microRNA profiles to explore cancer markers to distinguish between
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adenocarcinoma and squamous cell cancer for clinical purpose [15]. MRPS22, NDRG1 and

RNF7 were found to be consistently over-expressed in amplified genomic regions in agree-

ment with a strong correlation observed in our dataset (ECCC = 0.81, 0.42 and 0.79 for

MRPS22, NDRG1 and RNF7, respectively). In the study of Gallegos Ruiz, 32 NSCLC cancer

samples were analyzed by a gene expression microarrays and in house CGH arrays, detecting

359 transcripts, corresponding to 248 genes that were significantly affected by gene copy num-

ber changes [17]. Of these genes, 25 (KPNA4, DHX36, ATP1B3, PHC3, PDCD10, SIAH2,

GMPS SLC25A36, RNF7, TBL1XR1, ASTE1, TFDP2, ABCC5, ATR, COPB2, PIK3R4,

MRPS22, B3GNT5, ZNF639, MCCC1, DCUN1D1, ATP11B, DNAJC19, FXR1, MFN19) were

also in our list of highly correlating genes.

Recently, it was pointed out that integrative cancer studies that focus on genes whose expres-

sion levels correlate with corresponding copy numbers might create a bias towards genes whose

expression levels are not strongly controlled by non-genetic regulatory processes [59]. We agree

that strongly regulated genes are of high interest when one aims to understand global relation-

ships between copy number and gene expression. However, one goal of the present study was to

identify genes for which expression strongly correlates with copy number and that also are asso-

ciated with survival. The strong DNA-RNA correlation clinical relevance, combined with might

indicate a functional relevance or better define stable molecular subgroups of patients. To iden-

tify such genes, we applied the criteria of high correlation between copy number and gene

expression (ECCC>0.7) in the Uppsala cohort, and association with survival in a meta-analysis,

including data from 1,779 non-small cell lung cancer patients with an FDR adjusted p-value

smaller than 0.05. As much as 70 genes fulfilled these criteria, among them the chaperone

CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated

protein CAND1. CCT2 was recently identified as significantly depleted in an RNAi-based

growth and viability screen, as well as copy number amplified and overexpressed in the SUM-

52 breast cancer cell line [62]. Validation of the role of CCT2 in cell growth was provided by

knocking down CCT2 using five shRNA constructs targeting CCT2. Moreover, a genomic

region containing CCT2 was reported to be amplified in breast cancer, and further shown to be

amplified and/or overexpressed in approximately 13% of human breast cancers analyzed as part

of the Tumor Genome Atlas (TCGA) project. In the TCGA breast cancer dataset, CCT2 ampli-

fication and/or overexpression was associated with worse outcome [62], in agreement with

studies in gall bladder carcinoma [63] and with our current findings in NSCLC.

To validate the main findings of the present study, an independent cohort (TCGA) was ana-

lyzed. The correlation of CN with GE, as well as the association of GE with survival for many

of the highly correlating genes, could be confirmed for approximately half of the highly corre-

lating genes. This finding may be relevant, because RNA levels for the highly correlating genes

can be estimated based on copy number analysis. Copy number analysis can be performed

with DNA which in contrast to RNA can easily be obtained from FFPE tissue. Despite of the

significant association of the identified genes with survival it should be noted that their practi-

cal usefulness in clinical routine should be discussed with caution. Limitations of molecular

prognostic biomarkers were recently demonstrated in a study testing the value of a panel of 5

immunohistochemical biomarkers [64] to predict NSCLC patient survival. Although the

highly optimized panel showed a strong association with prognosis alone, it did not add signif-

icant prognostic information to the combination of traditional clinical factors (age, stage and

performance status). Thus, it remains to be analyzed whether the here identified highly corre-

lating prognostic genes add independent information to the clinical factors.

In conclusion, this study provides a genome-wide profile of gene copy number dependent

gene expression in NSCLC, a description of highly correlating genes with biological motifs as

well as chromosomal locations and finally a thorough analysis of their prognostic impact.
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Supporting information

S1 Fig. Relationship between gene copy number and corresponding gene expression values

for 440 highly correlating probe sets. Correlation analysis using the externally centered cor-

relation coefficient (ECCC) revealed 440 probe sets with significant correlations (FDR adj.

p< 0.05) and high correlation coefficients (ECCC > 0.7). Gene expression values in a linear

scale were plotted against gene copy number values (also linear scale) for all 190 NSCLC cases.

Triangular and square symbols represent adenocarcinomas and squamous cell cancer, respec-

tively, while the circular symbols are undifferentiated large cell carcinomas. Dark green repre-

sents a high gain, green represents gain and red copy number loss. The correlation is given as

externally centered correlation coefficient (ECCC). Abbreviated gene names and correspond-

ing accession numbers of the probe sets are given in the left corner of each plot.

(PDF)

S2 Fig. Chromosomal positions of regions with high CN-GE correlations (“hotspots”) and

copy number values. The total cohort with 190 patients is shown. The panels give copy num-

ber (CN) call frequencies (from Fig 1), the externally centered correlation coefficients (ECCC)

(triangles: “hotspot regions” of high correlation), the 95% quantile of the segmented gene copy

number values (95% CN), and the 95% quantile (grey dots) and the moving average (red line)

of the logarithmic gene expression values. The eight ECCC hotspot regions on chromosomes

3, 8, 9, 12, 14 and 19 coincide with higher values of the 95% CN.

(PPTX)

S3 Fig. Analysis of cancer genes. Probe sets for cancer genes (n = 522) were selected based on

Cancer Gene Census (Futreal et al. 2004) and the externally centered correlation coefficients

(ECCC) were compared to the ECCC of all other probe sets (A-C). In addition, 152 probe sets

for 46 genes were listed that previously have been reported to show genomic gain in NSCLC

(D-F).

(JPG)

S4 Fig. Visualisation of top 10 genes with the highest correlation in an independent data

set. The box plots were based on gene copy numbers (estimated by GISTIC 2.0) and gene

expression data from 520 adenocarcinomas and 504 squamous cancer cases provided by the

TCGA were downloaded from cBioPortal (August 2017; http://www.cbioportal.org, Gao et al.

Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012).

(PDF)

S1 Table. Patient characteristics. Patient characteristics of 190 patients with available fresh

frozen tissue. Tumor tissue was used for concurrent analysis of genome wide gene copy num-

ber and mRNA expression levels.

(DOCX)

S2 Table. Genomic aberrations in the Uppsala study cohort compared to previous results.

The table lists gains or losses observed in the present study (Uppsala) and indicates whether simi-

lar aberrations in the same chromosomal region have also been reported in previous studies.

(DOCX)

S3 Table. Correlation of gene copy numbers and gene expression. (A) Correlation of gene

copy numbers and gene expression values for 190 NSCLC cases. (B) Correlation of gene copy

numbers and gene expression values for 105 adenocarcinoma cases. (C) Correlation of gene

copy numbers and gene expression values for 62 squamous cell cancer cases.

(XLSX)
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S4 Table. Genomic location of “correlation hotspots” of highly correlating genes. (A) Cor-

relation hotspots” from the total NSCLC (n = 190). (B) Correlation hotspots” from the adeno-

carcinoma cases (n = 105). (C) Correlation hotspots” from the squamous cell cancer cases

(n = 62).

(XLSX)

S5 Table. Gene Ontology (GO) enrichment analysis. (A) Gene Ontology (GO) enrichment

analysis of the 440 significant highly correlating probe sets from the total NSCLC cohort. (B)

Gene Ontology (GO) enrichment analysis of the 383 significant highly correlating probe set

from the adenocarcinoma cases (n = 105). (C) Gene Ontology (GO) enrichment analysis of

the 626 significant highly correlating probe set from the squamous cell cancer cases (n = 62).

(XLSX)

S6 Table. Selection of cancer related genes. (A) Genes were selected based on Cancer Gene

Census (Futreal et al., 2004). (B) Genes were selected based on described gene copy number

gain in previous studies.

(XLSX)

S7 Table. Analysis whether the expression of highly correlating genes is associated with

survival in the Uppsala cohort. (A) Cox regression model for gene copy number and gene

expression in the total NSCLC cohort (n = 190) for the 440 high correlation probe sets. (B)

Cox regression model for gene copy number and gene expression in the total NSCLC cohort

(n = 105) for the 383 high correlation probe sets. (C) Cox regression model for gene copy

number and gene expression in the total NSCLC cohort (n = 62) for the 626 high correlation

probe sets.

(XLSX)

S8 Table. Meta-analysis of the impact of highly correlating genes on survival using inde-

pendent NSCLC cohorts. (A) Meta-analysis of the 440 significant highly correlated genes

(copy number dependent genes) from the total NSCLC cohort (n = 190). (B) Meta-analysis of

the 383 significant highly correlated genes (copy number dependent genes) from the adenocar-

cinoma cases (n = 105). (C) Meta-analysis of the 626 significant highly correlated genes (copy

number dependent genes) from the squamous cell cancer cases (n = 62).

(XLSX)

S9 Table. Analysis of highly correlating genes from the Uppsala data set in the TCGA data

sets based on Spearman. (A) CNV and gene expression data from 520 adenocarcinoma and

504 squamous cancer cases provided by the TCGA were retrieved from cBioPortal (http://

www.cbioportal.org, Gao et al. Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012). (B)

CNV and gene expression data from 520 adenocarcinoma cases provided by the TCGA were

retrieved from cBioPortal (http://www.cbioportal.org, Gao et al. Sci. Signal. 2013 & Cerami

et al. Cancer Discov. 2012). (C) CNV and gene expression data from 504 squamous cell cancer

cases provided by the TCGA were retrieved from cBioPortal (http://www.cbioportal.org, Gao

et al. Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012).

(XLSX)

S10 Table. Survival analysis of highly correlating genes in the TCGA data sets. (A) The

table lists the 70 highly correlating probe sets that are associated with survival when all NSCLC

samples (n = 190) were analysed. The last column showed the unadjusted p-value of the sur-

vival analysis based on TCGA data retrieved from the human protein atlas (www.proteinatlas.

org, Uhlen et al., 2017, Science). The p-value is based on the log-rank test with an optimised

cut-off for each gene. It should be noted that the TCGA data set is not a consecutive cohort
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like the Uppsala cohort (including large cell carcinoma NOS) and in this analysis 500 adeno-

carcinomas and 494 squamous cell cancers were just combined. (B) The table lists the 21 highly

correlating probe sets that were associated with survival when only adenocarcinoma samples

(n = 104) were analysed. The last column showed the unadjusted p-value of the survival analy-

sis based on TCGA data retrieved from the human protein atlas (www.proteinatlas.org, Uhlen

et al., 2017, Science). The p-value is based on the log-rank test with an optimised cut-off for

each gene for 500 adenocarcinomas cases.
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54. Uhlén M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human

cancer transcriptome. Science. 2017; 357(6352).

55. Thu KL, Vucic EA, Chari R, Zhang W, Lockwood WW, English JC, et al. Lung adenocarcinoma of never

smokers and smokers harbor differential regions of genetic alteration and exhibit different levels of

genomic instability. PLoS One 2012; 7:e33003. https://doi.org/10.1371/journal.pone.0033003 PMID:

22412972

56. Iwakawa R, Kohno T, Kato M, Shiraishi K, Tsuta K, Noguchi M, et al. MYC amplification as a prognostic

marker of early-stage lung adenocarcinoma identified by whole genome copy number analysis. Clin

Cancer Res 2003; 17:1481–9.

57. Lu TP, Lai LC, Tsai MH, Chen PC, Hsu CP, Lee JM, et al. Integrated analyses of copy number varia-

tions and gene expression in lung adenocarcinoma. PLoS One 2011; 6:e24829. https://doi.org/10.

1371/journal.pone.0024829 PMID: 21935476

58. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in

lung adenocarcinoma. Nature 2007; 450:893–8. https://doi.org/10.1038/nature06358 PMID: 17982442

59. Fehrmann RS, Karjalainen JM, Krajewska M, Westra HJ, Maloney D, Simeonov A, et al. Gene expres-

sion analysis identifies global gene dosage sensitivity in cancer. Nat Genet 2015; 7:115–25.

60. Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol. 2015;

5:150018. https://doi.org/10.1098/rsob.150018 PMID: 25833379

61. Li L, Wang M, Yu G, Chen P, Li H, Wei D, et al. Overactivated neddylation pathway as a therapeutic tar-

get in lung cancer. J Natl Cancer Inst 2014; 106:dju083 https://doi.org/10.1093/jnci/dju083 PMID:

24853380

62. Guest ST, Kratche ZR, Bollig-Fischer A, Haddad R, Ethier SP. Two members of the TRiC chaperonin

complex, CCT2 and TCP1 are essential for survival of breast cancer cells and are linked to driving onco-

genes. Exp Cell Res 2015; 332:223–35. https://doi.org/10.1016/j.yexcr.2015.02.005 PMID: 25704758

63. Zou Q, Yang ZL, Yuan Y, Li JH, Liang LF, Zeng GX, et al. Clinicopathological features and CCT2 and

PDIA2 expression in gallbladder squamous/adenosquamous carcinoma and gallbladder adenocarci-

noma. World J Surg Oncol 2013; 11:143. https://doi.org/10.1186/1477-7819-11-143 PMID: 23782473

64. Grinberg M, Djureinovic D, Brunnström HR, Mattsson JS, Edlund K, Hengstler JG, et al. Reaching the

limits of prognostication in non-small cell lung cancer: an optimized biomarker panel fails to outperform

clinical parameters. Mod Pathol. 2017 30:964–977. https://doi.org/10.1038/modpathol.2017.14 PMID:

28281552

Gene copy number and gene expression in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0187246 November 7, 2017 23 / 23

https://doi.org/10.1200/JCO.2009.26.4325
http://www.ncbi.nlm.nih.gov/pubmed/20823422
https://doi.org/10.1371/journal.pone.0010312
http://www.ncbi.nlm.nih.gov/pubmed/20421987
https://doi.org/10.1038/nature04296
http://www.ncbi.nlm.nih.gov/pubmed/16273092
https://doi.org/10.1038/nm.1790
http://www.ncbi.nlm.nih.gov/pubmed/18641660
https://doi.org/10.1158/0008-5472.CAN-06-1191
https://doi.org/10.1158/0008-5472.CAN-06-1191
http://www.ncbi.nlm.nih.gov/pubmed/16885343
https://doi.org/10.1097/JTO.0000000000000042
http://www.ncbi.nlm.nih.gov/pubmed/24305008
https://doi.org/10.1093/biostatistics/kxp059
http://www.ncbi.nlm.nih.gov/pubmed/20097884
https://doi.org/10.1007/s00204-015-1632-4
https://doi.org/10.1007/s00204-015-1632-4
http://www.ncbi.nlm.nih.gov/pubmed/26608184
https://doi.org/10.1371/journal.pone.0033003
http://www.ncbi.nlm.nih.gov/pubmed/22412972
https://doi.org/10.1371/journal.pone.0024829
https://doi.org/10.1371/journal.pone.0024829
http://www.ncbi.nlm.nih.gov/pubmed/21935476
https://doi.org/10.1038/nature06358
http://www.ncbi.nlm.nih.gov/pubmed/17982442
https://doi.org/10.1098/rsob.150018
http://www.ncbi.nlm.nih.gov/pubmed/25833379
https://doi.org/10.1093/jnci/dju083
http://www.ncbi.nlm.nih.gov/pubmed/24853380
https://doi.org/10.1016/j.yexcr.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/25704758
https://doi.org/10.1186/1477-7819-11-143
http://www.ncbi.nlm.nih.gov/pubmed/23782473
https://doi.org/10.1038/modpathol.2017.14
http://www.ncbi.nlm.nih.gov/pubmed/28281552
https://doi.org/10.1371/journal.pone.0187246

