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Abstract

An essential step in the discovery of molecular mechanisms contributing to disease

phenotypes and efficient experimental planning is the development of weighted

hypotheses that estimate the functional effects of sequence variants discovered by

high-throughput genomics. With the increasing specialization of the bioinformatics

resources, creating analytical workflows that seamlessly integrate data and

bioinformatics tools developed by multiple groups becomes inevitable. Here we

present a case study of a use of the distributed analytical environment integrating

four complementary specialized resources, namely the Lynx platform, VISTA

RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX

server, for the identification of high-confidence candidate genes contributing to

pathogenesis of spina bifida. The analysis resulted in prediction and validation of

deleterious mutations in the SLC19A placental transporter in mothers of the

affected children that causes narrowing of the outlet channel and therefore leads to
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the reduced folate permeation rate. The described approach also enabled correct

identification of several genes, previously shown to contribute to pathogenesis of

spina bifida, and suggestion of additional genes for experimental validations. The

study demonstrates that the seamless integration of bioinformatics resources

enables fast and efficient prioritization and characterization of genomic factors and

molecular networks contributing to the phenotypes of interest.

Introduction

The identification of genomic variations contributing to specific phenotypes of

direct medical relevance is an ultimate goal of numerous studies in human

genetics. The development of solid weighted hypotheses on the functional effects

of a sequence variant is an essential step for gaining insights into a genetic

architecture of a disease and for the efficient planning of experiments. However, as

the volume and complexity of biological information increases, it demands

sophisticated analytical workflows involving multitude of steps for extraction of

actionable knowledge. In the past years much attention in the bioinformatics

literature was given to data integration [1–3]. Seamless integration of

complementary services and tools provided by multiple groups in workflow

pipelines is essential for comprehensive data analysis. It provides the means for

substantial reduction of time and effort required for analysis of translational data

and significant increase in the efficiency of knowledge extraction.

A number of excellent bioinformatics platforms and tools have been developed

in the recent years to support various steps of analysis of high-throughput data

and prioritization of genomic variants (reviewed in [4–6]). These include, but not

limited to GeneMANIA [7], STRING [8, 9], ToppGene [10], Endeavour [11]

widely used by the scientific community. The eXtasy platform developed by Sifrim

et al. [12] prioritizes mutations for follow-up validation studies by integrating

variant-impact and haploinsufficiency predictions with phenotype-specific

information. Another scientific environment, SPRING [13], has been designed to

facilitate the prioritization of pathogenic non-synonymous SNVs associated with

the disorders whose genetic bases are either partly known or completely unknown.

It is achieved by integrating the results of analyses by multiple publicly available

and developed in-house bioinformatics tools. There are more analytical platforms,

such as Jannovar [14], KGGSeq [15], MToolBox [16] and FamAnn [17].

Moreover, multiple resources support the analysis of non-coding regions and

their regulatory roles [18]. Most of these existing resources, understandably,

address either the analysis of coding sequences or the characterization of non-

coding regions.

The analytical environment described here however is different from these

resources. It is based on seamless integration of data and services across multiple

independently developed analytical systems and databases, namely the Lynx [19]
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and the VISTA [20] systems, the Developmental Brain Disorders Database

(DBDB) [21], and the RaptorX server [22, 23]. This environment, depicted in

Fig. 1, allows end users to easily direct and analyze their data among all these

systems. The benefits of such integration are manifold. They include the

integration of the vast knowledge bases developed by each system to support the

annotation of the experimental data and the subsequent analyses. Complementary

analytical tools and the Web services-based collaborative interfaces provide

flexible analytical pipelines seamlessly operating across the participating systems.

As an example, we have demonstrated an ability of the reported pipeline to

identify polymorphisms that make plausible candidates for factors contributing to

spina bifida (SB), using whole genome next generation sequence (NGS) data for

Fig. 1. Integration of services in the described analytical environment. Lynx logo � 2013–2014 Department of Genetics, University of Chicago.
RViewer logo � 2010–2012 The Regents of the University of California.

doi:10.1371/journal.pone.0114903.g001
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affected patients and their parents. We show advantages of an integrated approach

for both hypothesis-based and discovery-based methods for identification and

prioritization of genetic factors contributing to complex developmental

phenotypes. The presented example also serves as a proof of concept for the

integration of various computational resources for the high-throughput analysis

of genomic variants.

Materials and Methods

1. Integrative Analytical Approach

We have integrated the following analytical resources developed by four groups:

(1) VISTA RViewer [24] for the annotation and comparative and evolutionary

analysis of coding and non-coding regions of the genomes; (2) the Lynx platform

[19] supporting enrichment analysis and networks-based gene prioritization, (3)

the Developmental Brain Disorders Database (DBDB) [21], and (4) RaptorX [23]

for predicting 3D structure and functional properties of identified candidate gene

products. Combining knowledge bases and knowledge-extraction services into a

seamlessly integrated analytical pipeline creates a one-stop solution for generating

weighted hypotheses regarding the molecular mechanisms contributing to the

phenotypes of interest.

Data submission

The approach supports multiple entry points for annotation and analysis of

translational data (e.g. genes, pathways, disorders), as well as batch queries via

Web-based user interfaces or Web-services (see Fig. 1). The following queries can

be submitted to Lynx or VISTA RViewer for annotation or downstream analysis

(Fig. 1): (a) single gene queries to Lynx, RViewer or RaptorX; (b) search-based

queries to Lynx or VISTA to retrieve information from these systems knowledge

bases, (c) batch queries for experimental data in the form of SNPs, genomic

coordinates, or gene lists. VISTA RViewer also supports analysis of the Variant

Call Format (VCF) files. The results of gene expression analyses in a form of a

table containing gene symbol – expression value pair may be directly uploaded

into the Lynx Network-based prioritization engine. Lynx Web site provides access

to detailed tutorials.

2. Participating Analytical Resources

The sections below will describe the components of the integrated distributed

analytical pipeline in more details.

VISTA Region Viewer (RViewer)

VISTA RViewer [24], one of the VISTA comparative genomics programs [20]

widely adopted by the biomedical community [25–27], employs a new concept of

comparative analysis for automating the prioritization of functional variants

based on comparative genomics. VISTA RViewer allows for comparison and
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prioritization of the entire functional content of several genomic regions in

parallel. Examples of such uses could be sets of CNVs regions from experiments,

genomic neighborhoods of SNPs from GWAS or other studies, genes of

expression studies, etc. RViewer has several functions not found in other currently

available tools [28–30], namely it enables the simultaneous comparison of

functional features in multiple genomic intervals, i.e. provides capabilities for

quicker analysis, prioritization and visual inspection. RViewer takes as input

genetic variation data from different biomedical studies (e.g.: GWAS, exomes),

and determines a number of functional parameters for both coding and

noncoding sequences in each region. Each gene in the region is characterized

using the following contexts: (a) biological function; (b) features of protein

products of these genes; (c) tissue expression; (d) binding partners (e)

developmental stage; (f) pathways and networks information from pathways

databases and literature (g) known disease associations; and (h) known genetic

variations. For noncoding regions, RViewer provides: homotypic clusters of

transcription factor binding sites, a key component of promoters and enhancers

[31]; experimentally verified enhancers from the VISTA Enhancer browser [32];

heart- and hindbrain- specific enhancers derived computationally [33, 34]; and

conserved TFBS in the promoters of all human genes. In addition, a wide range of

comparative genomics data based on pairwise and multiple alignments [35] is

accessible.

In the LYNX - VISTA integrative system, RViewer plays a dual role, both

calculating a number of functional parameters used by LYNX in further analysis,

and visualizing a set of genomic regions with prioritized variant provided to a user

as an output of the system. In particular, it finds a genomic position of a

submitted by a user variant (coordinate and a specific position in intron, exon,

UTRs, intergenic), associates it with UCSC isoforms, calculates deleteriousness of

the non-synonymous coding SNPs using Polyphen2 [36], and defines occurrence

of SNPs in clusters of TFBS [31], enhancers [32], and highly conserved intervals in

inter-species pairwise and multiple alignments. Prioritized genes and other

functional features in resulting genomic intervals are displayed in RViewer with all

relevant functional content for further interactive exploration by a user.

Lynx annotation and knowledge extraction engine

Lynx (http://lynx.ci.uchicago.edu) is an integrated bioinformatics platform and a

knowledge extraction engine for annotation and analysis of high-throughput

biomedical data [19]. Lynx receives user data as genomic variants whose coding

and non-coding signals have been characterized by RViewer (Fig. 1). The

platform supports both hypothesis-based and discovery-based approaches to

prediction of genetic factors and networks associated with phenotypes of interest.

It provides a knowledge extraction engine and a supporting knowledge base

(LynxKB) combining various classes of information from over thirty-five public

databases and private collections. Lynx knowledge retrieval engine offers advanced

search capabilities and a variety of algorithms for gene enrichment analysis and

network-based gene prioritization. Lynx’s XML schema-driven annotation service
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supports extraction of annotations for an individual object (e.g. a gene) or batch

queries (e.g. list of genes) from LynxKB. Annotations include inter alia associated

pathways, diseases, phenotypes, molecular interactions, Gene Ontology categories,

toxicogenomic information displayed according to the user preferences. All

information related to the objects is easily accessible via user interface and

available for download in tab-delimited, XML or JSON formats (Web Services).

Lynx gene enrichment analysis supports Bayes factor and p-value estimates for

identification of functional categories over-represented in the query data sets (see

B. Xie et al. for more details [37]). Lynx enrichment analysis is based on a large

variety of features (e.g. Gene Ontology terms, toxicogenomic information,

tissues), as well as unique for the system customized brain connectivity ontology,

symptoms-level phenotypes and associated non-coding signals from VISTA (e.g.

enhancers and clusters of transcription factors binding sites). Lynx also supports

context-sensitive enrichment analysis (e.g. against genes expressed on a particular

developmental stage or in a particular tissue) that may substantially increase the

accuracy of the results.

Additionally, Lynx integrates five network propagation algorithms (simple

random walk, heat kernel diffusion, PageRank with priors, HITS with priors and

K-step Markov) as initially developed in the gene prioritization tool PINTA [38].

These algorithms were modified for Lynx to replace continuous gene expression

data with binary data from seed genes. This modification accommodates the use

of a variety of weighted data types for gene prioritization including ranked gene to

phenotype associations, weighted canonical pathways, gene expression, results of

sequencing analyses and others. STRING v 9.0 [8] is used as the underlying

protein interaction network. Networks-based gene prioritization facilitates

prioritization of promising candidate genes from large gene sets or even from the

entire genome to provide a preliminary step for network reconstruction. Lynx

Service Oriented Architecture provides public access to LynxKB and its analytical

tools via user-friendly web services and interfaces.

Developmental Brain Disorders Database (DBDB). In a lot of cases the analysis of

translational data requires integration of the domain- and project specific data

(e.g. phenotypic and clinical data, tissue-specific information). Significant amount

of this information is already integrated into the Lynx knowledge base. However,

the described analytical pipeline can be customized to integrate additional

information resources (e.g. public databases and private collections) to meet the

user requirements. Here we present the integration of the information from the

Developmental Brain Disorders Database (DBDB) [39] as an example of satisfying

the needs of neurodevelopmental research.

DBDB (https://www.dbdb.urmc.rochester.edu/home) is a publicly available,

curated on-line repository of genes, phenotypes, and syndromes associated with

human neurodevelopmental disorders [21]. The discovery of genetic mechanisms

contributing to pathogenesis of diseases relies on pre-existing knowledge

regarding complex phenotype-genotype relationships accumulated in the libraries

of disease candidate genes (e. g. OMIM [40], AutDB [41]), databases describing

genetic variations (e.g. GAD [42], SLEP [43]) or journal publications. The
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accuracy of these data varies significantly and affects the quality of the developed

models. DBDB addresses this issue by employing a novel system for estimating

levels of evidence for over 850 gene-phenotype associations curated by domain

knowledge experts. While a useful tool for clinical diagnostics, DBDB is also

increasingly valuable for annotation of variants identified from next-generation

sequencing experiments and the development of predictive computational models

for the disorders of interest. Here, DBDB was used for assigning of the levels of

confidence to the gene-phenotype associations used for the reconstruction of

molecular pathways potentially contributing to pathogenesis of Spina bifida.

RaptorX

RaptorX (http://raptorx.uchicago.edu) [23] is a protein structure and function

prediction web server, excelling at predicting 3D structures for protein sequences

without close homologs in the Protein Data Bank (PDB). Given a query sequence,

RaptorX predicts its secondary and tertiary structures as well as solvent

accessibility and disordered regions. RaptorX also predicts the binding sites of a

protein sequence, based upon the predicted 3D model.

RaptorX applies a template-based approach to protein structure prediction. To

deal with cases where no close template exists, RaptorX employs a couple of novel

modeling strategies. First, RaptorX integrates a variety of context-specific

biological signals in a non-linear probabilistic scoring function by using a

powerful machine learning model Conditional Neural Fields (CNF) [44]. Second,

RaptorX uses a multiple-template threading (MTT) procedure to significantly

improve both alignment and modeling accuracy for some targets with multiple

similar templates [45]. The predictions and tertiary structure models produced by

RaptorX can serve as starting points for further analysis in a number of diverse

application areas. For example, the predicted 3D models used for binding site

prediction can also be used for epitope prediction as well as in protein-protein

interaction studies. Given a protein sequence, RaptorX predicts its binding sites by

aligning its predicted 3D model to a database of ligand-binding protein structures

using a structure alignment tool DeepAlign [46].

3. Integrated Environment

The systems described above provide complementary services for identification

and characterization of causative factors and molecular mechanisms associated

with phenotypes of interest. While they all act as individual entry points for the

end users to start the analysis, the implemented integrative tools provide an

environment for seamless data transfers between the systems. Following are a few

examples of the interfaces built towards integrating these systems:

(i) Lynx and RViewer. After entering a list of genes, genetic variants (SNPs) or

regions (CNVs) in the Lynx system, the users are provided with the interface

to submit these datasets to RViewer for the annotations of the genomic

regions including variants, transcription factor binding sites, experimental

and computational enhancers and many others. The annotations data for
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transcription factor binding sites and enhancers is periodically fetched from

the RViewer and integrated into the Lynx knowledge base and is used for the

enrichment analysis of the genes of interest.

(ii) Lynx and DBDB. The richly curated data in DBDB make possible providing

weights to the genes of interest for particular phenotypes. These data can be

used in Lynx’s networks based prioritization interface. DBDB also provides

direct links to the Lynx’s single gene and multi-gene annotation pages.

(iii) Lynx and RaptorX. Lynx provides a novel interface for submission of protein

sequences directly to RaptorX, thus creating capabilities for RaptorX to

predict the structure and binding site for high-confidence genes flawlessly.

Results and Discussion

Use Case: Identification of genetic factors contributing to the

pathogenesis of spina bifida from whole genome sequencing data

using coding and non-coding variant analysis

Spina bifida is a common congenital birth defect with an average worldwide

prevalence of one case per 2000 births. It manifests itself as failed closure of the

embryonic neural tube [47, 48] resulting in a breach of several vertebrae leaving

spinal cord and/or spinal nerves exposed or covered by only a thin membrane. To

date the genetic mechanisms underlying this disorder still remain elusive, but

many studies indicate the convergence of gene-gene and gene-environment

interactions to produce the defect [49, 50].

In our study the Laboratory of Neurogenetics and Development (Weil Cornell

Medical College) performed the whole genome sequencing for four patients with

spina bifida, and four parents with normal phenotype from the same

consanguineous family. The resulting SNPs were analyzed using both discovery-

based, and hypothesis-based approaches for identification of the genetic factors

contributing to the birth defect phenotype. The analysis included the following

steps (schematically shown in Fig. 2):

N Step 1. Discovery-based approach: annotation of genomic variants using VISTA

RViewer. SNPs were filtered based on quality and annotated using VISTA

RViewer [24] with the following information: SNP to gene association (UCSC

isoforms), deleteriousness of the non-synonymous SNPs using Polyphen2 [36],

occurrence of SNPs in clusters of TFBS [31] and enhancers [32], genomic

features associated with the region of the variant (intron, exon, UTRs). The

Minor Allele Frequency (MAF) was estimated using ANNOVAR [51]. The

resulting annotated SNPs were then filtered based on homozygosity, Minor

Allele Frequency (MAF), and deleteriousness of mutations in exonic regions.

All of the variants that were homozygous in probands but heterozygous in

parents were extracted and used for further analysis to identify of de novo

mutations in proband but not in the parents. A total of 743 variants in proband

genomes were identified, out of which 6 variants were in the exonic region, 10
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variants fell into UTRs, 337 variants were in the introns and the rest of the

variants were in the intergenic un-annotated regions of the genome.

N Step 2. Hypothesis driven approach to SNPs prioritization: Defects in folate

metabolism and transport were suggested to be contributing factors in

pathogenesis of this birth defect [52, 53] however the exact genes associated

with this disorder are not known. Here, thirty-nine genes involved in folate

metabolism and transport were extracted from the literature [54, 55] and used

as seed genes for network-based gene prioritization as implemented in Lynx

[38]. STRING 9.0 [8] was used as a global probabilistic network. Network

predicted genes with significant p-values ,0.005 were used for subsequent

analysis.

Evaluation of the results. Direct overlap with the known folate metabolism genes

as well as the results of the network-based gene prioritization yielded a number of

genes with rare variants (MAF50) in the exonic and UTR regions of both the

patients and unaffected parents genes (Table 1 and Table S1 in S1 Materials).

Fig. 2. Analytical workflow for identification of spina bifida candidate genes.

doi:10.1371/journal.pone.0114903.g002
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In the recent years the genetic variations in genes involved in the folate-

homocysteine metabolism were assumed to be possible risk factors for spina bifida

[56–58]. These studies, however, are problematic due to the complexity of

epistatic relationships between the affected genes and potential involvement of

both the maternal and the offspring genotype in determining the pathogenic effect

of these mutations.

As seen in Table 1, a number of patient genes involved in folate biosynthesis

contained deleterious mutations. These included folate hydrolase 1 (FOLH1),

mesagenin (MSGN1) and solute carrier family 19 folate transporter, member 1

(SLC19A1). The mesagenin 1 (MSGN1 gene) is known to be involved in

specification of the paraxial mesoderm and regulation of the expression of T-box

transcription factors required for mesoderm formation and differentiation. The

mouse mutant of this gene is implicated in spina bifida phenotype. It was also

suggested [59] that MSGN1 serves as one of the Wnt target genes in Wnt/b-

catenin signaling that plays a well-established role in the regulation of embryonic

and adult stem cell homeostasis. Folate hydrolase 1 (FOLH1), also found to

contain deleterious mutations in two patients is known to act as a glutamate

carboxypeptidase on different substrates, including the nutrient folate and the

neuropeptide N-acetyl-l-aspartyl-l-glutamate [60].

Table 1. Identified genetic variants in folate metabolism genes in spina bifida patients and unaffected parents.

Gene NW P-value* Identified Variations Variation Type

Variation
occurrence in
patients**

Variation
occurrence in
parents

Reference of association
with SB

FOLH1 0 rs61886492 Missense, possi-
bly damaging

6C1, 6C2 Morin, Devlin et al. 2003
[58]

DMGDH 0 rs532964 Missense, possi-
bly damaging

2C1, 2C2, 6C1, 6C2 2M, 2F, 6M, 6F Marini, Hoffmann et al. 2011
[53]

MTR 0 rs1805087 Missense, possi-
bly damaging

2C1, 2C2, 6C1 2M, 2F, 6M, 6F Doolin, Barbaux et al. 2002
[59]

MSGN1 0.002 rs35858730 Missense, possi-
bly damaging

2C1, 2C2, 6C1, 6C2 Chalamalasetty, Dunty et al.
2011 [66]

CUBN 0.002 rs1801228 Benign 2M, 6M Kozyraki, Fyfe et al. 1999,
Wahlstedt-Froberg,
Pettersson et al. 2003,
Whitehead, 2006
[64, 68, 69]

rs41289311

SLC19A 0.0028 rs1051266 Missense, possi-
bly damaging

2M, 2F, 6M, 6F Shaw, Lammer et al. 2002,
Morin, Devlin et al. 2003
[58, 67]

rs2239911,
rs2239908,
rs2239907

2C1, 2C2, 6C2

*The P-values in Table 1 are generated by 10 000 random permutations of the input data scored according to the strength of association with the phenotype
using DBDB recommendations (random reassignment of the scores to network nodes and computation of the corresponding randomized scores for all
candidate genes) [38].
**Family 1: affected children 2C1, 2C2; mother 2M, father 2F. Family 2: affected children 6C1, 6C2; mother 6M, father 6F.

doi:10.1371/journal.pone.0114903.t001
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Our analysis also identified a number of parental genes containing deleterious

mutations. With respect to offspring, the effects of maternal genetic mutations

may be considered to be environmental risk factors. Identified parental genes

potentially contributing to spina bifida in affected children included CUBN1,

MTR, SLC19A and DMGDH genes. Some of these genes were previously found to

be associated with spina bifida. Doolin et al. [61], have demonstrated that

methionine synthase (MTR) variants influence the risk of spina bifida via the

maternal rather than the embryonic genotype. Moreover, in our study both

mothers also showed an exonic variant (rs1051266) in the SLC19A1 gene

encoding placental solute carrier family 19 folate transporter, member 1 (RFC) as

it was demonstrated by RViewer. Polymorphisms in vitamin B receptor (CUBN)

and in SLC19A1 (RFC) in mothers identified by networks-based gene

prioritization have been previously shown to be associated with spina bifida or

other neural tube defects in offspring [62–64] supporting the above inferences

obtained in the course of our analysis.

Analysis and validation of the functional impact of the SLC19A1 mutation

The known average distribution of the exonic variant (rs1051266; Arg27His,

80G.A) in SLC19A1 placental folate transporter in general population is 30:25:45

[65]. Further investigation of a potential impact of this variation on function was

done using RaptorX. Fig. 3 presents the results of the predictions of SLC19A1 3D

structure and the locations of the binding sites by RaptorX.

The reconstruction has shown that SLC19A1 protein has a typical MFS

membrane transporter architecture with N- and C-terminus domains containing

six trans membrane helices each [66]. It was previously demonstrated [67] that

the RFC1 80A-allele is associated with reduced plasma folate. This phenomena

could be explained by the reconstructed model in the following way: the 80G.A

substitution leads to a change in position 27 on TM1 from histidine (80A allele)

that has a relatively medium volume and neutral charge with Arg27 (80G allele)

that has a larger volume and positive charge. A variation is located on the

transmembrane helix (TM1) close to the intracellular outlet site. Such substitution

would likely lead to the narrowing of the outlet channel due to the repulsion of

Arg151 on TM5 due to electrostatic repulsion force and therefore to the reduced

folate permeation rate (see Fig. 3).

Indeed, an in-silico simulation and energy minimization study of the mutation

(see Text S1 in S1 Materials for more details) shows that the area surrounding

Arg151 becomes more compact and its contacting residues change after the

mutation (see Fig. 4, and Figures S1 and S2 in S1 Materials). This results in 33%

decrease in the volume of the cleft (from 807 Å3 to 541 Å3) and 28% decrease in

the surface area of the cleft (from 442 Å2 to 328 Å2) (see Table 2 for details).

Furthermore, a Pro-kink at Pro146 forces the side-chain of Phe141 to turn,

narrowing the channel in front of the cleft (Figures S1 and S2 in S1 Materials).

Further docking studies confirm that this narrowing results in a different

conformation of binding for the folate (see Fig. 5 and Figures S3 and S4 in S1

Materials).
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Annotation of SLC19A1 using Lynx showed that the expression and

functionality of this gene is negatively affected by a number of pharmacological

compounds, such as indomethacin, phenobarbital, nicotine and vitamin E.

Analysis of potential use of these medications by mothers of affected children

during pregnancy may provide additional clues regarding high occurrence of

spina bifida in the consanguineous family under study.

The described approach has let us to correctly identify CUBN and SLC19A1

genes previously shown to contribute to pathogenesis of spina bifida [62–64] and

to suggest additional genes for the next round of experimental validations.

Fig. 3. Ribbon diagram of SLC19A1 protein model generated by RaptorX. Rainbow coloring from blue to
red indicates the N- to C-terminal positions of the residues in the model. The docking location of Folic Acid
(FOL), shown in a spacefill form, was predicted by RaptorX-Binding. Numbers in black correspond to key
residues, shown in spacefill form, which related to the functional impact of an exonic variant (rs1051266;
Arg27His, 80G.A). The diagram was generated using PyMOL.

doi:10.1371/journal.pone.0114903.g003

Fig. 4. The changes to the binding site caused by the mutation (left: native, right: H27R mutant). The
mutation results in changing contact landscape inside the cleft, especially for the Arg151 residue.

doi:10.1371/journal.pone.0114903.g004
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Conclusions

The presented approach is an example of multilevel integration of the

bioinformatics resources that offers seamless access to the knowledge bases,

analytical tools and user interfaces independently developed by participating

groups. Such integration is critically important for the progress of the

translational studies since it significantly reduces the time and effort required to

efficiently extract knowledge from the exponentially growing data sets produced

by numerous genomics projects.

The spina bifida example demonstrates one of the possible analytical scenarios

supported by the described computational framework. The presented here

integrative approach however, can be generalized to support prioritization of the

high-throughput experimental results and prediction of novel candidate genetic

factors for any disorder of interest to the user. The power of the approach lies in

massive integration of various classes of data from the Lynx (e.g. functional,

phenotypic, pathways information), VISTA (e.g. genomic, evolutionary infor-

mation), and RaptorX (proteomic and structural information). In the spina bifida

example, the DBDB knowledge base was used as a source of domain-specific

Table 2. Volume and surface area of the of the cleft in the native and the mutant structures as calculated by 3V.

Cleft Volume Native H27R Mutant

Volume 807 Å3 541 Å3

Surface area 442 Å2 328 Å2

Sphericity 0.95 0.98

Effective radius 5.47 Å 4.94 Å

doi:10.1371/journal.pone.0114903.t002

Fig. 5. Docked folate conformations (blue: native, red: H27R mutant-bound folate molecules) showing
the distinct change in the optimal conformation between native and the mutant.

doi:10.1371/journal.pone.0114903.g005
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neurodevelopmental data. The resulting combined knowledge base may be used

for extensive annotation of data and the results of analyses by these multiple

resources. Another advantage offered by the described platform is the seamless

integration of tools that supports the workflows spanning across the contributing

resources (see Fig. 6). Datasets provided by the user in the form of SNPs, gene

lists, genomic coordinates, VCF files, results of gene expression experiments, or

obtained via queries to the participating knowledge bases may be analyzed by a

variety of tools used in combinations suitable for the goals of a particular

experiment.

The following types of analysis are currently integrated: RViewer provides an

extensive annotation of genomic intervals of interest (e.g. known variations,

TFBS); Lynx enrichment analysis allows the user to identify biological functions

and phenotypes over-represented in the user datasets; Lynx network-based gene

prioritization predicts high-confidence genes contributing to disease phenotypes;

RaptorX server gives predictions of the 3D protein structure for protein sequences

without close homologs in PDB, solvent accessibility, and disordered regions thus

facilitating understanding of protein-ligand interactions.

We are working on the expansion of the array of available analytical services

integrated in the described environment, specifically to provide access to

additional domain-specific resources (e.g. cancer and cardiovascular studies). As

the volume and complexity of biological information continues to increase, the

seamless integration of bioinformatics platforms will offer a practical solution for

the needs of biomedical studies.

Fig. 6. Access to the analytical tools within the described bioinformatics environment.

doi:10.1371/journal.pone.0114903.g006
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Supporting Information

Materials S1. Supporting text, figures and table. Text S1. Methodology. Figure

S1. The overall view of the energy-minimized structures of SLC19A1, native (a)

and H27R mutant (b). Figure S2. The changes to the binding site caused by the

mutation (left: native, right: H27R mutant). (a and b) The mutation results in

changing contact landscape inside the cleft, especially for the Arg151 residue. (c)

Shift of Pro146 causes a kink in the loop, causing the helix to kink and the

sidechain of Phe141 to turn, reducing the size of the cleft entrance. Figure S3.

Visualization of the cleft volume and shape in both the native (left) and the

mutant (right) structures. The H27R mutation reduces the volume of the cleft by

33%. Table S1. Volume and surface area of the cleft in the native and the mutant

structures as calculated by 3V (ref).

doi:10.1371/journal.pone.0114903.s001 (DOCX)
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